(文章)二次函数与篮球运动

(文章)二次函数与篮球运动

二次函数与篮球运动

你喜欢篮球运动吗?你知道二次函数和篮球运动有密切的联系吗?掌握其中的奥秘,能够帮助我们更好的从事这项运动.

如图,一位运动员在距篮下4米处跳起投篮,球运行的

路线是抛物线,当球运行的水平距离是2.5米时,达到最大

高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距

离为3.05米.

(1)建立如图所示的直角坐标系,求抛物线的解析式;

(2)该运动员身高1.8米,在这次跳投中,球在头顶

上方0.25米处出手,问:球出手时,他跳离地面的高度是

多少米?

注:抛物线2

y ax bx c =++的顶点坐标为24,24b ac b a a ??-- ???. 解析:(1)设所求抛物线为2y ax bx c =++,顶点(0,3.5)和另一点(1.5,3.05)在

抛物线上, 所以

2

243.542.251.53.05b

a a c b

a

a b c -=-=++= 解得 0.203.5

a b c =-== 所求抛物线的解析式为20.2 3.5y x =-+

(2)当 2.5x =-时,()2

0.2 2.5 3.5 2.25y =-?-+=

2.25 1.80.250.20--=(米) 所以球出手时,他距离地面高度为0.20米.可见,球在空中飞行的是一个漂亮的抛物线形状,掌握合适的出手角度和起跳高度,对投篮来说是很关键的.

仔细观察一下,还有哪些运动和二次函数有着联系?

专题:二次函数中的动点问题

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2; 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

“球类”运动中二次函数

“球类”运动中的二次函数 数学和生活息息相关,数学就在你的身边. “新课程标准”要求学生初步学会运用数学的思维方式去观察、分析现实社会,解决日常生活中与其他学科中遇到的数学问题,增强数学的应用意识.体育运动工程中的篮球、铅球、羽毛球、足球等是学生特别熟悉而又喜爱的运动方式,球类运动的曲线与我们学过的抛物线很投缘,其中涉及到不少的二次函数的相关知识,二次函数是刻画现实世界变量之间关系的一种常见的数学模型,许多实际问题,可以通过分析题目中变量之间的关系,建立二次函数模型,从而利用二次函数的图像和性质加以解决.下面根据背景不同分情况探究如下. 一、跳绳运动中的二次函数 例1你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图1所示,正在甩绳的甲、乙两名学生拿绳的手间距为4m ,距地面均为1m ,学生丙、丁分别站在距甲拿绳的手水平距离1m 、2.5m 处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5m ,则学生丁的身高为(建立的平面直角坐标系如图所示)() A .1.5mB .1.625mC .1.66mD .1.67m y 分析:本题考查阅读理解、数据处理及建立二次函数模型的能力.由于绳子甩到最高处时的形状可近似地看为抛物线,因此,根据条件中的数据得到抛物线上3个点的坐标后,再利用一般式即可求出函数表达式;而求丁的身高,转化为数学问题就是求抛物线上横坐标为1.5时对应点的纵坐标. 解:设函数表达式为y =Ax 2 +Bx +C ,易知图像经过点(—1,1),(0,1.5),(3,1),可得 A — B + C =1,A = —1/6, C =1.5,解得B =1/3, 9A +3B +C =1.C =1.5. 所以函数表达式为y = —61x 2+31x +2 3 .当x =1.5时,y =1.625. 答案:B . 二、以投掷“铅球”为背景渗透的二次函数问题 例2、(济南)小明代表班级参加校运动会的铅球工程,他想:“怎样才能将铅球推得更

第6讲 幂函数与二次函数

第6讲 幂函数与二次函数 一、选择题 1.已知幂函数y =f (x )的图像经过点? ? ???4,12,则f (2)=( ) A.1 4 B .4 C.22 D. 2 解析 设f (x )=x α,因为图像过点? ????4, 12,代入解析式得:α=-1 2 ,∴f (2)=2-12=2 2. 答案 C 2.若函数f (x )是幂函数,且满足 f 4f 2=3,则f (1 2 )的值为( ) A .-3 B .-1 3 C .3 D.1 3 解析 设f (x )=x α,则由 f 4f 2=3,得4α 2 α=3. ∴2α=3,∴f (12)=(12)α=12α=1 3. 答案 D 3.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为 ( ). A .[2-2,2+2] B .(2-2,2+2) C .[1,3] D .(1,3)

解析 f (a )=g (b )?e a -1=-b 2+4b -3?e a =-b 2+4b -2成立,故-b 2+4b -2>0,解得2-20, x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于 ( ). A .-3 B .-1 C .1 D .3 解析 f (a )+f (1)=0?f (a )+2=0???? a >0,2a +2=0或??? a ≤0,a +1+2=0,解得a = -3. 答案 A 5 .函数f (x )=ax 2 +bx +c (a ≠0)的图象关于直线x =- b 2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ). A .{1,2} B .{1,4} C .{1,2,3,4} D .{1,4,16,64} 解析 设关于f (x )的方程m [f (x )]2+nf (x )+p =0有两根,即f (x )=t 1或f (x )=t 2. 而f (x )=ax 2+bx +c 的图象关于x =- b 2a 对称,因而f (x )=t 1或f (x )=t 2的两根也关于x =-b 2a 对称.而选项D 中4+162≠1+642 . 答案 D 6.二次函数f (x )=ax 2+bx +c ,a 为正整数,c ≥1,a +b +c ≥1,方程ax 2+bx +c =0有两个小于1的不等正根,则a 的最小值是 ( ). A .3 B .4 C .5 D .6 解析 由题意得f (0)=c ≥1,f (1)=a +b +c ≥1.当a 越大,y =f (x )的开口越小,当a 越小,y =f (x )的开口越大,而y =f (x )的开口最大时,y =f (x )过(0,1),(1,1),则c =1,a +b +c =1.a +b =0,a =-b ,-b 2a =1 2,又b 2-4ac >0,a (a -4)>0,

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

二次函数(附解析答案) 40页

填空: 1.体育加试时,一女生掷实心球,实心球飞行中高度y(m)与水平距离x(m)之间的关系是y=-.已知女生掷实心球的评分标准如下表: 2.利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解. (1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求解:在平面直角坐标系中画出抛物线y= 和直线y=-x,其交点的横坐标就是该方程的解. (2)已知函数y=-的图象(如图所示),利用图象求方程-x+3=0的近似解.(结果保留两个有效数字)

3.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第 象限. 4.已知抛物线y=x2-2x-3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,使△ABC的面积为10,则C点坐标为. 5.老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限; 乙:当x<2时,y随x的增大而减小. 丙:函数的图象与坐标轴只有两个交点. 已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数. 6.如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息: (1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0.你认为其中错误的有() 7.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.

8.已知函数,若使y=k成立的x值恰好有三个,则k的值为() 9.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是() .B. C.D. 的最小值是. 11.抛物线y=ax2+ax+x+1与x轴有且只有一个交点,则a= . 12.如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x的取值范围.

幂函数与二次函数

幂函数与二次函数基础梳理 1.幂函数的定义 一般地,形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数. 2.幂函数的图象 在同一平面直角坐标系下,幂函数y =x ,y =x 2,y =x 3 ,y =x 12, y =x -1的图象分别如右图. 3.二次函数的图象和性质 解析式 f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0) 图象 定义域 (-∞,+∞) (-∞,+∞) 值域 ???? ??4ac -b 24a ,+∞ ? ????-∞,4ac -b 24a 单调性 在x ∈??????-b 2a ,+∞上单调递增 在x ∈? ????-∞,-b 2a 上单调递减 在x ∈? ????-∞,-b 2a 上单调递增 在x ∈??????-b 2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,b ≠0时为非奇非偶函数 顶点 ? ????-b 2a ,4ac -b 24a 对称性 图象关于直线x =-b 2a 成轴对称图形 5.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0) (2)顶点式:f (x )=a (x -h )2+k (a ≠0)

(3)两根式:f(x)=a(x-x1)(x-x2)(a≠0)

函数y =f (x )对称轴的判断方法 (1)对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =x 1+x 2 2对称. (2)一般地,函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立,则函数y =f (x )的图象关于直线x =a 对称(a 为常数). 练习检测 1.(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ). A .-3 B .-1 C .1 D .3 解析 ∵f (x )为奇函数,∴f (1)=-f (-1)=-3. 答案 A 2.如图中曲线是幂函数y =x n 在第一象限的图象.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为( ). A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12 D .2,12,-2,-12 答案 B 3.(2011·浙江)设函数f (x )=? ???? -x ,x ≤0,x 2,x >0.若f (α)=4,则实数α等于( ). A .-4或-2 B .-4或2 C .-2或4 D .-2或2 解析 由????? α≤0,-α=4或? ???? α>0,α2=4,得α=-4或α=2,故选B. 答案 B 4.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b 等于( ). A .3 B .2或3 C .2 D .1或2 解析 函数f (x )=x 2-2x +2在[1,b ]上递增,

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结: ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断 图象的位置,要数形结合; ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 共同点:

九年级数学二次函数应用题 含答案

九年级数学专题二次函数的应用题 一、解答题 1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为 2.5米时,达到最大高度 3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。 (1)建立如图所示的直角坐标系,求抛物线的解析式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少? 2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少? 3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式; 米,)2)该男同学把铅球推出去多远?(精确到0.01 ( 元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件)某商场以每件42,4.

件)可看成是一次函数关系:/(元与每件的销售价 之间的函数关系式(每天的销售与每件的销售价写出商场卖这种服装每天的销售利润1. 利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路 线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。 (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3米,问此次跳水会不会失误?并通过计算说明理由 6.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时 每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有 如下关系: 转让数量(套)120011001000900800700600500400300200100 价格(元/套)240250260270 280290 300310 320330 340 350 方案1:不转让A品牌服装,也不经销B品牌服装; 方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装; 方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。 问: ①经销商甲选择方案1与方案2一年内分别获得利润各多少元?

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

二次函数最经典综合提高题

周村区城北中学二次函数综合提升寒假作业题 一、顶点、平移 1、抛物线y =-(x +2)2 -3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、若,,,,,123351A y B y C y 444??????- ? ? ??????? 为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是 A.123y y y << B. 213y y y << C.312y y y << D.132y y y << 3、二次函数y=﹣(x ﹣1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A . B .2 C . D . 4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D .y = (x + 2)2 ? 3 5、将二次函数2 45y x x =-+化为2 ()y x h k =-+的形式,则y = . 6二次函数与y=kx 2﹣8x +8的图象与x 轴有交点,则k 的取值范围是 ( ) A .k <2 B .k <2且k ≠0 C .k ≤2 D .k ≤2且k ≠0 7、由二次函数1)3(22+-=x y ,可知( ) A .其图象的开口向下 B .其图象的对称轴为直线3-=x C .其最小值为1 D .当3

二次函数的梯形的存在性问题

二次函数的梯形的存在性问题 1、如图,平面直角坐标系xOy中,已知抛物线经过A(4,0)、B(0,4)、C(-2,0)三点. (1)求抛物线的解析式; (2)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断共有几个位置能使以点P、Q、B、O为顶点且以BO为其中一条底边的四边形是直角梯形,请求出相应的点Q的坐标. (2010?武清区二模)已知二次函数图象的对称轴为直线x=2,经过两点(0,3)和(-1,8),并与x 轴的交点为B、C(点C在点B左边),其顶点为点P. (1)求此二次函数的解析式; (2)如果直线y=x向上或向下平移经过点P,求证:平移后的直线一定经过点B; (3)在(2)的条件下,能否在直线y=x上找一点D,使得以点O、P、B、D为顶点的四边形是等腰梯 形?若能,请求出点D的坐标;若不能,请简要说明你的理由.

变式练习: 如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式; (2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(说出解题思路) (3)在此抛物线上是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

方法规律 梯形存在性问题:三个定点,一个动点:三个定点,每两个定点作为底,过另一定点平行于底的直线,直线与二次函数的交点,再判断是否符合条件。 实战训练 在平面直角坐标系中,点A和点B分别在x轴的负半轴和y轴的正半轴上,且OA、OB分别是关于x的方程x2-7x+12=0的两个根(OA<OB) (1)求直线AB的解析式;

二次函数动点问题解答方法技巧分析

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求与已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标、 ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式与一元二次方程之间的内在联系: 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)与点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上就是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 ①特殊四边形为背景; ②点动带线动得出动三角形; ③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式; ⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。 二次函数的动态问题(动点)

二次函数和幂函数

二次函数与幂函数 自我检测: 1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2 D .f (x )=x 2 2.(教材习题改编)设α∈? ?????-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,3 3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.? ????0,120 B.? ????-∞,-120 C.? ????120,+∞ D.? ?? ??-120,0 4.(教材习题改编)已知点M ? ????33,3在幂函数f (x )的图象上,则f (x )的表达式为________. 5.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的 最小值为________. [例1] 已知幂函数m =________. 练习1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( ) A .①y =x 13,②y =x 2,③y =x 12,④y =x -1 B .①y =x 3,②y =x 2,③y =x 12 ,④y =x -1 C .①y =x 2,②y =x 3,③y =x 12,④y =x -1 D .①y =x 13,②y =x 12 ,③y =x 2,④y =x -1 (2)(2013·淄博模拟)若a <0,则下列不等式成立的是( ) A .2a >? ????12a >(0.2)a B .(0.2)a >? ????12a >2a C.? ????12a >(0.2)a >2a D .2a >(0.2)a >? ?? ??12a 例2.设f (x )y =f (x )的图象是

二次函数与几何综合典题 含答案详解

二次函数与几何综合典题题 例1.已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为(3,-2),且与x 轴两交点间的距离为4,求其解析式。 例2.已知二次函数)0(2≠++=a c bx ax y 的图像与x 轴交于不同的两点A 、B ,点A 在点 B 的左边,与轴交于点 C ,若△AOC 与△BOC 的面积之和为6,且这个二次函数的图像的顶点坐标为(2,-a ),求这个二次函数的解析式。 例3.已知二次函数)0(2≠++=a c bx ax y 的图像过点E (2,3),对称轴为x =1,它的图像与x 轴交于两点A 10,)0(),0,(22212121=+x x x x x B x <且。 (1)求二次函数的解析式; (2)在(1)中抛物线上是否存在点P ,使△POA 的面积等于△EOB 的面积?若存在,求出P 点的坐标;若不存在,说明理由。 例4.如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于A (-1,0)、B (3,0)、C(0,3)三点,其顶点为D 。 (1)求经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似? 若相似写出证明过程;若不相似请说明理由。 例5:如图,已知抛物线4:21-=x y l 的图像与X 轴交于A 、C 两点。 (1)若抛物线2l 与1l 关于x 轴对称,求2l 的解析式; (2)若点B 是抛物线1l 上一动点(B 不与A,C 重合),以AC 为对角线,A ,B ,C 三点为顶点的平行四边形的第四个顶点记为D ,求证:点D 在2l 上; (3)探索:当点B 分别位于1l 在x 轴上、下两部分的图像上时,平行四边形ABCD 的面积是否存在最大值或最小值?若存在,判断它们是何种特殊平行四边形并求出它的面积;若不存在,请说明理由。 例6.如图,已知:m ,n 是方程0562 =+-x x 的两个实数根,且m <n ,抛物线c bx x y ++-=2的图像经过点A (m ,0)、B (0,n )。 (1)求这个抛物线的解析式; (2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D 。 试求出点C 、D 的坐标和△BCD 的面积; (3)P 是线段OC 上一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点坐标。

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

专题二次函数与几何图形

y A x B O C D 专题:二次函数与几何图形 一、二次函数与平行四边形 1.已知抛物线c bx ax y ++=2 )0(≠a 过点A (-3,0),B (1,0),C (0,3)三点 (1)求抛物线的解析式; (2) 若抛物线的顶点为P ,求∠PAC 正切值; (3)若以A 、P 、C 、M 为顶点的四边形是平行四边形, 求点M 的坐标. 2.已知一次函数1y x =+的图像和二次函数2 y x bx c =++的图像 都经过A 、B 两点,且点A 在y 轴上,B 点的纵坐标为5. (1)求这个二次函数的解析式; (2)将此二次函数图像的顶点记作点P ,求△ABP 的面积; (3)已知点C 、D 在射线AB 上,且D 点的横坐标比C 点 的横坐标大2,点E 、F 在这个二次函数图像上,且CE 、 DF 与y 轴平行,当CF ∥ED 时,求C 点坐标. 二、二次函数与相似三角形 3.如图,直线y =x +3与x 轴、y 轴分别交于点A 、C ,经过A 、C 两点的抛物线y =ax 2 +bx +c 与x 轴的负半轴上另一交点为B ,且tan ∠CBO=3. (1)求该抛物线的解析式及抛物线的顶点D 的坐标; (2)若点P 是射线BD 上一点,且以点P 、A 、B 为顶点的 三角形与△ABC 相似,求P 点坐标.【2014徐汇区】 1 2345 -1 -1-2 123456 x y O 图8

x y O O N C M B A 4.已知:在直角坐标系中,直线y=x+1与x 轴交与点A ,与y 轴交与点B ,抛物线 21 ()2 y x m n =-+的顶点D 在直线AB 上,与y 轴的交点为C 。 (1)若点C (非顶点)与点B 重合,求抛物线的表达式;(2015杨浦区) (2)若抛物线的对称轴在y 轴的右侧,且CD ⊥AB ,求∠CAD 的正切值; (3)在第(2)的条件下,在∠ACD 的内部作射线CP 交抛物线的对称 轴于点P ,使得∠DCP=∠CAD ,求点P 的坐标。 三、二次函数与特殊三角形(Rt △ 等腰△ 等腰Rt △) 5.如图,已知二次函数y=-x 2 +bx+c (c>0)的图像与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于点C ,且OB=OC=3,顶点为M 。 (1)求二次函数的解析式。 (2)线段BM 上是否存在点N ,使得△NMC 为等腰三角形? 若存在,求出点N 的坐标,若不存在,请说理。 6.已知二次函数y=ax 2 +bx+c (a ≠0)的图像经过点 (1)求此函数的解析式和对称轴. (2)试探索该抛物线在x 轴下方的对称轴上存在几个点P, 使△PAB 是直角三角形,并求出这些点的坐标.

二次函数的图象特点及其应用

二次函数的图象特点及其应用 二次函数的图象特点及其应用 课题名称: 二次函数的图象特点及其应用 课题的研究及意义: 数学是一门很有用的学科。古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。现在,就让我们一起领略数学中二次函数的无穷魅力 课题研究内容: 1.发展史:函数就是在某变化过程中有两个变量X和Y,变量Y随着变量X一起变化,而且依赖于X。如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数。这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学家菜布尼茨。他和牛顿是微积分的发明者。17世纪末,在他的文章中,首先使用了“function" 一词。翻译成汉语的意思就是“函数。不过,它和我们今天使用的函数一词的内涵并不一样,它表示”幂”、“坐标”、“切线长”等概念。 直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的。如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺。因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来。 19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量

二次函数综合(经典)

2011—2012学年A+学堂九年级春季提优(二次函数) 1.如图,直角梯形OABC 中,OC ∥AB ,C (0,3),B (4,1),以BC 为直径的圆交x 轴于E 、 D 两点(D 点在 E 点右方). (1)求点E 、D 的坐标; (2)求过B 、C 、D 三点的抛物线的函数关系式; (3)过B 、C 、D 三点的抛物线上是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形? 若不存在,说明理由;若存在,求出点Q 的坐标. 2.如图,已知抛物线y =ax 2 -4x +c 经过点A (0,-6)和 B (3,-9). (1)求出抛物线的解析式; (2)写出抛物线的对称轴方程及顶点坐标; (3)点P (m ,m )与点Q 均在抛物线上(其中m >0),且这两点 关于抛物线的对称轴对称,求m 的值及点Q 的坐标; (4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M , 使得△QMA 的周长最小. 3.如图,抛物线2 y x bx c =++的顶点为(1,4)D --,与y 轴交于点(0,3)C -,与x 轴 交于,A B 两点(点A 在点B 的左侧). (1)求抛物线的解析式; (2)连接,,AC CD AD ,试证明△ACD 为直角三角形;

(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以,,,A B E F 为顶点的四 边形为平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 4. 如图,在平面直角坐标系中,二次函数c bx x y ++=2 的图象与x 轴交于A 、B 两点, A 点在原点的左侧, B 点的坐标为(3,0),与y 轴交于 C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形C P PO ',那么是否存在点P ,使四边形C P PO '为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积. 5. 如图,已知二次函数2 y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点P ,顶点为C (12-,) 。

相关文档
最新文档