Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys

Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys
Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys

Fatigue behavior of Al 0.5CoCrCuFeNi high entropy alloys

M.A.Hemphill a ,T.Yuan b ,G.Y.Wang a ,J.W.Yeh c ,C.W.Tsai c ,A.Chuang a ,P.K.Liaw a ,?

a

Department of Materials Science and Engineering,University of Tennessee,Knoxville,TN,USA b

Department of Industrial and Systems Engineering,Ohio University,Athens,OH,USA

c

Department of Materials Science and Engineering,National Tsing Hua University,Hsinchu 30013,Taiwan

Received 26January 2012;received in revised form 6June 2012;accepted 8June 2012

Abstract

Research was performed on an Al 0.5CoCrCuFeNi high entropy alloy (HEA)in an attempt to study the fatigue behavior.The present fatigue investigation shows encouraging fatigue resistance characteristics due to the prolonged fatigue lives of various samples at rela-tively high stresses.The current results indicate that the fatigue behavior of HEAs compares favorably with many conventional alloys,such as steels,titanium alloys,and advanced bulk metallic glasses with a fatigue endurance limit of between 540and 945MPa and a fatigue endurance limit to ultimate tensile strength ratio of between 0.402and 0.703.Some unpredictability in the fatigue life of the sam-ples was observed as scattering in the stress vs.lifetime plot.Weibull models were applied to predict the fatigue data and to characterize the variability seen in the HEAs.A Weibull mixture predictive model was used to separate the data into two,strong and weak,groups.This model predicts that at stresses above 858MPa the median time to failure of specimens in the strong group will be greater than 107cycles.It was shown that microstructural defects,such as aluminum oxide inclusions and microcracks,may have a signi?cant e?ect on the fatigue behavior of HEAs.It is believed that a reduction in the number of these defects may result in a fatigue behavior which exceeds that of conventional alloys.

ó2012Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.

Keywords:Fatigue;High entropy alloy;Modeling

1.Introduction

Most practical alloy systems are based on a single prin-cipal element forming the matrix of the system with the addition of various elements to enhance particular proper-ties of the material,such as iron-or copper-based alloys.This model greatly limits the number of viable systems and,thus,restricts the expanded use of alloying elements to obtain more desirable properties [1].An alloy containing multiple principal elements is expected to yield many inter-metallic compounds,with the possibility of complex micro-structures with less desirable mechanical properties [2].However,in high entropy alloys (HEAs)these phases are not prevalent,and solid solutions based on multiple princi-pal elements are possible [2–4].

Thermodynamically,the tendency to form multi-ele-ment solid solution phases is likely using the Boltzmann hypothesis with the entropy of mixing D S Conf given by Eq.(1):

D S Conf ?àk ln w ?àR ln 1

n

R ln n

e1T

where k is Boltzmann’s constant,w is the number of possi-ble mixes,R is the gas constant,and n is the number of ele-ments [2].Because there are multiple principal elements they can be considered solute atoms.Elements with small atomic size di?erences are easily interchangeable and able to sit on lattice sites forming solid solutions.Moreover,the enthalpy of mixing of the elements does not favor the formation of compounds [3].The resulting high entropy of mixing acts to lower the free energy of the solution phases.This trend is accompanied by sluggish di?usion due to the di?culty of cooperative migration of the various

1359-6454/$36.00ó2012Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.https://www.360docs.net/doc/fa14564029.html,/10.1016/j.actamat.2012.06.046

?Corresponding author.

E-mail address:pliaw@https://www.360docs.net/doc/fa14564029.html, (P.K.Liaw).

https://www.360docs.net/doc/fa14564029.html,/locate/actamat

Acta Materialia xxx (2012)xxx–xxx

elements.Thus,simple solid solutions and nanostructures that avoid the problems of di?cult analyses and processing are formed [2,3].

Furthermore,it has been shown that the valence elec-tron concentration (VEC)of the constituent elements has an e?ect on the phase stability [5].Guo et al.have deter-mined the face-centered cubic (fcc)and body-centered cubic (bcc)phase stabilities of solid solutions,such as HEAs,when the atomic size ratios are nearly identical [5].This raises the possibility of thousands of alloy compo-sitions [2]in addition to bulk metallic glass (BMG)HEA derivatives [6],an exciting development for future alloy design.HEAs can be de?ned as being composed of ?ve or more elements in equimolar ratios or near equimolar ratios and can be extended to those compositions in which each principal element concentration is between 5and 35at.%[2].These alloys could be used for a wide range of applications,such as those requiring high temperature strength,high tensile strength,increased wear resistance,and corrosion resistance [2,6–10].

This investigation will study the fatigue behavior of an Al 0.5CoCrCuFeNi (molar ratio)HEA.Structural charac-terization of this alloy showed two distinct phases,a major a -fcc phase and a copper-rich b -fcc phase [11,12].Both

showed similar lattice constants of about 3.6A

?[12].In the homogenized and water-quenched condition both phases are in a supersaturated state and exhibit aging hard-ening between 300°C and 700°C due to the precipitation of Al-and Ni-rich bcc phases [13].This precipitation hard-ening increases the strength but is accompanied by a loss of ductility.In the as-rolled and as-annealed (at 900°C)con-dition the Al 0.5CoCrCuFeNi HEA displayed a better com-bination of strength and ductility compared with conventional alloys,such as 304stainless steel and Ti–6Al–4V titanium alloys [13].The mechanical properties of the as-cast Al x CoCrCuFeNi (x =0–3)alloys are readily available [14].However,essentially no research has been conducted on investigating the fatigue behavior of this and other promising HEA systems [2–16].The present research will examine and study the fatigue behavior of a Al 0.5CoCrCuFeNi HEA.Moreover,statistical modeling will be conducted to further investigate the fatigue charac-teristics of the HEA.2.Experimental procedures

2.1.Materials and sample preparation

The samples of Al 0.5CoCrCuFeNi (molar ratio)were prepared by arc melting the constituent elements at a cur-rent of 500A in a water-cooled copper hearth.The ele-ments were all at least 99wt.%pure,and melting was accomplished in a vacuum of at least 0.01T.The melting and solidi?cation processes were repeated at least ?ve times to improve the chemical homogeneity of the sample.The cast samples were annealed at 1000°C for 6h,water quenched,and cold rolled.The rolling reduction was

84%,with a ?nal thickness of 3mm.The rolled sheets were subsequently machined to fatigue samples with dimensions of 25?3?3mm for four point bending fatigue experi-ments,as described below.Samples were machined parallel to the rolling direction,i.e.the 25mm length of the samples ran parallel to the rolling direction.Thus the applied stress on the tensile edge was parallel to the rolling direction.Two distinct microstructures were observed in this region (and in the samples as a whole)depending on the sample position in the mold during casting,as discussed below.Hence,the fatigue behavior as a function of the character-istic microstructure was also determined.

To remove as many surface imperfections as possible,the samples were polished on a Buehler rotating grinder and polisher.240,400,600,and 1200grits were used in that order.The sample was turned through 90°after each pol-ishing step,?nishing with the 1200grit running parallel along the length direction of the sample.2.2.Tensile test

Tensile experiments were performed on samples of the as-rolled HEAs to characterize the mechanical behavior of the alloys,and their results were used for comparison with other conventional alloys.The gage section of the specimens was machined to a size of 3?12mm and tested in an Instron 4505at a strain rate of 1?10à3s à1.The specimens were tested to failure to determine the yield strength,ultimate tensile strength (UTS),and percent elongation.

2.3.Four point bending fatigue experiments

To study the fatigue behavior of the HEA samples four point bending tests were conducted at various applied loads and run until failure of the specimen or 107cycles had been reached.The results of the fatigue tests were plot-ted as a typical stress range vs.number of cycles to failure (S –N )curve.The maximum stress r on the tensile surface within the span of the two outer pins in the four point bending fatigue experiment was calculated,using the beam theory relationship [17]r ?

3P eS o àS i T2BW 2

e2T

where P is the applied load,S o is the outer span length 20mm,S i is the inner span length 10mm,B is the thick-ness,and W is the height.In this investigation,B =W =3mm.The samples were tested at 10Hz with a loading ratio of R =r min./r max.=0.1[17],where r min.and r max.are the minimum and maximum applied stresses,respectively.

2.4.Microstructural characterization

High energy X-ray di?raction (XRD)was performed at the Advanced Photon Source (APS)using the 11-ID beam-

2M.A.Hemphill et al./Acta Materialia xxx (2012)

xxx–xxx

3.Experimental results

3.1.Tension properties

Tension tests were initially performed on the samples to characterize the mechanical behavior of the rolled material. The results are shown in Fig.1.The specimens exhibited a high yield stress of1284MPa and a UTS of,generally, 1344MPa,exceeding that of conventional alloys,such as steels,titanium,aluminum,and nickel alloys[19–22]. Advanced alloys,such as BMGs,usually have higher strengths and lack tensile ductility.However,the present HEAs show the degree of plastic deformation necessary in structural applications with a tensile elongation of 7.6%for the as-rolled material(Fig.1).

3.2.Microstructural characterization observed previously by transmission electron microscopy (TEM)[12,23].The low peak intensity can be partially attributed to the high lattice strain present in the alloy [12].The lower heights of the(111)and(220)peaks rel-ative to the(200),(311),and(400)peaks are due to the texture in the sample,introduced by rolling deformation. The detection limits of XRD,approximately1vol.%, masked the detection of any minor phases,such as oxide particles,later shown to be present by EDS analysis.Only one set of fcc peaks is seen in the XRD pattern.Previous studies have shown that the lattice constants of these two phases are very similar,approximately 3.6A?[12].This trend will cause an overlap of the characteristic di?raction peaks,if the resolution of the experimental set-up is not high enough.It is important to note that because no bcc characteristic peaks were observed the structure is indeed a two-phase fcc structure.

BSE and EDS analyses of the specimens were performed to observe and determine the elemental compositions of the specimens.Fig.3shows an SEM micrograph of a typical sample.The microstructure consists of two phases:the a fcc matrix phase,formed from the fcc dendrite phase(the

Fig.1.Tension test?ow curve for the Al0.5CoCrCuFeNi HEA.Fig.2.Di?raction pattern of the Al0.5CoCrCuFeNi HEA specimen using synchrotron high energy X-rays.

Fig.3.SEM micrograph showing the a-fcc matrix dendrite phase and b Cu-rich fcc interdendritic phase elongated along the rolling direction, indicated by the arrow.

noticeable amount of scatter at various stress levels.The results display the typical fatigue behavior for crystalline

materials of an increase in the number of cycles to failure as the stress level decreases.At a maximum stress of 1250MPa,near the yield stress of1284MPa,most failures were within an order of magnitude of35,000–450,000cycles,although there was still a wide range of scatter.As the stress level decreased the spread in the data became even more pronounced,which is generally charac-teristic of fatigue behavior[24].Estimations of the endur-ance limits based on the stress ranges were within a lower bound of540MPa and an upper bound of945MPa.Val-ues were chosen because the specimens reached107cycles without failure.

The microstructural morphology was taken into account to try to determine whether this feature had an e?ect on the fatigue life.Although the fatigue specimens were machined parallel to the rolling direction,the morphologies of the matrix phase(a)and the Cu-rich phase(b)in the tensile region of the sample might be di?erent from sample to sample.This trend could be tracked to their position and di?erent heat?ow directions in the copper mold during solidi?cation.Therefore,the orientation of the loading direction in relation to the di?erent morphologies was investigated.The SEM micrographs presented in Fig.5 show two typical morphologies observed in the tensile region of the samples.Fig.5a displays a parallel morphol-ogy,which features a lamellar?ow pattern of alternating a and b phases.Fig.5b presents a vertical type characterized by a random orientation of the a and b phases.After microstructure identi?cation for all tested samples by SEM,Fig.4was replotted as Fig.6,showing the fatigue behavior of the parallel and vertical types of samples.It appears that there is no correlation between the scatter in the fatigue life and the orientation of the loading direction with respect to the di?erent morphologies,and later statis-tical modeling e?orts con?rmed this trend.Thus the orien-tation and morphology of the phases do not appear to have a signi?cant e?ect on the fatigue life.

A likely cause of the variable fatigue life is the number of defects in the sample,introduced during the casting and rolling processes,in particular aluminum oxide-rich particles formed during the melting and solidi?cation pro-cess.EDS analyses were performed on these particles to examine their approximate compositions(Fig.7).This fea-ture shows the presence of approximately50%oxygen, consistent with aluminum oxide particles.These particles provide nucleation sites for microcracks,due to stress con-centration at the particles.

Fig.8presents the number of cycles to failure vs.the number of defects per240?165l m unit area observed at500?magni?cation in specimens at various stress levels. It can be observed that a decrease in the number of defects generally correlates with an increase in the fatigue life at various stress levels.In reality the air-cooled and?nal solidi?cation sides of the casting contain greater segrega-tion,more inclusions,and more shrinkage pores,which could induce microcracks during cold rolling.If high den-sities of these microcracks are located on the tensile side during four point fatigue loading then the fatigue resistance will be reduced,and failure would occur after fewer cycles.

3.4.Fractography

Fracture surfaces were analyzed to determine the unique fatigue characteristics of the samples,such as crack initia-tion sites,crack propagation,and?nal fracture.Fig.9a shows the fracture surface of a sample that failed at a stress of900MPa after555,235cycles.Fig.9b presents the crack

Table1

EDS analyses of the matrix and Cu-rich phases in the Al0.5CoCrCuFeNi HEA microstructures.

Al0.5CoCrCuFeNi phase compositions(at.%)

Region Al Co Cr Cu Fe Ni Matrix phase72021112218 Cu-rich phase105459615

4.S–N curve for the Al0.5CoCrCuFeNi HEA plotted as the stress range vs.the number of cycles to failure.

initiation behavior from microcracks that formed from defects on the surface of the sample.The samples exhibited similar fracture patterns,with crack initiation within the tensile region of the sample surface.Cracks usually initiated at defects present on the surface,as discussed below,or at the corner of the samples.These areas repre-high stress concentration regions favorable for crack nucleation.Numerous cracks nucleated and grew perpen-dicular to the stress in the specimen(parallel to the applied load)through the tensile region.Crack propagation gener-occurred through approximately one-third of cross-section before?nal failure,depending on the applied The phenomenon of fatigue shows a stochastic nature [25].Statistical models and data analysis methods are, therefore,necessary tools in studying fatigue behavior.In this investigation statistical fatigue–lifespan models were developed to predict the fatigue life of the HEAs.The?rst

micrographs showing two di?erent types of morphology:(a)the parallel type with a lamellar?ow pattern of alternating

a random orientation of a and

b phases.

Fig.7.SEM micrograph with EDS analyses of the aluminum oxide particles.The compositions of the regions labeled A and B are given in the corresponding tables,indicating the presence of aluminum oxide particles.

8.The cycles to failure compared with the number of surface defects various stress levels showing that as the number of defects decreases generally increases at a particular maximum stress level.

6.S–N curves for the Al0.5CoCrCuFeNi HEAs showing scattering

cycles to failure for the parallel and vertical type morphologies, respectively,in the samples.

predictive model assumes a Weibull distribution to describe the fatigue–lifespan distribution in each?xed stress range, based on a commonly used analytical representation of the S–N curve given by Eq.(3)[26]

NeST?cSàd;e3Twhere S denotes the applied stress range,N(S)is the ex-pected number of fatigue life cycles at stress level S,and c and d are positive material parameters.Taking the natu-ral logarithm on the S–N relation(Eq.(3))results in

logeNeSTT?c0tc1logeST;e4Twhere c0?logecTand c1?àd:The S–N relation given by Eqs.(3)and(4)provides a simple way to relate the e?ect of a stress applied to the test item to the number of cycles to fatigue failure[26].However,it does not capture the vari-ability in the observed fatigue–lifespan data.To account for such variability we introduced an error term e into Eq.(4),i.e.

logeNeSTT?c0tc1logeSTte:e5TWe assume that the error term e follows the standard-ized smallest extreme value distribution.The fatigue–life-span model given by Eq.(5)then becomes a Weibull regression model[27].The Weibull regression model given by Eq.(5)can be written as an equivalent Weibull-acceler-ated life testing model that is widely used in reliability engi-neering and lifetime data analyses[27].The fatigue life at a given stress level S follows the Weibull distribution.The probability density function(pdf)and the cumulative dis-tribution function of the Weibull distribution are described by Eqs.(6)and(7),respectively:

feNeSTj aeST;bT?

b

aeST

NeST

aeST

bà1

expà

NeST

aeST

b!

e6TFeNeSTj aeST;bT?1àexpà

NeST

aeST

b!

e7T

where b is the Weibull shape parameter,and the Weibull scale parameter a(S)depends on the stress S according to, logeaeSTT?c0tc1logeST:e8TIn this experiment four samples had not failed when the bending fatigue test was terminated at107cycles,and they became censored observations.The probability of obtaining a censored observation at stress level S is given by Eq.(9): PeNeSTP N cT?1àFeN c j aeST;bT?expà

N c

aeST

b!

;

e9Twhere N c equals107cycles,denoting the censor time of the experiment.

The?rst fatigue–lifespan model,hereafter termed the Weibull predictive model,consists of two components:

micrograph of the fracture surface of a sample that failed at a stress value of900MPa after555,235cycles.(b)Crack sample,with microcracks forming before the fatigue test.Note that the loading direction comes out of the micrographs showing(a)fatigue striations in the crack propagation region with the crack growth direction indicated fracture region,indicating ductile fracture of the sample.

the Weibull distribution describing the fatigue–lifespan variability at a ?xed stress range,and the relation describ-ing the stress dependence of the fatigue life,given by Eq.(8).Note that lifetime distributions other than the Weibull distribution may be used.For example,if the error term e in Eq.(5)is assumed to be a standardized normal random variable,then the fatigue life N (S )at a given stress level S follows a log–normal distribution.This study assumes a Weibull distribution,because it is the most widely used life-time distribution in reliability engineering and lifetime data analyses,and has been applied to model the fatigue behav-ior of a variety of materials,such as steels [28,29],alumi-num alloys [30],and metallic glasses [31,32].

The Weibull predictive model has three unknown model parameters,b ,c 0,and c 1,which can be estimated by the maximum likelihood method [27].We denote the observed fatigue–lifespan data by {(N i ,S i ,d i ),i =1,2,...,m },where m is the total number of samples tested,and N i and S i are,respectively,the fatigue–lifespan cycles and the applied stress to the i th sample.The binary indicator variable d i equals 1if N i is a failure observation,and d i =0if N i is a censored observation.Given the observed fatigue–lifespan data the maximum likelihood method esti-mates the model parameters by maximizing the likelihood function given in Eq.(10)

L eb ;c 0;c 1T?

Y m i ?1

b e

c 0tc 1log eS i TN i

e c 0tc 1log eS i T b à1"#d i ?exp àN i

e c 0tc 1log eS i T b "#

:e10T

Once the model parameters are estimated the fatigue–lifespan behavior at a given stress S can be predicted by estimating the p quantile life,which is given by (Eq.(11)),N p eS T?exp ec 0tc 1log eS TTeàlog e1àp TT1=b :

e11T

The median fatigue life (i.e.p =0.5)can be used to

describe the relationship between the applied stress and the average fatigue–lifespan response.The 2.5and 97.5quantiles can be employed to construct a 95%predic-tive interval for the fatigue life,and to quantify the scatter in the fatigue life cycles.

4.2.Weibull mixture predictive model

The Weibull predictive model,however,may not be able to adequately characterize the excessive variability in the observed fatigue data shown in Fig.4.The observed fati-gue lives seem to form two groups,a strong group and a weak group,especially when the applied stress was less than 1000MPa.The fatigue lives in the weak group were much shorter than those in the strong group.This variabil-ity in the fatigue data may be caused by variability in the defect density in the experimental units,as discussed below.A Weibull mixture model (termed the multimodal Weibull model)may be used when the population of units is

non-homogeneous [33].The second predictive model there-fore assumes a mixture of two Weibull distributions for the fatigue lives at each stress range value.The pdf and cdf of the Weibull mixture model are given in Eqs.(12)and (13),respectively,

f eN eS Tj p ;a w eS T;b w ;a s eS T;b s T

?p b w a w eS TN eS Ta w eS T

b w à1exp à

N eS Ta w eS T b w !

te1àp Tb s a s eS TN eS Ta s eS T

b s à1exp àN eS Ta s eS T b s

!

;e12T

F eN eS Tj p ;a w eS T;b w ;a s eS T;b s T?p 1àexp à

N eS T

a w eS T

b w !"#

te1àp T1àexp àN eS Ta s eS T b s

!"#

;e13T

where the subscripts w and s denote the weak and strong groups,respectively,and the parameter p is the fraction of samples belonging to the weak group.The probability of obtaining a censored observation in the Weibull mixture model is then given by Eq.(14).

P eN eS T>N c T?p exp à

t

a w eS T

b w "#

te1àp Texp àt

a s eS T

b s "#

:e14T

Again,the Weibull scale parameters a w (S )and a s (S )are assumed to be dependent on the stress S according to Eqs.(15)and (16)

log ea w eS TT?c w ;0tc w ;1log eS T;e15T

and

log ea s eS TT?c s ;0tc s ;1log eS T;

e16T

respectively.The second fatigue–lifespan model,termed the Weibull mixture predictive model,has 7unknown param-eters p ,c w ,0,c w ,1,b w ,c s ,0,c s ,1,and b s .The unknown param-eters can again be estimated,using the maximum likelihood method.The likelihood function of the model parameters is given by:

L ep ;b w ;c w ;0;c w ;1;b s ;c s ;0;c s ;1T?Y

m i ?1

f eN i Td i e1àF eN i TT1àd i ;

e17T

where f (N i )and F (N i )are given by Eqs.(12)and (13),respectively.Once the maximum likelihood estimates of the seven model parameters are obtained the observed fa-tigue data can be clustered into the two groups.If N i is a failure observation the likelihoods of the i th sample belonging to the weak group and the strong group are given by

M.A.Hemphill et al./Acta Materialia xxx (2012)xxx–xxx

7

b w

e c w ;0tc w ;1log eS i TN i

e c w ;0tc w ;1log eS i T

b w à1

exp àN i

e c w ;0tc w ;1

log eS i T

b w !

and

b s

e c s ;0tc s ;1log eS i TN i

e c s ;0tc s ;1log eS i T

b s à1

exp àN i

e c s ;0tc s ;1

log eS i T b s !

;

respectively.The i th sample is then assigned to the group with a higher likelihood value.Similarly,if N j is a censored observation the likelihoods of the j th sample belonging to the two groups are given by

exp àN i

e c w ;0tc w ;1log eS i T

b w !

and

exp àN j

e c s ;0tc s ;1

log eS j T b s !

;

respectively.The p quantile fatigue lives of the strong group and the weak group are predicted by Eqs.(18)and (19),

N p ;w eS T?exp ec w ;0tc w ;1log eS TTeàlog e1àp TT1=b w

;e18TN p ;s eS T?exp ec s ;0tc s ;1log eS TTeàlog e1àp TT1=b s

;

e19T

respectively.

4.3.General log–linear model

This study also developed a third predictive model to study the correlation between the fatigue of morphology.A binary variable X i indicate the morphology type of the i th

i.e.X i =0for the parallel morphology,X i tical morphology.A general log–linear describe the e?ect of stress and scale parameter,i.e.ln a i ?c 0tc 1log eS i Ttc 2X i :

To determine whether the morphology life,a test of signi?cance can be sion coe?cient c 2.The two hypotheses in icance are H 0:c 2=0vs.H 1:c 2–0.If H 0is evidence that the type of morphology life.If the test of signi?cance fails to evidence against the hypothesis that the not a?ect the fatigue life.

https://www.360docs.net/doc/fa14564029.html,putational results and implications 5.1.Weibull predictive model

The Weibull predictive model is ?rst the observed fatigue–lifespan data.The hood estimates of the three model b ?0:492;c 0?70:869,and c 1?à8:327:Fig.11shows the predicted median,0.025quantile,and 0.975quantile fatigue lives.The 2.5and 97.5quantiles are used to con-struct the 95%predictive interval for the fatigue life.This 95%predictive interval captures all the failure observa-tions.This predictive interval,however,is very wide,due to the excessive variability in the data and the limited sam-ple size.

5.2.Weibull mixture model

Next,the Weibull mixture predictive model is used to analyze the experimental data.The maximum likelihood estimates of the seven model parameters are p ?0:369;b w ?3:773;c w ;0?15:238,c w ;1?à0:555;b s ?0:612;c s ;0?126:454,and c s ;1?à16:245:Fig.12shows the quantile lives predicted by the Weibull mixture predictive model.The observed data are also clustered into two groups.We are more interested in the strong group,because samples in the strong group contain fewer fabrication defects and can,therefore,reveal the intrinsic fatigue behavior of the HEA,as discussed below.The median life of the strong group exceeded 107cycles when the applied stress was less than 858MPa,which may be used as an estimate of the endurance limit of this HEA.

https://www.360docs.net/doc/fa14564029.html,parison of the Weibull predictive model and Weibull mixture predictive model

When the applied stresses were 1125,1080,and 1035MPa there were four failure observations at each of the three stress levels.A Kolmogorov–Simirnov goodness Fig.11.Predicted quantile lives using the Weibull predictive model.

8M.A.Hemphill et al./Acta Materialia xxx (2012)xxx–xxx

an appropriate model for the data collected at these three stress levels.A goodness of ?t test was not conducted for the fatigue data collected at other stress levels because of the very small sample sizes.

To determine which predictive model is better for the observed data we applied three commonly used model selection criteria,i.e.the log-likelihood,the Akaike infor-mation criterion (AIC),and the Bayesian information cri-terion (BIC).The AIC and BIC are de?ned by Eqs.(21)and (22),respectively,AIC ?2log L à2k ;e21TBIC ?2log L àk log m ;

e22T

where log L ,n ,and k are the log-likelihood,the number of observations,and the number of parameters in the model,respectively.The log-likelihood measures how well a model ?ts the https://www.360docs.net/doc/fa14564029.html,ing more complex models usually provides a better ?t to the data.The AIC and the BIC,however,adversely a?ect the complexity of the model,where

for the regression coe?cient c 2yielded a P value of 0.18.Hence the test fails to reject H 0:c 2=0at the commonly used signi?cance levels of 0.05and 0.10.Analysis of the observations for the weak group results in the same conclu-sion,with a P value of 0.73.Therefore,there is no evidence to indicate that morphology a?ects the fatigue life.6.Discussion

Both the experimental (Fig.8)and computational (Fig.12)results con?rm that the fatigue–lifecycle relations of the HEA are mainly controlled by defects.Fig.13shows that the strong group tends to have fewer defects on aver-age than the weak group.At a given stress level the strong samples with fewer defects tend to exhibit longer fatigue lives than the weak samples with more defects.Therefore,the control of defects during the fabrication processes is critically important for the future advancement and appli-cation of HEAs.It is believed that a reduction in the num-ber of defects could result in a more favorable fatigue behavior compared with that of conventional alloys.

In total,four specimens reached the endurance limit,at stresses of 540and 720MPa and two specimens at 945MPa (Fig.4).These values correspond to excellent fati-gue ratios (equal to a fatigue endurance limit/UTS)between 0.402and 0.703,respectively.The fatigue endur-ance limit estimated by the Weibull mixture predictive model was 858MPa for the strong group,which corre-sponds to a fatigue ratio of 0.638.These estimates show that HEAs have favorable and/or greater endurance limits

12.Predicted quantile lives using the Weibull mixture predictive model.Squares,observations of the weak group;circles,observations strong group.

Table 2

Kolmogorov–Simirnov goodness of ?t test for the Weibull and the Weibull mixture distributions.Stress range (MPa)Kolmogorov–Simirnov test statistics Weibull distribution Weibull mixture distribution 11250.320.3110800.220.331035

0.39

0.39

Table 3

Model selection between the Weibull predictive model and the Weibull mixture predictive model.Model

Model-selection criteria Log-likelihood,log L AIC =2log L à2k BIC =2log L àk log m Weibull

à303.9à613.7à617.4Weibull mixture

à293

à601.9

à610.5

13.Bar graph of the average number of defects observed for the weak

strong groups.The weak group tends to have more defects than

strong group,which can lead to shorter fatigue lifetimes.

fatigue ratios comparable with steels,aluminum alloys,

nickel alloys,titanium alloys,and BMGs,as shown

14and Table4[17,19–22]and detailed below.

Fig.14a presents HEAs with a lower bound endurance

limit comparable with15-5PH stainless steel,4340steel,

titanium alloys,and an upper bound surpassed only

–N curves comparing(a)the endurance limits and(b)the fatigue ratios of the Al0.5CoCrCuFeNi HEA,other conventional alloys,and

Table4

Comparison of the fatigue endurance limits,ultimate strengths,and fatigue ratios(EL/UTS)of the Al0.5CoCrCuFeNi HEA with various other alloys [17,19,20,22].

Material Ultimate tensile strength(MPa)Fatigue endurance limit(MPa)Fatigue ratio HEA Al0.5CoCrCuFeNi[this study]1344540/9450.402/0.703 4340Steel(Quenched&tempered538°C)[20]12606700.532

4340steel annealed[20]7453400.456

15–5PH stainless steel[20]11376200.545

1015steel annealed[20]4552400.527

Ti–6Al–4V[20]10355150.498

IN625superalloy[20]10824450.411

Al6061(T6)[20]310960.313

Zr grade702[22]4301550.36

Zr-based BMGs[17,19]1480–1900239–9830.161–0.517

strengths due to the reduced number of defects.The upper bound of the fatigue limit of HEAs is signi?cantly higher than that of other conventional alloys and BMGs,showing that HEAs have the potential to outperform these materi-als in structural applications with improved fabrication and processing.

These results are very encouraging for future research, exhibiting the potential for excellent fatigue resistance in HEAs,with possible long fatigue lives,even at stresses approaching the ultimate stress.Because of the lack of lit-erature on the fatigue behavior of HEAs the focus of continuing research should be placed on the data points that show an unexpectedly long fatigue life.If the necessary information on fatigue resistance can be obtained,along with the development of a prediction model for fatigue specimens,HEAs have a promising future in numerous applications as components in high fatigue environments.

7.Conclusions

The fatigue studies show encouraging fatigue resistance characteristics due to the long fatigue lives of various sam-ples at relatively high stresses.The fatigue endurance limit was found to be between540and945MPa.Some scatter-ing of the fatigue life was seen in the S–N curves.A possible explanation of the scatter could be the di?erent defect den-sities of aluminum oxide particles and microcracks intro-duced during the casting and rolling operations.The Weibull mixture predictive model showed two main groups,with the strong group having a predicted median time to failure of greater than107at858MPa.The fatigue endurance limit to UTS ratio of between0.402and0.703 compares favorably with conventional materials,such as steels,and nickel,aluminum,and titanium alloys,and advanced BMGs.This trend may be partially due to the high tensile strength of HEAs,compared with these other materials.However,when the fatigue ratios of these mate-rials are compared HEAs may surpass conventional alloys, with a reduction in defects introduced during fabrication and processing.Al0.5CoCrCuFeNi HEAs show promising fatigue resistance characteristics and may be useful in future applications where fatigue is a factor.More studies need to be conducted to further investigate the fatigue behavior as well as prediction models for HEAs. Acknowledgements

The authors would like to acknowledge?nancial sup-port from the National Science Foundation(NSF)under programs DMR-0909037,CMMI-0900271,and CMMI-1100080with Dr A.Ardell and Dr C.V.Cooper,respec-tively,serving as program directors,and the US Depart-ment of Energy O?ce of Nuclear Energy’s Nuclear Energy University Programs(NEUP)under contract num-ber00119262with Dr R.O.Jensen Jr as program manager. References

[1]Davis JR,editor.Metals handbook,vol.1,10th ed.Metals Park

(OH):ASM International;1990.

[2]Yeh JW,Chen SK,Lin SJ,Gan JY,Chin TS,Shun TT,et al.Adv

Eng Mater2004;6:299.

[3]Zhang Y,Zhou YJ,Lin JP,Chen GL,Liaw PK.Adv Eng Mater

2008;10:534.

[4]Zhou YJ,Zhang Y,Wang YL,Chen GL.Mater Sci Eng A

2007;454:260.

[5]Takeuchi A,Chen N,Wada T,Yokoyama Y,Kato H,Inoue A,et al.

Intermetallics2011;19:1545.

[6]Guo S,Ng C,Lu J,Liu CT.J Appl Phys2011;109:103505.

[7]Senkov ON,Wilks GB,Miracle DB,Chuang CP,Liaw PK.

Intermetallics2010;18:1758.

[8]Senkov ON,Wilks GB,Scott JM,Miracle DB.Intermetallics

2011;19:698.

[9]Senkov ON,Scott JM,Senkova SV,Miracle DB,Woodward CF.J

Alloys Compd2011;509:6043.

[10]Chuang MH,Tsai MH,Wang WR,Lin SJ,Yeh JW.Acta Mater

2011;59:6308.

[11]Liu ZY,Guo S,Liu XJ,Ye JC,Yang Y,Wang XL,et al.Scr Mater

2011;64:868.

[12]Tong CJ,Chen YL,Chen SK,Yeh JW,Shun TT,Tsau CH,et al.

Metall Mater Trans A2005;36A:881.

Plots comparing(a)the endurance limits and(b)the fatigue ratios of the Al0.5CoCrCuFeNi HEA as a function of the UTS of other and BMGs[17,19–22].

[13]Tsai CW,Tsai MH,Yeh JW,Yang CC.J Alloys Compd

2010;490:160.

[14]Tong CJ,Chen MR,Chen SK,Yeh JW,Shun TT,Lin SJ,et al.

Metall Mater Trans A 2005;36A:1263.

[15]Zhang Y,Ma SG,Qiao JW.Metall Mater Trans A 2012;43:2625.[16]Kuznetsov AV,Shaysultanov DG,Stepanov ND,Salishchev GA,

Senkov ON.Mater Sci Eng A 2012;533:107.

[17]Flores KM,Johnson WL,Dauskardt RH.Scr Mater 2003;49:1181.[18]Chuang CP,Huang JH,Dmowski W,Liaw PK,Li R,Zhang T,et al.

Appl Phys Lett 2009;95:241901.

[19]Wang GY,Liaw PK,Yokoyama Y,Inoue A,Liu CT.Mater Sci Eng

A 2008;494:314.

[20]CINDAS/USAF CRDA Handbooks Operation.Aerospace Structural

Metals Handbook.West Lafayette (IN):Purdue University;2001.[21]Mann YA.Fatigue of materials.Carlton (Australia):Melbourne

University Press;1967.p.34–53.

[22]ASM International.ASM handbook.Properties and selection:

nonferrous alloys and special-purpose materials,vol.2.Metals Park (OH):ASM International;1990.

[23]Singh S,Wanderka N,Murty BS,Glatzel U,Banheart J.Acta Mater

2011;59:182.

[24]Hertzberg RW.Deformation and fracture mechanics of engineering

materials.4th ed.New York:John Wiley &Sons;1995.

[25]Lehmayr B,Staudacher S.Fat Fract Eng Mater Struct 2011.http://

https://www.360docs.net/doc/fa14564029.html,/10.1111/j.1460-2695.2011.01625.x.

[26]Pascual FG,Meeker WQ.Technometrics 1999;41:277.

[27]Meeker WQ,Escobar LA.Statistical methods for reliability

data.New York:Wiley;1998.

[28]Solomon HD,Amzallag C.In:Allen TR,King PJ,Nelson L,editors.

Proceedings from the 12th international conference on environmental degradation of materials in nuclear power systems.Warrendale (PA):TMS;2005.p.1091.

[29]Sakai T,Sakai T,Okada K,Furuichi M,Nishikawa I,Sugeta A.Int J

Fatigue 2006;28:1486.

[30]Wang QG,Apelian D,Lados DA.J Light Met 2001;1:73.

[31]Zhang Y,Sakai T,Mori K.J Solid Mech Mater Eng 2011;4:138.[32]Harlow DG,Liaw PK,Peter WH,Wang G,Buchanan RA.Acta

Mater 2008;56:3306.

[33]Harlow DG.Acta Mater 2011;59:5048.

[34]Mann N,Schafer R,Singpurwalla N.Methods for statistical analysis

of reliability and life data.New York:Wiley;1974.

12M.A.Hemphill et al./Acta Materialia xxx (2012)

xxx–xxx

超详细Abaqus安装教程

超详细A b a q u s安装教 程 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

Abaqus2017 安装教程 将安装镜像加载至虚拟光驱 以管理员身份运行J:\1下的,保持默认点击下一步。 首先安装的是拓展产品文档,点击“下一步”,选择安装目标,并点击“下一步” 选择文档需要包含的部件,并点击“下一步” 提示程序安装信息足够,点击“安装” 提示SIMULIA 2017文档安装成功,点击“关闭”。 接着会自动弹出Abaqus Simulation Services,修改安装目标地址,并点击“下一步” 选择您需要的部件,并点击“下一步” 检测安装信息足够,点击“安装”, 提示安装成功够点击“关闭” 接来下会自动安装Abaqus Simulation Services CAA API,点击“下一步”, 选择您需要的安装的部件,点击下一步 安装完成后“关闭” 接下来是自动安装 Abaqus CAE 找到安装包里的_SolidSQUAD_文件夹,将里面的License文件复制到Abaqus安装目录里的SIMULIA文件夹里。然后打开License文件夹,改.lic许可证文件的计算机名,同时再新建一个.log日志文件。 粘贴到D:\SIMULIA 下 在License下新建一个文本文档,重命名为 用记事本打开 使用计算机名替换this_host 保存后退出。 以管理员方式打开,点击Config Services,按如下配置 点击Save Service。切换到Start/Stop/Reread选项卡,点击Stop Server,再点击Start Server。下面提示Server Start Successful则配置成功。关闭窗口。 回到Abaqus CAE的安装界面。 在License Server 1 中输入27011@DESKTOP-Q8CNNLR 注:DESKTOP- Q8CNNLR 是计算机的用户名。点击下一步。 点击下一步 修改目录,点击下一步 设置工作空间路径,建议选择较大的硬盘分区。点击“下一步” 信息确认无误开始安装。 点击Continue 提示Abaqus CAE安装完成,点击关闭。 下面是Tosca 2017的安装。根据需求选择安装。 根据需求选择接口 若安装按ANSA可选择路径,没有则直接下一步。 若没有安装Fluent ,取消勾选FLUENT 剩下步骤类似上面。最后点击安装。 最后是 Isight 2017的安装。步骤后之前相同,一直点下一步记忆可以了

虚拟天文馆“学习指南”(六下)复习过程

虚拟天文馆“学习指南”(六下)

虚拟天文馆学习指南 学习者:六()姓名__________ 一、月球观察 (一)观察同一天的不同时间,月球运动的方向: 1.打开虚拟天文馆,设置地点:苏州;时间:2016年4月17日15时 2.缩小画面,点亮"基点"按钮,调整方向使地面水平(东、南、西三字呈一直线)。点击“加快时间”按钮: 从地面观察,在同一天的不同时间,月球的运动方向是自______向______。 3.我们还观察到不仅月球这样运动,其他星体(除北极星外)的运动方向也是自______向______的。 (二)观察不同日期的同一时间,月球的运动方向: 缩小画面,点亮"基点"按钮,调整方向使地面水平(东、南、西三字呈一直线)。 1.设置观察时间:2016年4月7日20时(农历三月初一),不关闭“日期时间”窗口, 逐一增加日期(时间始终为20时,分、秒忽略),连续观察月球的方位,直到2016年5月6日(农历三月三十)是一整个月。 2.同样的方法,继续往后推时间,观察下一个月的月球方位。你发现什么规律了么? 从地面观察,月球在不同日期的同一时间,运动的方向是自_____向_______的。(三)观察月球的样子(月相) 1.打开“日期时间”窗口,设置时间为2016年4月10日20时(初四,7、8、9日观察不到 月球)。不关闭“日期时间”窗口,点击月球。按画面右上角第二个“传感器”按钮,近距离观察月球的样子。注意:请不要用目镜观察,目镜观察到的图像是相反的。 2.逐一增加日期(时、分、秒忽略),连续观察月相的变化,找到规律,请连线。 收集于网络,如有侵权请联系管理员删除

十大常用工具软件集锦

实用为上!十大常用工具软件集锦 随着电脑及互联网的普及,人们传统的工作方式、学习方式及思维方式逐渐发生变化,很多传统的信息查询方式都逐渐被电脑所取代,比如以前我们通常通过去书店买本词典来查询英语单词,而今我们只需安装一款免费的词典软件即可轻松查询单词甚至进行全文翻译,再比如现在很多人喜欢在网上淘宝,买到心仪的商品后很多人喜欢查询快递到达情况,我们再也无需要拿着快递单号去快递公司查询了直接在网上通过软件即可查询。为了生活的更加舒适和便捷,我们需要诸如此类的实用信息查询软件,随着这些软件大多是一些名不见经传的小软件,但是却是日常生活中实用性非常强的好工具,相信有了这些软件的帮助,我们的生活一定会更加舒适和便捷! 1.淘友必备:快递查询软件推荐——快递精灵 随着互联网的普及和人们消费观念的更新,网上购物已经被越来越多人所接受,网购成了时尚,成了不可阻挡的潮流,即使在全球金融风暴的阵阵寒流中,也依然可以看到“风景这边独好”。网购的不断发展,不仅仅给经营者和消费者带来实实在在的实惠,还带动了诸多行业的飞速发展,尤其是物流快递业,作为卖家与买家之间的纽带,快递业无疑遇到了行业发展的春天! 很多网友在网购后盼货心情急切,因此对快递跟单查询产生大量需求,一般情况下用户可以进入快递公司的网站进行查询,但是由于快递公司比较多,四处查找快递公司的网址比较不便,因此小编这里为大家推荐一款可以直接查询快递跟单信息的小工具:快递精灵。

快递查询精灵资料: 快递查询精灵软件预览: 快递查询精灵可以帮助用户查询几乎所有快递公司的跟单信息,包括邮政快递、申通快递、圆通快递等淘宝网常见合作快递单位,如图所示,用户只需在程序界面左侧输入快递单号即可轻松跟踪到快递运输情况。注意:快递查询服务必须在联网状态下进行。

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

ABAQUS 2017 2018汉化教程

ABAQUS 2017 2018第一次安装后软件不能启动解决办法! 1.打开安装盘对应的以下路径:E:\Program Files\Dassault Systemes\SimulationServices\V6R2017x\win_b64\SMA\site(软件安装在什么盘下,路径中的E更改为对应的盘符)。 2.在Site文件夹下找到custom_v6.env文件,鼠标右键点击,打开方式选择写字板(修 改custom_v6.env文件前建议先复制一份备份)。 3.将打开的custom_v6.env文件中带色的部分删除并保存。(若修改后不能保存,可 将custom_v6.env文件复制到桌面进行修改保存,然后复制并覆盖E:\Program 下的源文件) 4.双击ABAQUS 2017图标,软件已正常运行。

ABAQUS 2017 2018汉化教程! 1.打开安装盘对应的以下路径:E:\SIMULIA\CAE\2017\win_b64\SMA\Configuration(软 件安装在什么盘下,路径中的E更改为对应的盘符)。 2.在Configuration文件夹下找到locale.txt文件,将locale.txt文件复制到桌面,鼠标右 键点击,打开方式选择写字板(修改locale.txt文件前建议先复制一份备份)。 3.在“Chinese_People's Republic of China.936 = zh_CN Chinese (Simplified)_People's Republic of China.936 = zh_CN”下方插入一行Chinese (Simplified)_China.936 = zh_CN 如下图:

虚拟天文馆操作手册

最佳答案 移动和选取前后翻页放大缩小 移动和选取CTRL+上下箭头放大缩小 移动和选取鼠标滚轮放大缩小 移动和选取鼠标左键选择天体 移动和选取鼠标右键取消天体选择 移动和选取反斜杠(\) 自动缩小 移动和选取正斜杠(/) 自动放大到所选物体 移动和选取空格键将所选物体置于屏幕中心 显示回车键切换赤道仪和经纬仪 显示F1 全屏显示模式开关 显示c 星座连线显示开关 显示b 星座界线显示开关 显示v 星座名称显示开关 显示r 星座艺术图像显示开关 显示d 星名显示开关 显示n 星云名称显示开关:不显示/显示简称/显示全称 显示e 天球赤道坐标网格显示开关 显示z 循环显示:地平线/地平坐标网格/都不显示 显示p 循环显示:无行星标签/有行星标签/行星标签和轨道 显示g 地面显示开关 显示a 大气显示开关 显示f 地平雾气显示开关 显示q 方向基点(东、西、南、北)显示开关 显示o 切换月面显示比例(4倍/1倍) 显示t 天体追踪开关(移动天幕,始终将选中的天体显示在屏幕中央)显示s 恒星显示开关 显示4 或者,(逗号) 循环显示:黄道/黄道和行星轨道/不显示 显示5 或者 .(句号) 天球赤道显示开关 窗口及其他控制CTRL+s 截取屏幕图像写入stellarium*.bmp文件 窗口及其他控制CTRL+r 显示/关闭脚本记录器 窗口及其他控制CTRL+f 显示/关闭搜索窗口 窗口及其他控制h 显示/关闭帮助窗口 窗口及其他控制i 显示/关闭信息窗口 窗口及其他控制数字1 显示/关闭设置窗口 窗口及其他控制m 显示/关闭文字菜单 窗口及其他控制ESC 关闭打开的窗口(帮助、信息、设置等窗口) 时间和日期6 暂停时间流动(在脚本运行时为暂停脚本执行) 时间和日期7 设置时间流动速度为0(时间停止) 时间和日期8 将时间设为当前时间 时间和日期j 减慢时间流动(在脚本运行时为降低脚本速度) 时间和日期k 设置时间流动速度为正常 时间和日期l 加速时间流动(在脚本运行时为加快脚本速度) 时间和日期- 时间后退24小时

abaqus与fatigue结合疲劳分析

a b a q u s与f a t i g u e结 合疲劳分析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

Fatigue 分析实例 为如图1所示的中心孔板,材料为LY12-CZ ,板宽50mm,孔直径为8mm ,板厚1mm 。LY12-CZ 铝板弹性模量GPa E 68=,强度极限MPa b 482=σ。在板的两边施加1MPa 的均布拉应力。 图1 中心孔板结构示意图 1、应力计算结果与分析 对上述模型进行有限元计算,结果应力云图如图2所示。

图2 应力云图 2、*.Fil文件说明 *.fil文件是ABAQUS的一种二进制输出文件,供其他软件(如Patran)后处理使用,如生成X-Y曲线,制作二维表格等,可以输出的项目包括:单元、节点、接触面、能量、模态、梁截面等的输出信息,输出的方法是在INP文件中增加输出指令, 生成*.fil文件的步骤如下 对ABAQUS/Standard,可以直接输出.fil文件,步骤如下: 在inp文件中,step步骤之后, end step步骤之前,加上以下内容:

*NODE FILE RF,U,V **输出节点的作用力(RF),位移(U,V)到*.fil中 *EL FILE S,E **输出单元应力(S),应变(E)到*.fil中 在abaqus的job界面重新运行inp文件,即可得到对应的fil文件3、疲劳寿命估算 疲劳寿命估算需用到软件中的模块。如图3所示,位于的Tools菜单下,点击Main Interface即可进入模块主界面。 图3 在中进入界面

[硕士论文] 虚拟天文台数据访问服务(VO-DAS)之任务调度研究及VO-DAS的应用

分类号密级 UDC编号 华中师范大学 硕士学位论文 虚拟天文台数据访问服务(VO-DAS)之任务调度研究 及VO-DAS的应用 田海俊 指导教师郑小平教授、赵永恒研究员、崔辰州副研究员 华中师范大学物理科学与技术学院申请学位级别硕士学科专业名称理论物理 论文提交日期2007年6月论文答辩日期2007年6月 培养单位物理科学与技术学院 学位授予单位华中师范大学 答辩委员会主席

Job Scheduling Research in Virtual Observatory Data Access Service(VO-DAS) and VO-DAS Application Hai-Jun Tian Supervisor: Prof.Xiao-Ping Zheng&Prof.Yong-Heng Zhao&Dr.Chen-Zhou Cui HuaZhong Normal University May,2007 Submitted in total ful?lment of the requirements for the degree of Master in Theory of Physics

摘要 天文观测数据资源具有时间跨度大、数据量大、存储管理分散、管理工具驳杂等特点。如何提供给天文学家一个统一访问这些分布存放的异构数据资源的方案,是虚拟天文台的一个重要研究课题。 计算机与互联网技术的飞速发展,网格技术、XML技术、语义网技术等全新IT技术的涌现,以及在此技术背景下,国际虚拟天文台联盟(IVOA)依据天文自身的特点不断提出并完善的各种规范标准,使得海量、分布式、多波段天文数据的无缝融合和处理成为可能。 对于异地异构数据的统一访问,我们基于开放网格服务架构(OGSA)提出了一种网格的解决方案:使用OGSA-DAI技术实现了对异地异构的天文星表数据、图像数据和光谱数据的统一封装(DataNode);利用ADQL语言完成对任务的统一描述;基于WSRF框架完善了对数据资源、计算资源以及存储资源的任务调度。我们设计的虚拟天文台数据访问服务(VO-DAS)实现了对数据资源、计算资源、存储资源的自动发现以及异地异构数据的联合访问并对访问结果进行数据分析的一体化工作模式,这将使天文数据源的多波段交叉证认、海量数据分析及对分析结果的可视化等成为可能。VO-DAS支持国际虚拟天文台联盟(IVOA)的各项相关标准,使得它具有良好的互操作性,它的对外接口简单实用、可以针对不同需求的天文数据用户发展出多种网格应用产品。 论文以VO-DAS的任务调度及其实现为重点,分别对VO-DAS的设计模式、Session 机制、生命周期、资源销毁、异常处理等模块进行了详细的阐述,并从多个角度分别给出了系统的设计图。为了验证以OGSA-DAI为基础的天文数据访问的可行性和性能,我们采用两个科学范例对VO-DAS原型进行了实验。 论文最后以VO-DAS对China-VO Ephemeris WS计算平台的扩展为例,介绍了VO-DAS外部接口的扩展方法,以及VO-DAS在星历计算方面的应用,并简要阐述了VO-DAS在其他方面的科学应用。 关键词:虚拟天文台,数据访问,网格技术,OGSA-DAI

常用工具软件的的分类

常用工具软件的的分类、安装于使用技巧 XXX XXX系XXX专业1101B 随着社会的发展,计算机在我们的生活中扮演着越来越重要的角色。目前,人类社会已经进入了计算机网络时代,计算机和互联网已经深深地进入到老百姓的日常生活工作和学习中。当然,学习怎么使用计算机也是人们所必须的,要想学习如何使用当然要从最简单开始--使用计算机常用的软件。 下面介绍一下什么是工具软件:它是为了方便用户管理计算机系统而专门设计的软件。他们是为了增强和扩充原有的操作系统的某些功能而安装使用的的辅助性软件。有了它们可以是我们更方便、更快捷的使用计算机。下面介绍常用工具软件的分类安装与使用。 一、常用工具软件的分类: 1、安全类工具软件: 2、、系统工具软件: 3、网络工具软件: 4、网络软件通信工具: 5、文件管工具软件: 6、图文处理工具软件: 7、媒体播放与制作工具软件: 二、常用工具软件的安装 软件安装时一定要注意软件的安全性。有些软件可能含有某些未知的病毒或木马。所以尽量使用安全的即“绿色”的软件。如果想使用该软件,但又不知道该软件的安全性可以通过

安装虚拟机对该软件进行安装和测试。下面简单介绍一个常用工具软件的安装过程。 暴风影音: (1)、打开暴风影音安装包,进入暴风影音安装向导,对许可协 议选择“接受”。 (2)、选定安装组件 (3)选择目标文件夹

(4)、暴风影音进入安装状态,当进度条充满,“下一步”按钮由灰变黑时,点击。 (5)、选择软件推荐 (6)安装完成 三、使用技巧

软件在使用时有的附加有说明文档,如有疑问,可以点击文档获取。软件在使用的过程中要注意防护,防止其被病毒入侵,或者感染木马。若对软件不放心可以使用虚拟机对软件进行使用和操作。

疲劳分析计算的流程

疲劳分析,从零开始 1 测量应变、应力谱图 (1)衡量应力集中的区域,布置应变片 可以通过模拟(有限元)或试验(原型上涂上一层油漆,待油漆干后施加载荷,油漆剥落的地方应力集中),确定应力集中的区域,然后按左下图在应力集中区域布置三个应变片: 因为材料是各向同性,所以x,y方向并不一定是水平和竖直方向,但两者一定要垂直,中间一个一定要和x,y方向成45°角。 (2)根据测的应变和材料性能,计算应力 测得的三个应变,分别记为εx, εy, εxy。两个主应力(假设只有弹性变形): 其中,E为材料的弹性模量,μ为泊松比。根据这两个主应力,可以计算出有些方法可能需要的等效应力(主要目的是将多分量的应力状态转化为一个数值,以方便应用材料的疲劳数据),如米塞斯等效应力:

()()222122121σσσσσ++-=m 或最大剪应力: ()2121 σσστ-= 实际测量的是应变-时间谱图,应力(或等效应力)-时间谱图可由上述公式计算。 (3)分解谱图 就是对上面测得的应力(应变)-时间谱图进行分解统计,计算出不同应力(包括幅度和平均值)循环下的次数,以便计算累积的损伤。最常用的是雨流法(rainflow counting method )。 2 获取材料数据 如果载荷频率不高,可以做一组简单的疲劳测试(正弦应力,拉压或弯曲均可,有国家标准): 得到一条应力-寿命(即循环次数)曲线,即所谓的S-N 曲线:

1:如果载荷频率较高或温度变化较大,还要测量不同平均应力和不同温度下的S-N 载荷,以便进行插值计算,因为此时平均应力对寿命有影响。也可以根据不同的经验公式(如Goodman准则,Gerber准则等),以及其他材料性能(如拉伸强度,破坏强度等),由普通的S-N曲线(即平均应力为0)来计算平均应力不为零时对应的疲劳寿命。 2:如果材料数据极为有限,或者公司很穷很懒不愿做疲劳试验,也可以由材料的强度估算疲劳性能。 3::如果出现塑性应变,累计损伤一般基于应变-寿命曲线(即E-N曲线),所以需要施加应变载荷。 3 损伤计算 到目前为止,疲劳分析基本上是基于经验公式,还没有完全统一的理论。损伤 累积的计算方法有很多种,最常用的是线性累计损伤(即Miner 准则), 但其结果不保守,计算得到的寿命偏高。 ∑∑≥=0.1,f i i i N n D 准确度比较高的累计准则是双线性准则,并且计算比“破坏曲线法”要容易,所以,是一个很好的折衷选择。

巧用虚拟天文馆软件Stellarium演示太阳周日视运动轨迹_贺志康

福建师范大学地理科学学院(350007) 贺志康 巧用虚拟天文馆软件Stellarium 演示太阳周日视运动轨迹 在高中地理必修1[1]《地球的运动》这一节中,昼夜交替与正午太阳高度角的变化两部分内容都涉及到一个知识点即太阳的周日运动。2012年安徽高考文综选择题第30题的正确解答就需要先确定太阳的方位,相类似的题目也比较常见,但鉴于平时疏于观察与空间思维能力有限等原因,大部分学生对这个知识点感觉很困难,难以理解与掌握。可以说,太阳周日视运动既是重点,也是难点。通过虚拟天文馆软件Stellarium 模拟太阳周日视运动,演示其运动轨迹,形象而又生动,有助于学生从感性认识向理性认识的转变,利于学生对太阳周日视运动的理解。 一、虚拟天文馆软件简介 虚拟天文馆软件Stellarium 是一款免费的虚拟星象仪的计算机软件。它使用OpenGL 对星空进行实时渲染,在电脑桌面上生成一块虚拟3D 天空,所模拟的星空效果与用肉眼,望远镜或者天文望远镜进行实际观察所看到的星空基本没有什么区别,形象逼真。它可以根据观测者所在的地方时和位置,计算天空中太阳、月球、行星和恒星的位置,并将其显示出来。它还可以绘制星座、虚拟天文现象(如日食、月食和流星雨等)。总之,Stellarium 是一款功能极其强大的软件,深受广大天文爱好者的喜欢,对地理教师的教学也很有用。 二、部分操作按键 Stellarium 提供了较多的键盘操作指令,版本更新很快。现在以Stellarium 0.12.1为例,将部分可能与演示操作有关的按键列出(如表1),剩余部分的操作指令,读者如有兴趣,打开软件后,按F1键进一步了解。 表1 操作按键说明 按键说明鼠标滚轮放大缩小 鼠标左键选择天体或移动画面鼠标右键取消天体选择 F1说明F2设定F5日期及时间F6所在地点Z 地平坐标网格 Q 基点 J 减缓时间流逝K 正常时间速度8调至当前时刻L 加快时间流逝 Ctrl+Q 退出 三、演示过程 下载安装完Stellarium 后,打开软件,此时如果显示为英文,则按F2键,出现一个界面,点击中间的下拉菜单进行语言设置,将语言设置为简体中文。软件初始设置地点为法国巴黎,时间是与电脑时间同步。 以北京为例,来演示当地2013年6月1日的太阳周日视运动轨迹。按F6键,则会出现一个界面,在这个界面的右上角的下拉菜单中寻找“北京”,或者先通过其他途径找到北京的经纬度,再在该界面的左下角输入北京的经纬度数值。北京的经纬度为东经116.46°,北纬39.92°。然后按住左键,拉动画面,找到“东”方向。若找不到,按Q 键。同时按Z 键,此时画面会显示地平坐标网络。接着找到太阳,单击鼠标左键,将太阳选中,此时画面左上角会出现与太阳相关的天文参数,如太阳的星等、赤经与赤纬、时角与赤纬等,特别 摘要:介绍了虚拟天文馆软件Stellarium,列举了软件的主要操作按键,介绍了用软件演示太阳周日视运动的操作过程。 关键词:虚拟天文馆软件;Stellarium;太阳周日视运动

常用工具软件培训大纲

常用工具软件培训大纲 Company Document number:WTUT-WT88Y-W8BBGB-

《常用工具软件》培训大纲 I.课程的性质 计算机日益普及,应用日益广泛,许多问题需要计算机使用者自己处理。工具软件拥有体积小、功能强等优点,具有独特优势。学会选择和使用各种工具软件,就能更充分发挥计算机的作用,享受到计算机强大功能带来的方便与乐趣。 本课程从学员的实际需要出发,介绍最常用工具软件的实用功能。尽量选取各类软件中使用广泛、功能完备、简单易学的软件进行讲解。各章所选软件都是经过多年实践检验,拥有众多用户的经典软件。 学习本课程不需要任何相关的预备知识。学员只要打开书,开启PC 运行相应的软件,按照书中所讲的步骤一步步地做下去,就可以在边看书边实践的过程中,不知不觉地学会使用计算机去完成不同工作任务、享受信息时代的高质量生活。本课程的另外一个目的,就是能使初学者少走弯路,能够更快更全面地掌握计算机这个智能工具。 Ⅱ.课程的目的和任务 “常用工具软件”课程的培训目的是: 1.了解常用工具软件的概念与不同种类,掌握根据不同工作需求选择软件工具的方法和习惯。

2.了解计算机安全知识与法律法规,掌握使用反病毒工具的基本方法与步骤。 3.通过对不同类型常用工具软件的操作说明与讲解,使读者掌握这些软件的基本操作,用以能动地解决不同的工作问题。 4.了解系统优化的常识,掌握一种系统优化软件,提高使用计算机解决问题的能力与效率。 Ⅲ.学时安排 本课程共包含10部分内容,其中视频教程第一讲是课本外的增补内容,相当于常用工具软件课程的概述部分,请注意在其中了解关于软件分类与选用原则的基础知识; 本课程共包含10部分内容。第1部分介绍计算机安全知识与病毒防护工具,第2部分介绍文件压缩工具,第3部分介绍翻译工具,第4部分介绍多媒体播放工具,第5部分介绍声音处理工具,第6部分介绍图片图像浏览工具,第7部分介绍网络邮件工具,第8部分介绍网络传输工具,第9部分介绍网络实时通信工具,第10部分介绍系统优化与维护工具。 其中第4部分、第5部分、第8部分、第9部分都介绍了两种同类的工具软件,学员只需熟练掌握其中一种即可。 在视频教程的最后一讲也是增补内容,除了介绍在信息技术发展迅速的背景下如何进行工具软件知识与技能的动态更新,还讲了在选择使用工

Msc.Fatigue疲劳分析实例指导教程

第三章疲劳载荷谱的统计处理 3.1 疲劳载荷谱的统计处理理论基础 3.1.1 数字化滤波 频率分析的典型参量是功率谱密度(PSD),如像确定频率为4Hz对应的幅值的均方根值,只需要求取功率谱密度下对应的3.5-4Hz之间的面积。 3.1.2 雨流计数法 循环计数法:将不规则的随机载荷-时间历程,转化为一系列循环的方法。 3.2 数据的导入与显示 (1)新建:File>New (2)导入:Tools>Fatigue Utilities>File Conversion Utilities>Covert ASCII.dac to Binary...>Single Channel(设置,注意Header Lines to skip要跳过的行数)>exit (3)查看:Tools>Fatigue Utilities>Graphic Display>Quick Look Display 1)放大:View>Window X,输入X的最值 2)读取:①左击任何位置,状态栏显示②数据轨迹:Display>Track 3)显示数据点:Display>Join Points;显示实线图:Display>Join 4)网格和可选坐标轴:Axes>Axes Type/Grid 5)显示某段时间信号的统计信息:Display>Wstats,放大 3.3 数字滤波去除电压干扰信号 (1)载荷时间历程的PSD分析 1)File>New 2)Tools>Fatigue Utilities>Advanced Load Utilities>Auto Spectral density (2)信号的滤波 1)Tools>Fatigue Utilites>Advanced Load Utilities>Fast Fourier Filtering 2)比较滤波前后结果:Tools>Fatigue Utilities>Graphic Display>Multi-file Display (3)滤波稳定性检查:比较前后PSD,多文件叠加显示 第四章应力疲劳分析 4.2 载荷谱块的创建与疲劳寿命计算 (1)创建载荷谱块:Tools>Fatigur Utility>Load Management>Add an Entry>Block program (2)疲劳分析:Tools>Fatigue Utilities>Advanced fatigue utilities>选方法 4.3 零部件疲劳分析 (1)导入有限元模型及应力结果:工具栏Import>Action、Object、Method,查看Results (2)疲劳分析 1)设置疲劳分析方法:工具栏Analysis,设置 2)设置疲劳载荷 ①创建载荷时间历程文件Loading info>Time History Manager ②将有限元分析工况与时间载荷关联:Loading Info>Load case空白>Get/Filte result...

Abaqus安装教程及汉化中英转换图文教程

ABAQUS安装及汉化过程 安装环境:win764位旗舰版。Abaqus-6.13.1-Win64-SSQ安装,在这之前保证自己的电脑名为英文。本文介绍安装步骤及汉化过程。排版技术有限,见谅。 一,安装步骤。 1.点击setup.exe进入安装程序。 2.点击next。 3.点击continue。

4.点击next。 5.不用勾选,直接点击next。 6.现在会自动生成主机名称,记住你的主机名,待会要用。(如果你的电脑是中文名,则生成的主机名会乱码,那么安装则会失败)。

. 7.选择第二个选项,点击next。 8.选择安装位置。同样确保为英文名称。 9.注意,现在先不要点击next。我们来破解软件。

10.打开ABAQUS_6.13.1_Win64_SSQ\_Crack_目录下ABAQUS.lic,用记事本打开。修改此处计算机名为自己的计算机名,我的是PC。 11.把这修改好的文件.lic和.Log复制到安装目录D:\ABAQUS\License下。

12.打开此文件夹下imtool.exe,进行设置。 点击config services,选择安装目录下的lmgrd.exe abaqus.lic abaqus.log文件如图所示,点击save service保存设置。

点击start server,确保下方提示successful。现在可以关闭lomtools了。 13.新建系统变量,右键点击计算机,点击属性,进入高级系统设置。高级栏下点击环境变量。 在系统变量中添加如下变量。 14.继续安装,点击next。

常用工具软件及使用

课题十二:常用工具软件及使用 [教学目标] 1、了解网络工具,文件压缩工具,多媒体播放器等常用软件。 2、能够掌握常用工具软件的常规使用方法。 [教学重点] 了解文件压缩工具,网络工具。 [教学难点] 网络工具的使用 [教学手段] 采用多媒体演示+讲授。 [教学内容] 一.查找软件的方法: 大部分工具软件在网上都可以免费下载,但有些软件需要注册交费才能长期使用。在搜索软件时,可以在搜索引擎(如百度或Google)中输入关键词进行查找,也可以到提供软件下载的专业网站如华军软件园()和天空软件站()等网站中去下载,这些网站中一般都提供搜索和分类检索功能 软件搜索窗口 软件分类窗口 二.文件压缩工具:WinRAR WinRAR是在Windows环境下对压缩文件进行管理并进行压缩与解压缩操作的软件。

WinRAR的工 作界面 以快速压缩文 件的方法为例, 在“资源管理 器”或“我的电 脑”窗口中选择 需要压缩的文 件以及文件夹, 右击选中的文 件,将弹出快捷 菜单,与 WinRAR相关 的选项有: (1)添 加到档案文件 (2)添加到“XXX.rar” (3)压缩并邮寄 (4)压缩到“XXX.rar”并邮寄 三.网络工具软件 (一)下载工具网际快车 1、FlashGet软件简介 下载速度和下载后的管理,是大家普遍关注的问题。优秀下载软件FlashGet(网际快车) 就是针对这个问题而开发的,它采用多线程技术,把一个文件分成几个部分同时下载,从而 成倍的提高下载速度;同时FlashGet可以为下载文件创建不同的类别目录,从而实现下载 文件的分类管理。而且支持拖拽、更名、查找等功能,使文件管理更加方便。总而言之,FlashGet是为数不多的集速度与管理于一体的王牌下载软件之一。 经过历次版本更新,FlashGet已到1.71版本,可从它的主页获取最新消息。 2、FlashGet工作界面介绍 在系统任务栏上打开“开始”菜单,选择“程序|FlashGet”主界面如图所示 Flash Get主 界面 3、应 用 实 例 (1)通 过 浏 览 器 下

ABAQUS安装及汉化方法

统:Windows 7(32位系统)ABAQUS版本:6.9.3(DVD1为安装文件2.4G,DVD2为帮助文件1.8G)准备工作:1.由于安装文件为DVD格式,可下载并安装软件daemon_tools (DTLite4356-0091),直接打开DVD1,2 2.将License.dat用记事本打开,this_host改为本机系统:Windows 7(32位系统) 准备工作: 1.由于安装文件为DVD格式,可下载并安装软件daemon_tools (DTLite4356-0091),直接打开DVD1,2 2.将License.dat用记事本打开,this_host改为本机计算名(计算机属性,在“计算机名称、域或工作组设置”一栏找到“计算机全名”),27007不用改动 3.安装Microsoft Visual C++支持: 运行DVD1\win86_32\ 注:64位的机器请运行F:\ABAQUS6.9\win86_64文件夹下相应程序。 如果Microsoft Visual C++没有提前安装的话后边License会给以提示。 安装流程: 第一步:安装License 运行DVD1\ setup.exe \ (重要步骤)【右击install.exe—属性--兼容性—勾选“以兼容模式运行这个程序”—选择windows XP (service Pack 3)】。 选择License,一路Next直到出现需要输入HOSTNAME时,输入计算机全名,若已自动输入则Next,接着选择授权文件的安装类型,此处选择Just install the licensing utilities。 然后当有选择安装路径时自己选择想要的安装路径,然后Next直至完成。 安装完后将准备工作共的License.dat文件复制到安装盘(假定为C盘)C:\SIMULIA\License 目录。运行license utilities, 在config service中,service name: abaqus flexlm license server; 在“Path to the lmgrd.exe file”一栏中,选择指向“C:\SIMULIA\License\lmgrd.exe”在“Path to the license file”一栏中,选择指向“C:\SIMULIA\License\ABAQUS68_SUMMEREDITION.DA T”(第一步更改后的dat文件)在“Path to the debug log file”一栏中,选择指向“abaqus.log”(abaqus.log文件可以自己创建)Save service, 再start license。注意左下角出现start service successful. 第二步:安装product 兼容模式运行\ABAQUS6.9\win86_32\product\Windows\Disk1\InstData\VM\install.exe也可以在第一步的基础上选择product。 在需要输入Lisence server 1(REQUIRED)时,输入(27007@hostname),Server 2和Server 3可以不输入。 Next直至安装完成。 启动Abaqus CAE,先后看到命令提示符窗口和图形界面窗口,至此安装成功。 第三步:安装帮助文档 运行DVD2\ setup.exe \根据提示操作,在提示输入hostname/IP address时输入完整的计算机名称 然后当有选择安装路径时自己选择想要的安装路径,然后Next直至完成。 安装时license是关键,计算机名也很重要。 原文作者:houniao(转帖请注明作者)

疲劳分析步骤

现在要求对该轴进行疲劳分析。 使用WORKBENCH和DESIGNLIFE对之进行疲劳分析,分为两步。第一步是在WORKBENCH中建立有限元模型,并分别施加集中力和集中力偶,通过计算,得到两种情况的米塞斯应力,这相当于两种工况,这样可以得到ANSYS WORKBENCH的结构分析结果文件*.rst.第二步在DESIGNLIFE中进行,首先根据疲劳分析的五框图,构造疲劳分析流程,然后分别设定各个框图的属性,即有限元结果文件,载荷文件,材料文件,疲劳分析选项,然后启动分析,通过后处理以查看轴上各点的疲劳寿命。 1. WORKBENCH中建立有限元模型并进行分析。 (1)使用designmodeler创建几何模型。 (2)设置材料属性。 (3)划分网格。 (4)设置分析选项。 这里设置两个载荷步,其目的只是分开弯曲和扭转这两种工况。

(5)设置固定边界条件 (6)施加集中力和集中力偶。 第一个载荷步施加集中力,而第二个载荷步施加集中力偶。 (7)分析。 (8)得到两种情况的米塞斯应力。

左边的云图取自第一个载荷步,它是弯曲产生的应力云图。 右边的云图来自第二个载荷步,它是扭转产生的应力云图。 计算完毕后,保存结果,退出ANSYS WORKBENCH. 2. DESIGNLIFE中的疲劳分析。 (1)绘制疲劳分析流程图。 打开designlife,创建分析流程图如下。 该流程图中,左边时输入(左上是有限元结果输入,左下是载荷的时间历程曲线输入),中间是疲劳分析模块(这里是应变寿命疲劳分析),右边是输出(右上是有限元分析结果显示,右下是列表输出危险点的情况)。 (2)关联有限元分析结果文件

abaqus6.13安装方法

abaqus 6.13对操作系统的新要求: 自abaqus 6.13版本开始,将不再支持windows 的32位操作平台; 同时,也不再支持windows xp和windows vista操作系统; 安装: 1. Run "Install Abagus Product & Licensing" 2. In SIMULIA FLEXnet License Server window select "Just install the license utilities" NOTE: If you already have SIMULIA FLEXnet License Server for ABAQUS 6.12-3 installed and running you can use it for 6.13-1 too 3. After finishing License Utilities setup copy files "ABAQUS.lic" and "ABAQUS.log" to (by default C:\SIMULIA\License\) 4. Configure and run SIMULIA FLEXnet License Server as service 4.1. Run lmtools.exe 4.2. On "Servise/License File" tab select "Configuration using Services" 4.3. On "Config Service" tab input the new Service Name (for example: SIMULIA FLEXnet License Server) 4.4. Browse to "lmgrd.exe", "ABAQUS.lic" and "ABAQUS.log" files 4.5. Select "Use Service" and "Start Server at Power Up", click "Save Service" 4.6. On "Start/Stop/ReRead" tab click "Start Server" 4.7. Close lmtools do not pay attention warning the license file you have selected is not valid for this machine? continue 5. For ABAQUS "Installation type" window select "SIMULIA FLEXnet License Server" 6. In "License Server" window input for "License server1 (REQUIRED)" 27011@ there mast be the name of computer with SIMULIA FLEXnet License Server server installed 7. Continue and finish setup 8. Enjoy 简单翻译一下: 1.运行setup.exe,在安装服务器窗口选择"Just install the license utilities",安装好后先不要点”安装产品“窗口的下一步,先配置lmtools.exe; 2.复制文件"ABAQUS.lic" and "ABAQUS.log"到安装目录(默认是C:\SIMULIA\License\); 3.运行lmtools.exe,在"Configuration using Services"页选择三个文件"lmgrd.exe", "ABAQUS.lic" 和"ABAQUS.log",勾选"Use Service" 和"Start Server at Power Up", 点击"Save Service"保存,切换至"Start/Stop/ReRead"页点击"Start Server",可以看到成功运行,可以关闭本窗口了; 4.返回第一步窗口继续安装产品,在"License Server" 窗口填写27011@<计算机名>,例如我的就是27011@Gao-PC,(6.12版本的用27000@127.0.0.1) 5.成功,很简单吧 注意:网上很多教程说要修改ABAQUS.lic文件第一行并且添加环境变量,完全没有必要,从abaqus6.10到6.13都可以按照本文步骤安装(只有License Server不同),其他版本未测试过

相关文档
最新文档