正常及单相接地时 开口三角电压及向量图

正常及单相接地时 开口三角电压及向量图
正常及单相接地时 开口三角电压及向量图

正常时开口三角电压及向量图

故障时开口三角电压及向量图

电压互感器开口三角形接线中有一相绕组接反时的综合向量图

开口三角电压保护整定值计算

什么是开口三角形 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a -x”、“b -x”、“c -x”,开口三角就是“a -x”的x 与“b -x”的b 相连,“b -x”中的x 与“c -x”的c 相连,从“a -x”的a 与“c -x”x 引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x ,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 本装置电容器组按招标数据单要求,必须具备不平衡电流保护(或不平衡电压保护)功能。根据电容器组单台中性点不接地单星接线方式,本设备采用了“开口三角电压保护”实现不平衡电压保护。开口三角形即将电压互感器一次侧与单星接线的每相电容器并联,将互感器的二次线圈接成三角形,但将三角形的最后一个“角”不联接,构成从原理图上看即构成一个开口的三角形。正常情况下,三角开口上没有电压,而当发电容器发生故障时,将引起相间电压的不平衡,从而在三角的开口上形成电压输出,该电压也称为“零序电压”,该电压可做为电容器的保护动作信号。这种方式的优点是不受系统接地故障和系统电压不平衡的影响,也不受三次谐波的影响,灵敏度高,安装简单,可检测到单台电容器故障并实现保护,是电容器组经常与熔断器配合使用的不平衡保护方式之一。 1.1. 设计要点 在正常情况下,由于电机三相绕组、三相电容客观存在的不平衡,以及电网电压的不对称,开口三角存在着不平衡零序电压。为防止保护系统发生误动作,必须对开口三角电压保护整定值(只有一台电容器因故障切除时的开口电压输出值)进行计算、验证,确保其与正常不平衡零序电压之比不小于预定的可靠系数。 1.1.1. 开口三角电压保护整定值计算 开口三角电压公式如下: lm y ch dz K N U U = ex ch U K K M N K U 2)(33+-=

电流与电压的关系向量图

用多功能电工表检验保护装置能否投入运行 发布时间:2007-1-22 10:50:20 浏览次数:20 古育文广东省梅县供电局(514011) 用负荷电流和工作电压检验是继电保护装置投入运行前的最后一次检查,对于某些保护装置是非常必要的,特别是在带有方向性的继电保护装置中,为了保护其动作正确,在投入运行前必须测量带负荷时的电流与电压的向量图,借此判断电流回路相序、相别及相位是否正确。通过多功能电工表可方便地实现上述功能,替换了以前用相位电压表法和瓦特表法两种繁琐的测量方法。下面结合实际谈谈如何用多功 能电工表来判断方向性的继电保护的接线是否正确。 在2002年10月28日我局所属的一个110kV变电所的电气设备进行电气试验, 经对试验结果进行分析、判断,发现110kV母线的B、C两相电压互感器内部绝 缘介质不良,严重威胁设备的安全运行。为了保证设备的安全运行,对这两相的电压互感器进行了更换。更换后,为了确保继电保护装置的动作正确,我们用多功能电工表(ST9040E型),进行了方向性继电保护装置的电流与电压的相位检查。 1测量方法 在测量前应先找出接入方向性的继电保护装置的电流、电压端子,在电压端子上用相序表检查所接入的电压互感器的二次接线相序应是正序(即是U A-U B-U C)。 然后用多功能电工表的电流测量钳钳住电流端子的A相电流线(假定电流端子接线正确),用多功能电工表的电压测量表笔依次与A、B、C三相的电压端子接触牢靠,将所测得的数据填入表1。用此法依次测量B、C相的电流与电压的相位值,所测得的数据也填入表1。

表1电流、电压和相位值 电压(V) 电流(A) 相位(°) I A=0.9I B=0.91I C=0.9 U A=60197316.873 U B=60.577.8195313.5 U=60 31776.3193 据上表的数据用AUTOCAD2002软件绘出电流向量图,见图1。 图1电流向量图(六角图) 2根据六角图判断接线 六角图作出后,根据测量时的功率的送受情况,判断接线是否正确。这对检验方向 保护,特别是差动保护接线是行之有效的。 功率的送受情况有以下四种: (1)有功与无功功率均从母线送往线路,电流向量应位于第I象限; (2)有功功率从母线送往线路,无功功率由线路送往母线,电流向量应位于第II象

中性点不接地系统发生单相接地时向量分析

中性点不接地系统单相接地时的向量分析 为了熟悉不接地电网的零序保护,需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。下面着重介绍单相接地时稳态电容电流的特点。下面图a示出最简单的中性点不接地网,图中表示负荷是断开的,因为单相接地时三相的相线电压和负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。 正常运行情况下,各相对地有相同的电容 C(用集中参数表示), 在相电压的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之和为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。 发生单相(例如A相)金属性接地时,若忽略较小的电容电流

产生的电压降,则电网中各处故障相的对地电压都变为零。于是A 相对地电容被短接,只有B 相和C 相对地电容中还存在电流,此时 中性点对地电压上升为相电压(-a E ), 非故障相的对地电压变为线间电压(升高3倍),其向量关系图如下图c 。 这时三相对地电压可分别写为:A U =0,B U =BA U =A B E E = 3A E 0150j e ,C U =CA U =C E -A E =3A E 0150j e ,由于相电压和电容电流的对称性已破坏,因而出现了零序电压和零序电流,因为A U =0,所以零序电压03U =B U +C U =-3A E ,即等于故障相正常电势的三倍,则 相位与之相反。在B U 和C U 的作用下, 在两非故障相及其对地电容中出现超前电压90°的电流,B I = C B jX U - =B U 0jW C ,C I =C C jX U - =C U 0jWC ,其有效值为B I +C I =3X U 0WC ,X U 为相电压的有效值,从故障点流回的电流即零序电流为:03I =-(B I +C I )=-(B U +C U )0jWC 。式中负号表示零序电流与通常规定的电流方向相反,因 为B U +C U =-3A E ,所以故障点的零序电流有效值为03I =3X U 0WC ,

PT开口三角电压

ENR-DRY型电容电流测试仪使用说明书 保定市伊诺尔电气设备有限公司

目录 1.概述------------------------------------------3 2.测量基本原理----------------------------------4 3.性能指标--------------------------------------4 4.测量接线及注意事项----------------------------5 5.操作方法--------------------------------------6 6.ENR-DRY-2面板说明----------------------------6 7.界面显示--------------------------------------7 8.保护功能及其显示------------------------------8 9.附件------------------------------------------9 10.售后服务--------------------------------------9 保定市伊诺尔电气设备有限公司 2

1.概述 对于中性点不接地电网,当对地电容电流过大时将对系统的安全运行造成严重威胁,因此规程规定对地电容电流大于一定数值时必须装设消弧线圈进行补偿。为选择合适的消弧线圈容量或对已安装的老式消弧线圈进行调节,首先要对系统的对地电容电流进行测量。 对地电容电流进行测量方法有直接接地法和间接测量法,直接接地法是在系统中人为制造单相接地故障,直接测量接地线流过的电流。该方法操作多、接线复杂、危险程度高,且易引发绝缘薄弱点击穿造成两相短路事故,一般不轻易采用。间接测量法是采用外加电容的方法,虽可避免直接接地法可能引发事故的弊端,但测量时仍然要与一次侧打交道,同样存在操作多、接线复杂、危险程度高的缺点。 为解决上述问题,我公司技术人员经多年努力,研制成功“DRY-2型电容电流测量仪”,只需将母线PT开口三角的两端子与仪器信号输出端子连接,按下“测量”按钮,即可准确的测出系统对地电容电流,方便、快捷、安全。 该仪器的操作面板上有一个电源开关、两个输出端子和三个操作按钮。输出端子用于输出电流;有三个操作按钮“复位”、“设置”、“测量”。整个操作方法非常简单,将电流输出线接入PT的开口三角后,打开电源开关,然后按“设置”按钮选择相应的系统电压(从6kV-10kV-35KV-66kV-1kV-3kV循环显示),按下“测量”按钮,几秒钟后测量结果就显示出来,再次按下“测量”键可进行重复测量。测量结果包括系统电容、容抗和电容电流。 该测量仪的主要特点有: 保定市伊诺尔电气设备有限公司 3

电力系统各种短路向量分析

电力系统各种短路向量分析

一、单相(A 相)接地短路 故障点边界条件 . . . 0;0;0kB kC kA U I I === 即 .... 1200kA kA kA kA U U U U =++= 又 . (2) 111()33kA kA kB kC kA I I a I a I I =++= . (2) 2 11()33 kA kA kB kC kA I I a I a I I =++= . .... 11()33 k kA kB kC kA I I I I I =++= 所以 ... 120kA kA k I I I == 以上就是以对称分量形式表示的故障点电压和电流的边界条件。

向量图如下: 由向量图可知A相电流增大,B、C相电流为零,A相电压为零,B、C相电压增大。

二、B 、C 相接地短路。 故障点边界条件为 ... 0;0;0kA kB kC I U U === 同上用对称分量表示,则 . . . 1200kA kA k I I I ++= . . . 120 13 kA kA k kA U U U U === 相量图如下:

有向量图可知,A 相电流为零,B 、C 相电流增大;A 相电压增大,B 、C 相电压为零。 三、两相短路 故障点的边界条件为 ..... 0;;kA kB kC kB kC I I I U U ==-= 以对称分量形式表示故障点电压、电流边界条件: . . . . . 12120;;kA kA kA kA kA I I I U U ==-=

向量图如下:

向量六角图

什么是向量六角图?如何用? 所谓六角图 就是利用功率表测量电流相位的一种方法,它是一种简单有效的相位检测方法。利用六角图能正确的判断出: 1)同一组电流互感器三相电流之间的相位是否正确。 2)功率方向继电器接线是否正确。 3)差动保护中不同组别电流互感器的电流相位是否正确。 4)电流互感器变比是否正确。因此,向量六角图在实际应用中具有相当广泛的用途。 六角图的原理 在一定坐标系统中,任何相量都可以用它在任何两个相交轴上的垂直投影来表示。根据这一原理,我们采用的坐标系统是互成120’的三相对称电压系统。由于线电压不受零序电压的干扰,所以采用三相线电压作为测量三相电流相位的基准量。在相量图中,被测电流在一个电压相量上的投影,可以确定该电流相量端点的轨迹;在两个电压相量上的投影,可以确定被测电流相量端点的位置(即电流的相位和大小);用此方法得出不同方向的电流数值,进行矢量计算,即可检验结果的准确性。 六角图实验 将被测电流Ia按规定极性接入功率表的电流端子,再将同一系统的电压Uab、Ubc、Uca按规定极性依次接入同一功率表的电压端子,分别读取Uab、Ubc、Uca电压下的功率表的读数(其读数有正、负),再依次将Ib、Ic接入功率表重复上述试验。 六角图的画法 在以互成120’的三相对称电压坐标系统中,分别根据实验所得数据进行画线。

例某变电所2号主变更换CT后测得110kV侧数据如附表所示。 如附图所示,在UAB,UBC,UCA互成120‘的三相电压组成的坐标系中,根据试验所得数据画线。 1)垂直—UAB,取值为54画直线L1 2)垂直—UBC,取值为2画直线L2 3)垂直UCA,取值为56画直线L3 二条直线相交与一点,从坐标原点到三条直线相交点画一直线,即为电流入同样的方法作出IB,Ic,这样一张六角图就做出来了。 根据这张六角图就可以进一步进行分析。 在进行六角图实验时,需要了解有功功率的输送情况,功率因数或无功功率的大致的数值,才能得出正确的判断,在这些情况没有很好的了解时(如两端有电源的线路,在通过线路输送的有功功率甚少,或摆动不定时)最好不要进行六角图的实验,进行六角图实验一般应选择输送功率很稳定的时候进行。 利用六角图可以方便简单快捷的测量电流的相位,能够快速判断功率方向继电器等的接线是否正确,因此,熟练掌握六角图是非常必要和有意义的。 附表 110kV侧 电压 黄(Ia) A-B B-C C-A A-B

开口三角

开口三角 这种接线方法在三相五柱式电压互感器上使用较多,也就是在电压互感器的次级除了有一个三相绕组以外还有一个辅助绕组,其接法是将三相按照首尾相连的方式连接好,但是第一相的头和最后一相的尾并不连在一起,而起接一个电压继电器,该继电器在电路三相运行正常时向量和是零,因此继电器不动作,而当电路中有接地时,三相电压的向量和不为零了,有电压产生,达到继电器定值后继电器动作。 这个概念是供电中的。开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 用来测量零序电压,匝数是相绕组的13。 开口三角形端电压等于三相对地电压的向量和的13。 当三相对地电压平衡时,向量和等于零,开口电压为零。 当发生一相接地时,向量和等于3线电压,开口电压等于线电压,越限报 警。 当一相高压熔丝熔断时,向量和等于线电压,开口电压等于相电压,越限报警。 将三相按照首尾相连的方式连接好,但是第一相的头和最后一相的尾并不连在一起,形成一个开口,电路三相运行正常时向量和是零,因此开口的电压矢量和为0,而当电路中有接地时,三相电压的向量和不为零了,有电压产生。 图上是一个星形接法,一个开口三角接法

三相四线及三相三线错误接线向量图分析及更正

三相四线测量常识———————————————第一步:测三相电压测量U1n接线图如下: 测量U2n、U3n方法与上面图类似,移动红线到第二、第三元件电压端,零线不动。(注意选择交流500) 不带电压互感器时220V为正常,且三相电压数值相接近为正常。如果有某相为0,说明该相电压断线。 能够测出U1=_____V U2=_____V U3=_____V 第二步:测量各元件对参考点Ua的电压测量方法如下图: 测量方法与上类似,移动红线到第二、第三元件电压端,接参考点的连线不动。 目的:测出对参考点电压为0的该相确定为A相 能够测出U1a=_____V U2a=_____V U3a=_____V

第三步:测量三个元件的相电流测量I1的方法如下图: 测量其它相与上图类似,移动黑线到第二、第三元件电流进线端。 目的:判断各元件电流是否正常,正常是三相相电流相接近,如果有某相为0,说明该相电流开路或短路。 能测出I1=_____A I2=_____A I3=_____A 第四步:测量第一元件电压与各元件电流的相位角测量

第五步:测量第一元件与第二元件电压间的相位角 按照上图可以测出

电气矢量计算

矢量图及矢量计算 编辑ABC569499305 2012年10月22日 一、电网电源矢量图 电网电源的矢量表示方式。三相电源互差120o,,相电压相序依次为U A(U AO)、U B(U BO)、U C(U CO),线电压相序依次为U AB、U BC、U CA。矢量图上各个电压用带箭头的线段和带下标的字母来表示,下标的第一个字母是电压的高电位端,如U AB表示A 端的电位高于B端,在矢量图上箭头指向A。如下图 二、两台单相互感器V/V连接方式与矢量图 1、接线方式。 两台单相互感器V/V连接有多种方式,通常接法是首尾连接法。电压互感器一次侧与二次侧接线柱傍都有标记。老标准一次侧首端为A,末端为X,二次侧首端为a,末端为x。新标准一

次侧首端为A,末端为B,二次侧首端为a,末端为b。通常接线方式为一次侧AB-AB,二次侧ab-ab。实物接线图(右)及接线原理图(左)如下。 2、矢量图。 V/V连接的电压互感器一次侧电压的矢量关系与电源是一致的,在接线原理图上的标示如上右图(参见“三相矢量图”)。电压互感器二次侧的电压是从一次侧感应过来的,各相电压的相位、相序是不会改变的。这样我们就可以根据两个互感器一次侧的矢量图和一二次侧的同名端,在接线原理图上标出二次侧电压方向(上左图中的箭头)。依照接线原理图上电压方向(上左图中的箭头),参照矢量图就可以绘制出两个互感器二次侧矢量图。具体方法如下: 1、u ab与U AB(电源线电压)相位相同(参见三相矢量图),即与水平线成60度夹角,箭头左上方。u bc与U BC相位相同,即与水平线成0度夹角,箭头向右。

2、从接线原理图上表示电压方向的箭头得知,u ab的箭尾是与u bc的箭头是相连的。 根据上述两点,把两条带箭头的线段组合在一起,二次侧u ab 与u bc的相位图就绘制完成。如下图 3、矢量计算 从矢量图得知,u ab与u bc是相加的关系(首尾相接的矢量,就是相加关系)。在做矢量加法计算时,把u ab与u bc两个矢量图首尾相接,第一个矢量图的尾端与最后一个矢量图的首端(箭 头)之间的连线就是各个矢量之和。连线的长度就是该矢量和的 绝对值,将该连线在最后一个相加的矢量箭头处加上箭头,该带 箭头的连线就是矢量和的矢量图。(矢量差的计算方法是,两个 矢量的末端连在一起,两个首端之间的连线就是矢量差,矢量差 的箭头标在被减矢量的箭头处)。 用几何法求u ca 。u ab与u bc的夹角为60度,

变电站线路单相接地故障处理及典型案例分析(扫描版)

变电站线路单相接地故障处理及典型案例分析 [摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。 [关键词]大电流接地系统;小电流接地系统;判断;分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。 为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。 本案例分析的知识点: (1)大电流接地系统与小电流接地系统的概念。 (2)单相瞬时性接地故障的判断与分析。 (3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。 (5)单相重合闸分析。 (6)单相重合闸动作时限选择分析。 (7)录波图信息分析。 (8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念 在我国,电力系统中性点接地方式有三种: (1)中性点直接接地方式。 (2)中性点经消弧线圈接地方式。 (3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。 中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。 大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值X0/X1。 我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

开口三角电压保护整定值计算

开口三角电压保护整定 值计算 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

什么是开口三角形 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 本装置电容器组按招标数据单要求,必须具备不平衡电流保护(或不平衡电压保护)功能。根据电容器组单台中性点不接地单星接线方式,本设备采用了“开口三角电压保护”实现不平衡电压保护。开口三角形即将电压互感器一次侧与单星接线的每相电容器并联,将互感器的二次线圈接成三角形,但将三角形的最后一个“角”不联接,构成从原理图上看即构成一个开口的三角形。正常情况下,三角开口上没有电压,而当发电容器发生故障时,将引起相间电压的不平衡,从而在三角的开口上形成电压输出,该电压也称为“零序电压”,该电压可做为电容器的保护动作信号。这种方式的优点是不受系统接地故障和系统电压不平衡

三相同步发电机的电压向量图原文

Voltage Diagrams of the Three-Phase Synchronous Generator on Balanced Load The voltage diagram is of very great importance for analyzing working conditions in a synchronous machine. It is possible to obtain from the voltage diagram the per cent variation of the synchronous generator voltage, the voltage increase with a drop in load and drop voltage for the transition from operation on no-load to operation on-load. The solution of these problems is of great importance: (1) for initial machine design when the necessary excitation current values are to be determined under various operating conditions and (2) when testing a finished machine to decide whether the machine conforms to given technical specifications. By using a voltage diagram, it is also possible to determine the operating conditions of a machine without actually applying the load, something which becomes especially difficult when the machine is of large rating. The voltage diagrams make it possible to obtain the fundamental performance characteristics of a machine by means of calculation. Finally, the voltage diagram allows to determine the power angle θ between the e. m. f. produced by the excitation field and the voltage across the terminals. Angle θplays a very important role in the analysis of the torque and power developed by a machine both in the steady-state and transient conditions. The vector difference between the e. m. f. E0due to the excitation flux and the terminal voltage V of a synchronous machine depends on the effect of the armature reaction and on the voltage drop in the active resistance and leakage inductive reactance of the armature winding. Since armature reaction depends to a very great extent on the type of the machine ( salient-pole or non-salient-pole ) , kind of load ( inductive, active or capacitive ) and on the degree of load symmetry ( balanced or unbalanced ) , all these factors must be duly considered when plotting a voltage diagram. It is necessary to bear in mind that all the e. m. f. s and voltages that participate as components in the voltage diagram should correspond to its fundamental frequency; therefore, all the e. m. f. s and voltages must preliminarily be resolved into harmonics and from each of them the fundamental wave must be taken separately. In the chapter where the armature reaction is considered an analysis was carried out which allowed to obtain the fundamental voltage wave produced by the armature field components revolving in step with the machine rotor. When a new machine is being commissioned, a vector diagram is plotted from the test data obtained from the experimental no-load and short-circuit

中低压配电系统单相接地故障及其保护分析

中低压配电系统单相接地故障及其保护分析 中低压配电系统单相接地故障及其庇护分析 1 概述 中低压配电系统故障分为相间短路和单相接地,相间短路又分为三相短路和两相短路。相间短路称为金属短路或永久性短路,短路电流比较大,危害也大,继电庇护必需可靠、迅速而有选择性将故障切除。单相接地故障的故障电流随配电系统中性点接地方式不同有很大差别。电源中性点不接地以及经大电阻或消弧线圈接地的配电系统,发生单相接地故障后,由于没有形成回路,接地故障电流为对地电容电流一般比较小,可继续运行必定时间,但应有报警,以便及时查找故障。电源中性点直接接地的配电系统发生单相接地故障后,接地相经过大地与电源中性点形成回路,故障电流为短路电流就比较大,继电庇护应可靠、迅速而有选择性将故障切除。 电源中性点不接地以及经大电阻或消弧线圈接地的配电系统,接地故障[Earth fault]是指相线和电气装置的外露导电部分,以及大地间的短路,它属于单相对地故障,它和相线与中性线的单相短路无论在危害后果与庇护办法上都十分不同。绝缘损坏或损伤是较常见的接地故障,此时为非金属性短路,短路电流随绝缘损坏程度不同差别比较大,故障电流相差也比较大。这就给继电庇护选择与整定造成较大困难。绝缘损坏往往会带来人身电击损害和火灾,因此必需采取必定办法限制故障电压升高和其作用时间,防范人体与危险电压的接触,并且要求电器装置的接地要合理可靠,并应有接地故障庇护。 2 电源中性点不直接接地配电系统的单相接地故障与庇护 2.1电源中性点不直接接地配电系统单相接地故障分析 我国日前6~10kV与35kV配电系统为小电流接地系统,其电源中性点有不接地、经大电阻或消弧线圈接地三种方式。正常运行时三相对地电容电流大小相等,相位各落后于相电压90度,电容电流分布与相量图。见图1。 图1中性点不接地系统单相接地电容电流分布与相量图 当发生单相接地故障时,电源中性点对地电位升高为相电压,故障相电位接近或等于地电位,其它两相对地为升高为线电压,其值为相电压的√3 倍。各相之间的电压大小和相位均无变化,仍然对称,这是电源中性点不接地配电系统发生单相接地之后仍可运行一段时间的主要原因,一般规定为1到2小时。 由图1可知发生单相接地后三相电压计算公式为: Ua =Ea-Ea =0 Ub =Eb-Ea =√3× Ea ×e-j150° Uc =Ec-Ea =√3× Ea ×e+j150° 电容电流分布见图2,向量图见图3。 图2单相接地时接地电容电流分布与单相接地庇护原理分析示意图

开口三角电压

正常时,由于3U 取自PT的变比为//,因此PT开口三角所属 三绕组电压U a =U b =U c =100/3 V, (1)开口三角绕组接反 一相(c相)接反时,3=-2 c ,即3U =66.7V; 两相(b、c)接反时,3 0= a - b - c =2 a ,即3U =66.7V。 (2)二次中性线断线 二次中性线断线时,由于各相二次负载相同,二次三相电压不变,指示为 U a =U b =U c =100/=57.7V;当一次系统发生单相接地时,由于二次三相 电压所构成的电压三角形Δabc为等边三角形,相同的各相二次负载所产生的三相对称电压在二次中性线断口形成57.7V的断口电压,因此二次三相电压仍不变,指示为57.7V,但开口三角电压为100V。 (3)一次一相(两相)断线 由于PT二次相间和各相均有负载,其负载阻抗所形成电路决定断相电压,以及三相磁路系统的影响,断相电压不为0,但要降低,其它相电压正常。 图1 单电源单回线断线运行 一相(C相)断线时,3 0= a + b =- c ,即3U =33.3V;两相(B、C)断 线时,3 0= a ,即3U =33.3V。 (4)二次一相(两相)断线 由于无磁路系统的影响,断相电压比一次断线时要低,其他相正常。 电压互感器二次侧有基本二次侧和辅助二次侧,变比是不同的,一般应为10/0.1/(0.1/√3)。开口三角是辅助二次侧,所以应为10/(0.1/√3)。

一般10kV系统电压互感器的变比应该是10/0.1/(0.1/3). 当高压一相熔丝熔断时,开口三角对应相电压为零,故开口三角侧电压为另外两相电压之相量和,大小与相电压相等,所以是100/3V。 当系统出现接地时,由于10kV系统是中性点不接地系统,所以接地相对地电压为零,而另外两相电压对地电压升高√3倍,而它们的相量和是3倍的相电压,所以开口三角侧为100V。

单相接地时零序电流电压分析 (2)

下面对系统单相接地时,零序电流与电压之间的关系做简单的分析: 将某用电系统简化为上图:(将所有正常回路简化为第一条回路,假定第二条回路出现接地故障,零序CT安装位置如图中1、2) 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 一、在正常情况下一次电压,二次电压(测量、开口三角)关系如图: UA(向量)与Ua(向量)、Ua0(向量); UB(向量)与Ub(向量)、Ub0(向量); UC(向量)与Uc(向量)、Uc0(向量); 方向分别相同 在测量线圈中变比为:

即一二次侧电压比为60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为V,两相之间的电压为100V 在开口三角线圈中变比为: 即一二次侧电压比为,即如果系统线电压为6000V,则在每只PT的开口三角 二次线圈中电压为V, UL0(向量)=Ua(向量)+ Ub(向量) +Uc(向量) = = = =0 用向量图的形式表示如下, 由上图也可以看出系统正常时开口三角UL0(向量)为0 二、如果C相保险熔断,那么UC(向量)=0,有 UL0(向量)= Ua0(向量)+ Ub0(向量) = =

= = = =-Uc0(向量) 用向量图的形式表示如下, 可以看出此时开口三角电压与C相电压大小相等,方向相反。即有: 一相保险熔断(无论高压侧低压侧)开口三角电压约为33.3V 同理可知:如果一相保险熔断(无论高压侧低压侧),开口三角电压与该相二次电压大小相等,方向相反。电压约为33.3V 如果两相保险熔断(无论高压侧低压侧),开口三角电压与正常相二次电压大小相等,方向相同。电压约为33.3V 三、如果存在一相金属性接地(假设为C相金属性接地)则有: UA’(向量)=UAC(向量)=UA(向量)-UC(向量) UB’(向量)=UBC(向量)=UB(向量)-UC(向量) UA’(向量)=UAC(向量)=UA(向量)-UC(向量)

关于PT辅助开口三角电压的问题

在10kV,35kV中低压配电网中,为了提高供电的可靠性,中性点一般采取不接地的方式,为了监视三相对地电压,变电站母线上接有电压互感器,而且母线上安装的电磁式电压互感器通常是Yo/Yo/开口三角接线。 电压互感器二次额定电压,我国规定接入三相系统中,相与相之间的单相电压互感器二次电压为100V;相与地之间的单相电压互感器,其二次额定电压为 。零序电压绕组二次额定电压,供中性点直接接地用的电压互感器,其零序电压绕组的二次额定电压为100V。供中性点不直接接地用的电压互感器, 其零序电压绕组的二次额定电压为 。 1.单相金属性接地时,PT二次开口三角的电压是多少?

U A,U B,U C为故障前一次侧相电压,U A’,U B’,U C’为故障后相电压。 C相单相接地后:非故障相电压升高到线电压,故障相电压为0,即U A’= U A -U C,U B’=U B-U C,U C’=0;中性点电压升为相电压即:U N=-Uc;此时|3U0|= |U A’+ U B’|= =| U AC + U BC AC |=3|U A|,即系统零序电压U0为相电压。变换到压变二 次侧开口三角电压即为|3U0’|=|3U0|/n’=3|U A|/n’=100V(以10kV不接地系统为例, n’ /(100/3)为高压侧对低压侧开口三角电压变比) 2.PT高压侧一相熔断时,二次开口三角电压是多少? 高压保险C相完全熔断,对于系统来说,系统电压正常,没有零序电压,但压变高压侧电压变化为Uc=0,Ua=Ua’,Ub=Ub’为相电压,由于高压侧一次绕组中性点接地,所以中性点不会位移,由此3U0=Ua+Ub+Uc=Ua’+Ub’=-Uc’,反映到 压变二次开口三角的电压3U0’=3U0/n’=-Uc’/n’ ’=100/3=33.3V(以 Uc’o Ub’ Ua’ 熔断前 U C N U B U A 正常

系统发生单相接地时零序电流与电压之间的关系分析

系统发生单相接地时零序电流与电压之间的关系分析: 将6KV系统简化为上图:用电系统中所有正常线路不止一条,为了容易表达,我们简化为一条线路,假定第二条线路出现接地故障,零序CT安装位置如图中1、2。 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 在正常情况下一次电压,二次电压(测量、开口三角)关系如图:其中UA为一次,Ua为测量二次,Ub0为开口二次电压,各相的向量方向相同。测量线圈电压变比为UA/Ua=UB/Ub=UC/Uc=6000/√3/100/√3=60,即一二次侧相电压之比60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为100/√3,相之间电压为100V。 开口三角线圈的变比为:UA/Ua0=UB/Ub0=UC/Uc0=6000/√3/100/3=60√3,如果系统6000V,则在每只PT的开口三角形线圈中电压为100/3 我们计算零序UL0向量=Ua向量+Ub向量+Uc向量,如果我们假定其中一相电压,另俩相电压与它相差120和240度。即UL0=Umsinwt+Umsin(wt+120)+Umsin(wt+240)=Um(sinwt+sin(wt+120)+sin(wt+240)=Um(sinwt +sinwtcos120+sin120coswt+sinwtcos240+sin240coswt),计算其中cos240=-1/2,COS120=-1/2 ,SIN120=√3/2,SIN240=-√3/2代入上式中得UL0=Um(sinwt-1/2sinwt+√3/2coswt-1/2sinwt-√3/2coswt)=0 正好等于0,即系统正常时开口三角UL0(向量)为0,三相向量正好对称如图所示 如果C相保险熔断,那么C相的向量就等于0,从而有UL0向量=Ua0向量+Ub0向量即= Umsinwt+Umsin(wt+120)=Um(sinwt+sinwtcos120+sin120coswt)=Um(sinwt-1/2sinwt+√3/2coswt)=

电力行业向量六角图说明及其使用

电力行业向量六角图说明及其使用 2009年04月11日星期六 18:02 所谓六角图 就是利用功率表测量电流相位的一种方法,它是一种简单有效的相位检测方法。利用六角图能正确的判断出: 1)同一组电流互感器三相电流之间的相位是否正确。 2)功率方向继电器接线是否正确。 3)差动保护中不同组别电流互感器的电流相位是否正确。 4)电流互感器变比是否正确。因此,向量六角图在实际应用中具有相当广泛的用途。 六角图的原理 在一定坐标系统中,任何相量都可以用它在任何两个相交轴上的垂直投影来表示。根据这一原理,我们采用的坐标系统是互成120’的三相对称电压系统。由于线电压不受零序电压的干扰,所以采用三相线电压作为测量三相电流相位的基准量。在相量图中,被测电流在一个电压相量上的投影,可以确定该电流相量端点的轨迹;在两个电压相量上的投影,可以确定被测电流相量端点的位置(即电流的相位和大小);用此方法得出不同方向的电流数值,进行矢量计算,即可检验结果的准确性。 六角图实验 将被测电流Ia按规定极性接入功率表的电流端子,再将同一系统的电压Uab、Ubc、Uca按规定极性依次接入同一功率表的电压端子,分别读取Uab、Ubc、Uca电压下的功率表的读数(其读数有正、负),再依次将Ib、Ic接入功率表重复上述试验。 六角图的画法 在以互成120’的三相对称电压坐标系统中,分别根据实验所得数据进行画线。 例某变电所2号主变更换CT后测得110kV侧数据如附表所示。 如附图所示,在UAB,UBC,UCA互成120‘的三相电压组成的坐标系中,根据试验所得数据画线。 1)垂直—UAB,取值为54画直线L1 2)垂直—UBC,取值为2画直线L2 3)垂直UCA,取值为56画直线L3 二条直线相交与一点,从坐标原点到三条直线相交点画一直线,即为电流入同样的方法作出IB,Ic,这样一张六角图就做出来了。根据这张六角图就可以进一步进行分析。 在进行六角图实验时,需要了解有功功率的输送情况,功率因数或无功功率的大致的数值,才能得出正确的判断,在这些情况没有很好的了解时(如两端有电源的线路,在通过线路输送的有功功率甚少,或摆动不定时)最好不要进行六角图的实验,进行六角图实验一般应选择输送功率很稳定的时候进行。利用六角图可以方便简单快捷的测量电流的相位,能够快速判断功率方向继电器等的接线是否正确,因此,熟练掌握六角图是非常必要和有意义的。 电压110kV侧 黄(Ia)绿(Ib)红(Ic) A-B-54 B-C-2-53.5 C-A+56-3-52 A-B+57-3 B-C+56

相关文档
最新文档