SIFT尺度不变特征转换

SIFT 特征提取算法详解

SIFT 特征提取算法总结 主要步骤 1)、尺度空间的生成; 2)、检测尺度空间极值点; 3)、精确定位极值点; 4)、为每个关键点指定方向参数; 5)、关键点描述子的生成。 L(x,y,σ), σ= 1.6 a good tradeoff

D(x,y,σ), σ= 1.6 a good tradeoff

关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的。在 Lowe 的论文中, 将第0层的初始尺度定为1.6,图片的初始尺度定为0.5. 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。尺度越大图像越模糊。 next octave 是由first octave 降采样得到(如2) , 尺度空间的所有取值,s为每组层数,一般为3~5 在DOG尺度空间下的极值点 同一组中的相邻尺度(由于k的取值关系,肯定是上下层)之间进行寻找

在极值比较的过程中,每一组图像的首末两层是无法进行极值比较的,为了满足尺度 变化的连续性,我们在每一组图像的顶层继续用高斯模糊生成了 3 幅图像, 高斯金字塔有每组S+3层图像。DOG金字塔每组有S+2层图像.

If ratio > (r+1)2/(r), throw it out (SIFT uses r=10) 表示DOG金字塔中某一尺度的图像x方向求导两次 通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度)?

直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向 Identify peak and assign orientation and sum of magnitude to key point The user may choose a threshold to exclude key points based on their assigned sum of magnitudes. 利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备 旋转不变性。以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度 方向。梯度直方图的范围是0~360度,其中每10度一个柱,总共36个柱。随着距中心点越远的领域其对直方图的贡献也响应减小.Lowe论文中还提到要使用高斯函 数对直方图进行平滑,减少突变的影响。

SIFT特征点提取与匹配算法

SIFT 特征点匹配算法 基于SIFT 方法的图像特征匹配可分为特征提取和特征匹配两个部分,可细化分为五个部分: ① 尺度空间极值检测(Scale-space extrema detection ); ② 精确关键点定位(Keypoint localization ) ③ 关键点主方向分配(Orientation assignment ) ④ 关键点描述子生成(Keypoint descriptor generation ) ⑤ 比较描述子间欧氏距离进行匹配(Comparing the Euclidean distance of the descriptors for matching ) 1.1 尺度空间极值检测 特征关键点的性质之一就是对于尺度的变化保持不变性。因此我们所要寻找的特征点必须具备的性质之一,就是在不同尺度下都能被检测出来。要达到这个目的,我们可以在尺度空间内寻找某种稳定不变的特性。 Koenderink 和Lindeberg 已经证明,变换到尺度空间唯一的核函数是高斯函数。因此一个图像的尺度空间定义为:(,,)L x y σ,是由可变尺度的高斯函数(,,)G x y σ与输入图像(,)I x y 卷积得到,即: ),(),,(),,(y x I y x G y x L *=σσ (1.1) 其中:2222/)(221 ),,(σπσσy x e y x G +-= 在实际应用中,为了能相对高效地计算出关键点的位置,建议使用的是差分高斯函数(difference of Gaussian )(,,)D x y σ。其定义如下: ) ,,(),,() ,()),,(),,((),,(σσσσσy x L k y x L y x I y x G k y x G y x D -=*-= (1.2) 如上式,D 即是两个相邻的尺度的差(两个相邻的尺度在尺度上相差一个相乘系数k )。

尺度换算公式

尺度换算公式: 1丈=10尺 1尺=1/3米0.333··· 1米=0.3丈 1尺=10寸 1寸=10/3厘米3.3333··· 更多换算公式 面积换算 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2) 1平方米(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘米(cm2) 1公顷(ha)=10000平方米(m2)=2.471英亩(acre) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2) 1平方英尺(ft2)=0.093平方米(m2) 1平方米(m2)=10.764平方英尺(ft2) 1平方码(yd2)=0.8361平方米(m2) 1平方英里(mile2)=2.590平方公里(km2) 体积换算 1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1) 1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1) 1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩·英尺=1234立方米(m3) 1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1) 10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=283.17亿立方米(m3)1百万立方英尺(MMcf)=2.8317万立方米(m3)1千立方英尺(mcf)=28.317立方米(m3)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter) 1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl) 长度换算 1千米(km)=0.621英里(mile)1米(m)=3.281英尺(ft)=1.094码(yd) 1厘米(cm)=0.394英寸(in)1英寸(in)=2.54厘米(cm) 1海里(n mile)=1.852千米(km)1英寻(fm)=1.829(m) 1码(yd)=3英尺(ft)1杆(rad)=16.5英尺(ft) 1英里(mile)=1.609千米(km)1英尺(ft)=12英寸(in) 1英里(mile)=5280英尺(ft)1海里(n mile)=1.1516英里(mile)

SIFT特征点提取与匹配算法

二 特征点提取算法 1、基于SIFT (Scale Invariant Feature Transform )方法的图像特征匹配 参看David G. Lowe 的“Distinctive Image Features from Scale-Invariant Keypoints ” 基于SIFT 方法的图像特征匹配可分为特征提取和特征匹配两个部分,可细化分为五个部分: ① 尺度空间极值检测(Scale-space extrema detection ); ② 精确关键点定位(Keypoint localization ) ③ 关键点主方向分配(Orientation assignment ) ④ 关键点描述子生成(Keypoint descriptor generation ) ⑤ 比较描述子间欧氏距离进行匹配(Comparing the Euclidean distance of the descriptors for matching ) 1.1 尺度空间极值检测 特征关键点的性质之一就是对于尺度的变化保持不变性。因此我们所要寻找的特征点必须具备的性质之一,就是在不同尺度下都能被检测出来。要达到这个目的,我们可以在尺度空间内寻找某种稳定不变的特性。 Koenderink 和Lindeberg 已经证明,变换到尺度空间唯一的核函数是高斯函数。因此一个图像的尺度空间定义为:(,,)L x y σ,是由可变尺度的高斯函数(,,)G x y σ与输入图像(,)I x y 卷积得到,即: ),(),,(),,(y x I y x G y x L *=σσ (1.1) 其中:2222/)(221 ),,(σπσσy x e y x G +-= 在实际应用中,为了能计算的相对高效,所真正使用的是差分高斯尺度空间(difference of Gaussian )(,,)D x y σ。其定义如下: ) ,,(),,() ,()),,(),,((),,(σσσσσy x L k y x L y x I y x G k y x G y x D -=*-= (1.2) 如上式,D 即是由两个相邻的尺度的差(两个相邻的尺度在尺度上相差一个相乘系数k )。

不变特征

不变特征 0引言 图像局部特征的研究已经有很长的历史,早期研究可以追溯到20世纪70年代的Momvec算子。文献中存在大量关于角点、边缘、blob和区域等局部特征的研究方法。近年来区分性强、对多种几何和光度变换具有不变性的局部不变特征在宽基线匹配、特定目标识别、目标类别识别、图像及视频检索、机器人导航、纹理识别和数据挖掘等多个领域内获得广泛的应用,是国内外的研究热点。 局部不变特征是指局部特征的检测或描述对图像的各种变化,例如几何变换、光度变换、卷积变换、视角变化等保持不变。局部不变特征的基本思想是提取图像内容的本质属性特征,这些特征与图像内容的具体表现形式无关或具有自适应性(即表现形式变化时特征提取自适应的变化以描述相同的图像内容)。局部不变特征通常存在一个局部支撑邻域,与经典的图像分割算法不同,局部支撑邻域可能是图像的任何子集,支撑区域的边界不一定对应图像外观(例如颜色或纹理)的变化。 局部不变特征不仅能够在观测条件变化大、遮挡和杂乱干扰的情况下获得可靠的匹配,而且能够有效的描述图像内容进行图像检索或场景、目标识别等。局部不变特征可以克服语义层次图像分割的需要。从复杂背景中分割出前景目标是十分困难的课题,基于低层特征的方法很难实现有意义的分割,把图像内容表示为局部不变区域的集合(多个区域可能存在重合,图像中一些部分也可能不存在局部不变区域),可以回避分割问题。基于局部不变特征的方法本质上是对图像内容进行隐式分割,局部不变特征既可能位于感兴趣的前景目标上也可能位于背景或目标边界上,后续的高层处理需要基于局部不变特征提取感兴趣的信息。 局部不变特征的研究包含3个基本问题:一是局部不变特征的检测,二是局部不变特征的描述,三是局部不变特征的匹配。根据不同的准则,局部不变特征的研究方法可以分为不同的类别,按照使用的色调空间的不同可以分为局部灰度不变特征和局部彩色不变特征;按照特征层次的不同可以分为角点不变特征、blob不变特征和区域不变特征;按照几何变换不变性的自由度可以分为平移不变特征、旋转不变特征、尺度不变特征、欧氏不变特征、相似不变特征、仿射不变特征和投影不变特征;按照处理思路的不同可以分为基于轮廓曲率的不变特征、

基于SIFT特征的图像匹配

毕业设计(论文)题目基于SIFT特征的图像匹配 姓名张建华 学号0811111101 所在学院理学院 专业班级08信计 指导教师吴颖丹 日期2012 年 6 月 2 日

摘要 当今社会已经进入信息时代,随着计算机技术、通信技术和数学的发展,图像信息处理能力和水平也不断提高,相应的也得到更多关注、研究和更加广泛的应用。图像匹配是处理和解决各种图像信息的基础,已经成为虚拟现实和计算机可视化领域的研究热点。一直以来,研究人员对图像匹配技术进行了大量的研究,推出了许多匹配算法,其中特征匹配算法有着较高的精确度和稳定性。SIFT (Scale Invariant Feature Transform)特征匹配算法是Lowe提出来的用于图像特征匹配的算法,是目前特征匹配领域的热点,对图像的旋转,尺度缩放和亮度变换保持不变,对视角变换,仿射变换保持一定程度的稳定。SIFT特征点是图像的一种尺度不变局部特征点,具有独特性好,信息量丰富,多量性,高速性,可扩展性等特点。正是借助于这些特点,使得传统图像配准中的许多诸如前面提到的共性问题得到了很大程度的改善。该算法首先给出了尺度空间的生成方法,检测出极值点;接下来给出了SIFT特征点的提取步骤和精确定位极值点的方法;然后基于特征点邻域像素的梯度和方向生成了关键点的描述向量;最后根据特征向量给出了匹配方法,提取了SIFT的特征点,并其应用于图像匹配。 本文首先简要介绍了图像匹配所需的基础知识,然后详细介绍了SIFT算法的具体流程。通过大量的实验证明SIFT算法具有较强的匹配能力和鲁棒性,是一种较好的图像匹配算法。 关键字:SIFT; 图像匹配; 尺度空间; 极值点; 特征向量

统计降尺度方法和Delta方法建立黄河源区气候情景的比较 …

统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析 赵芳芳徐宗学 北京师范大学水科学研究院,水沙科学教育部重点实验室, 北京, 100875 摘要 大气环流模型(GCMs)预测的气候变化情景,必须经降尺度处理得出小尺度上未来气候变化的时空分布资料,才能满足气候变化对资源、环境和社会经济等影响进行评估的需要。文中研究同时应用Delta方法和统计降尺度(SDS)方法对黄河源区的日降水量和日最高、最低气温进行降尺度处理,建立起未来3个时期(2006—2035、2036—2065和2066—2095年,简记为2020s、2050s和2080s)的气候变化情景,并比较分析两种方法的优缺点和适用性。结果表明,未来降水量有一定的增加趋势,但是增幅不大,而日最高、最低气温存在明显的上升趋势,且增幅较大。与基准期相比,Delta方法模拟的未来3个时期降水量将分别增加8.75%、19.70%和18.49%;日最高气温将分别升高1.41、2.42和3.44 ℃,同时,日最低气温将分别升高1.49、2.68和3.76 ℃,未来极值气温变幅减小。SDS法借助站点实测数据和NCEP再分析资料建立GCM强迫条件下的降尺度模型,模拟结果表明,未来3个时期降水量将分别增加3.47%、6.42%和8.67%,季节变化明显;气温随时间推移增幅明显,未来3个时期的日最高气温将分别升高1.34、2.60和3.90 ℃,最低气温增幅相对较小,3个时期将分别升高0.87、1.49和2.27 ℃,由此模拟的未来时期无霜期将延长。在降尺度方法的应用上,SDS方法存在明显的优势,但同时也存在不可避免的缺陷。因此,在实际的气候变化影响评估中,需要多种方法综合比较,以期为决策部门提供参考和依据。 关键词:气候变化,大气环流模型(GCMs),情景,降尺度,黄河。 初稿时间:2006年2月23日;修改稿时间:2006年7月8 作者简介:赵芳芳,主要从事气候变化对水文资源的影响分析研究。 Email: zhfang2003@https://www.360docs.net/doc/fe15499668.html,

尺度不变特征变换(Scale-invariant feature transform,SIFT

SIFT SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。该方法于1999年由David Lowe 首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整理完善后发表于International journal of computer vision(IJCV) 。截止2014年8月,该论文单篇被引次数达25000余次。 算法介绍 SIFT由David Lowe在1999年提出,在2004年加以完善。SIFT在数字图像的特征描述方面当之无愧可称之为最红最火的一种,许多人对SIFT进行了改进,诞生了SIFT的一系列变种。SIFT 已经申请了专利。 SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。 算法的特点 SIFT算法具有如下一些特点: 1.SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性; 2. 区分性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配; 3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量; 4.高速性,经优化的SIFT匹配算法甚至可以达到实时的要求; 5.可扩展性,可以很方便的与其他形式的特征向量进行联合。 特征检测 SIFT特征检测主要包括以下4个基本步骤: 1尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。 2. 关键点定位 在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。 3. 方向确定 基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。 4. 关键点描述 在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。 特征匹配 SIFT特征匹配主要包括2个阶段: 第一阶段:SIFT特征的生成,即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量。第二阶段:SIFT特征向量的匹配。 SIFT特征的生成一般包括以下几个步骤:

降尺度方法在月预报中的应用研究

第1期 气象水文海洋仪器 No .1 2011年3月  M eteo rological ,Hy drolog ical and M arine Instruments M ar .2011 收稿日期:2010-08-16. 基金项目:国家自然科学基金(40675040)项目资助. 作者简介:王慧娟(1983),女,硕士.主要从事短期区域气候预测研究. 降尺度方法在月预报中的应用研究 王慧娟1,2,3,吴洪星1,3,仵建勋1,3 (1.解放军理工大学气象学院,南京211101;2.294608部队气象台,南京210022;3.空军装备研究院航空气象研究防化研究所,北京100085) 摘 要:月尺度的预报是气象业务中的难点,本文从降尺度的方法出发、介绍了动力学降尺度 方法、统计学降尺度方法以及动力统计降尺度方法。总结了近年来在月尺度预报上的研究成果,并在此基础上提出了有待进一步研究的课题。关键词:降尺度;月预报;动力延伸期 中图分类号:P456.2 文献标识码:A 文章编号:1006-009X (2011)01-0027-05 Application of downscaling method in monthly forecast Wang H uijuan 1,2,3 ,Wu H o ng xing 1,3 ,Chu Jianxun 1,3 (1.Meteorological College ,PL A Univ ersity o f Science and T echnology ,N anj ing 211101;2.Observatory o f No .294608Army ,N an jing 210022;3.I nstitute of Ai r Force Equi pment ,Chemical De f ense I nstitute of Av iation Weather ,Bei jing 100085) A bstract :The mo nthly fo recast is the difficult point in meteo rological o peratio n .Based on the dow nscaling method ,this paper describes three dow nscaling metho ds that are dy namic ,statistical and dy namic -statistical .Then ,the research results o n the monthly fo recast are summ arized ,and the further pro spects in this area are pro po sed . Key words :dow nscaling metho d ;m onthly forecast ;dynamical ex tended rang e forecast 0 引言 统计学方法做气候预测隐含着一个基本假设,即气候系统的未来状况类似于过去和现在,如果预测期间的气候状况发生较大改变就破坏了这种基本假设,就有可能导致预测失败或者是拟合好预报差。所以统计学预报是基于对过去发生气候状况进行拟合从而对未来情境做出预报。动力学方法则是建立在一套大气动力学方程基础之上的。通过动力学方程之间的关系,由初始状态推导出未来的气候情境。统计学的方法主要用于中长期的气候预测,而动力学的方法则是主要用于 短期的天气预报当中。 月预报的时间尺度介于气候预测和天气预报中间,有着统计学和动力学特征。月尺度的短期 气候预测是气候预测或长期预报的下限,又是中期预报的上限,也被称为动力延伸期预报。 1 研究现状 我国的短期气候预测业务开始于1958年,是世界上开展预测业务比较早且一直坚持的少数几个国家之一。近年来,经过8年多的研制和发展,国家气候中心建成了第一代动力气候模式预测业务系统(NCC -GODAS ),并以此为平台,逐步形成

图像处理特征不变算子系列之DoG算子(五)

图像处理特征不变算子系列之DoG算子(五) 时间 2013-09-12 00:24:07 CSDN博客原 文https://www.360docs.net/doc/fe15499668.html,/kezunhai/article/details/11403733 图像处理特征不变算子系列之DoG算子(五) kezunhai@https://www.360docs.net/doc/fe15499668.html, https://www.360docs.net/doc/fe15499668.html,/kezunhai 在前面分别介绍了:图像处理特征不变算子系列之Moravec算子(一)、图像处理特征不变算子系列之Harris算子(二)、图像处理特征不变算子系列之SUSAN算子(三)和图像处理特征不变算子系列之FAST算子(四)。今天我们将介绍另外一个特征检测算子---DoG算子,DoG算子是 由 Lowe D.G. 提出的,对噪声、尺度、仿射变化和旋转等具有很强的鲁棒性,能够提供更丰富的局部特征信息,本文将对DoG算子进行详细地分析。 在开始介绍DoG之前,有必要对尺度空间有一定的了解。尺度空间最早是由Tony Lindeberg提出的,并不断的发展和完善。日常生活中,我们自觉或不自觉的在使用尺度的概念。举个我们个人自觉的经历,当我们读小学的时候,同学间互相询问来自哪个组;当我们读中学的时候,同学们互相询问自哪个村;当我们读高中的时候,同学们互相询问来自哪个镇;当读大学的时候,同学们互相询问来自哪个省?这里的组、村、镇、省就是我们不自觉使用的尺寸。还有一个例子,当我们打开google地图的时候,随着鼠标的滚动,地图会由五大洲逐渐定位到国家--》省---》市---》区---》街道办等,这也是尺度的表现。 1)尺度空间 在尺度空间中,尺度越大图像就越模糊,尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟目标由远及近人对目标的感知过程。那为什么要讨论尺度空间呢?因为在用机器视觉系统分析未知场景时,机器并不知道图像中物体的尺度,只有通过对图像的多尺度描述,才能获得对物体感知的最佳尺度。如果在不同尺度上,对输入的图像都能检测到相同的关键点特征,那么在不同尺度下也可以实现关键点的匹配,从而实现关键点的尺度不变特性。尺度空间描述的就是图像在不同尺度下的描述,如果对尺度空间有兴趣,请参考Tony Lindeberg的论文:Scale-Space。 2)金字塔多分辨率 常常有人会将DoG与图像金字塔弄混,从而导致对SIFT算法第一步构造DoG不甚理解。这里首先介绍下金字塔多分辨率。金字塔是早起图像多尺度的表示形式,图像金字塔一般包括2个步骤,分别是使用低通滤波平滑图像;对图像进行降采样(也即图像缩小为原来的1/4,长宽高缩小为1/2),从而得到一系列尺寸缩小的图像。金字塔的构造如下所示:

尺度不变特征

SIFT特征分析与源码解读 分类:机器视觉与模式识别2013-11-19 22:28 10人阅读评论(0) 收藏举报 目录(?)[+] SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果。整个算法分为以下几个部分:1. 构建尺度空间 这是一个初始化操作,尺度空间理论目的是模拟图像数据的多尺度特征。 高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为: 其中G(x,y,σ) 是尺度可变高斯函数 (x,y)是空间坐标,是尺度坐标。σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。 下图所示不同σ下图像尺度空间: 关于尺度空间的理解说明:2kσ中的2是必须的,尺度空间是连续的。在 Lowe的论文中,将第0层的初始尺度定为1.6(最模糊),图片的初始尺度定为0.5(最清晰). 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。尺度越大图像越模糊。

SIFT特征提取分析

SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points, or corner points)及其有关scale 和orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果。整个算法分为以下几个部分: 1. 构建尺度空间 这是一个初始化操作,尺度空间理论目的是模拟图像数据的多尺度特征。 高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为: 其中G(x,y,σ) 是尺度可变高斯函数 (x,y)是空间坐标,是尺度坐标。σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。 下图所示不同σ下图像尺度空间:

关于尺度空间的理解说明:2kσ中的2是必须的,尺度空间是连续的。在 Lowe的论文中,将第0层的初始尺度定为1.6(最模糊),图片的初始尺度定为0.5(最清晰). 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。尺度越大图像越模糊。 图像金字塔的建立:对于一幅图像I,建立其在不同尺度(scale)的图像,也成为子八度(octave),这是为了scale-invariant,也就是在任何尺度都能够有对应的特征点,第一个子八度的scale为原图大小,后面每个octave为上一个octave降采样的结果,即原图的1/4(长宽分别减半),构成下一个子八度(高一层金字塔)。

对尺度和尺度转换的理解

对尺度和尺度转换的理解 摘要:尺度是对地理现象观察、度量的标准之一,是空间数据采集、建模、分析的重要依据,是空间数据的重要特征。本文首先对尺度和尺度转换概念进行了剖析,然后对其重要性进行归纳总结。结合实际应用的需要,尺度转换通常会根据具体的情况采用不同的类型,即尺度效应的存在,对同一过程采用不同的观测尺度会得出不同的结果。于是对尺度转换常用类型,尺度选择和尺度效应进行了分析。最后,对尺度和尺度转换中存在的一些问题进行了总结。 关键词:尺度;尺度转换;尺度效应 1.前言: 由于地理空间非常复杂,人们不可能观察到现实地理世界的所有细节,因此地理信息对地表的描述总是近似的,而这个近似的程度如何则反映了对地理现象及过程的抽象的程度或者抽象尺度。因此尺度是所有地理信息的基本、重要特征,不同的尺度所表达的信息是有很大差异的。尺度问题已经被UCGIS列在地理信息科学未来研究的十大优先领域。Haggett也指出地理学研究中必须解决与尺度相关的三个问题,即:尺度覆盖,尺度关联以及尺度标准。很多学者在多个研究领域对尺度问题进行了研究[1-12],如遥感科学,地图学,空间统计学,生态学,地理信息科学等。 基于此,对尺度和尺度转换概念的正确理解是至关重要和迫切的。 2.尺度与尺度转换 2.1 尺度的概念 尺度是指在研究某一物体或现象时所采用的空间或时间单位,又可指某一现象或过程在空间和时间上所涉及到的范围和发生的频率。即尺度通常有时间和空间两方面的含义,同时尺度往往以粒度和幅度来表达。空间粒度指最小可辨识单元所代表的特征长度、面积或体积(如像元);时间粒度指某一现象或事件发生的(或取样的)频率和时间间隔。幅度是指研究对象在空间或时间上的持续范围或长度。具体来说,所研究对象的范围决定该研究的空间幅度;而研究项目持续多久,则确定其时间幅度[24]。Thompson早在1917年就指出,“尺度的影响,不仅仅是尺度本身,而是与其周围的环境紧密联系”。尺度一词的含义比较复杂,在不同学科领域,同一术语如Scale 表达了不同的含义如表1所示: 表1 尺度在不同学科下的概念[15]

基于ransac算法的sift特征匹配研究(OpenCV+VS2010)____朱万革(最终版)

SHANGHAI JIAO TONG UNIVERSITY 学士学位论文 THESIS OF BACHELOR 基于ransac算法的sift特征匹配研究(OpenCV+VS2010)

上海交通大学 毕业设计(论文)学术诚信声明 本人郑重声明:所呈交的毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 日期:年月日

上海交通大学 毕业设计(论文)版权使用授权书 本毕业设计(论文)作者同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权上海交通大学可以将本毕业设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业设计(论文)。 保密□,在年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 作者签名:指导教师签名: 日期:年月日日期:年月日

视频图像跟踪系统 摘要 图像(Image)--是客观世界的景物通过光学系统作用后产生的影像。图像直观地反映了场景中物体的颜色、亮度等特征,从而使我们能清晰分辨他们的形状、大小和空间位置。近30年来人们试图研究基于计算机的视觉系统,并且试图利用其系统来代替工业农业上的有害劳动。这样的视觉系统渐渐地进入我们的生活,让我们的生活变得很丰富,并且我们现在享受着图像处理这学问的成果。在世界上的先进的国家都设立了图像处理研究所,研究解决国防部门所要的问题。 本文将介绍基于OpenCV(Open Source Computer Vision Library)的视频图像匹配、拼接、融合和目标跟踪的算法以及方法。说到图像拼接,本文中所用的图像拼接算法是高效的SIFT特征算法。首先,用两个通用的USB摄像头来实时地进行采集图像,并对这两幅图像提取SIFT特征点。然后,进行粗匹配。最后用RANSAC算法对所提取出来的SIFT特征点匹配对进行提纯以及估计模型参数。最后把两幅图像拼接成一幅完整的图像,并且用加权平均算法进行无缝拼接。再进行摄像头标定,求出两个通用摄像头的内外参数,最后进行测距以及跟踪。最终取得了令人满意的结果。 关键词:SIFT,匹配,拼接,配准,RANSAC

气象资料的统计降尺度方法综述

第26卷第8期2011年8月 地球科学进展 ADVANCES IN EARTH SCIENCE Vol.26No.8 Aug.,2011 文章编号:1001-8166(2011)08-0837-11 气象资料的统计降尺度方法综述? 刘永和1,郭维栋2,冯锦明3,张可欣4 (1.河南理工大学资源环境学院,河南焦作454000;2.南京大学气候与全球变化研究院,大气科学学院,江苏南京210093;3.中国科学院东亚区域气候—环境重点实验室,全球变化东亚区域研究中心,中国科学院大气物理研究所,北京100029; 4.山东省临沂市气象局,山东临沂276004) 摘要:统计降尺度是解决由气象模式输出的低分辨率资料到流域尺度资料转换的手段之一,已成为一个重要的研究领域。统计降尺度方法十分丰富,分为传递函数法、天气形势法和天气发生器3类,3类之间并无严格的界限。统计降尺度涉及到时间与空间降尺度、随机型与确定型降尺度、时间自相关与空间相关性以及面向格点与面向站点的降尺度这4个方面的属性与分类问题,各种具体方法在这些方面的表现有所不同。近年来,相似法、隐马尓可夫模型、广义线性模型、Poisson点过程以及乘性瀑布过程获得了较大的发展和应用,并诞生了各种非线性模型以及物理—统计模型等新方法,已有一些影响较大的统计降尺度模型软件。新的方法在不断涌现,其中非线性模型、气候情境随机模拟技术、短期预报资料降尺度技术以及结合物理机理的统计降尺度方法是未来的主要发展趋势。 关键词:统计降尺度;天气发生器;天气分类;传递函数;非线性模型 中图分类号:P432+.1文献标志码:A 全球气候模式(GCM)能够较好地模拟出未来的气候变化情境,是预估未来全球气候变化的最重要工具。然而GCM输出的空间分辨率较低,不能反映流域尺度的精确气候特点和区域内部的气候差异。在流域水资源状况的未来预测预警研究中,尤其是在借助分布式水文模型模拟时,需要较高分辨率的降水以及其他用于估算蒸散发量的变量信息,但GCM的输出不能很好地满足这个需求。同样,在短期天气预报方面,数值预报模式能够输出一周左右的可靠天气预报,但空间分辨率仍为0.5? 1?,不能体现更小尺度上的天气状况差异,这也难以满足使用这些预报资料进行分布式水文预报的需求。有3种方法可以弥补这个不足,一是发展更高分辨率的GCM或天气预报模式,二是借助区域气候模式(Regional Climate Model),三是发展统计降尺度技术。而GCM及天气预报模式计算量较大,对分辨率提高潜力有限,因此后面2种方法更为有效。使用区域模式即动力降尺度方法,可以内嵌入全球模式,或者利用全球模式的输出作为边界条件单独运行。动力降尺度具有物理意义明确、不受观测资料影响和面向覆盖区域的所有格点等很多优点,但它计算量大,模拟和配置不便。统计降尺度与动力降尺度方法相比,缺点在于模型缺少物理机理,受训练模型的观测资料影响较大,且一般难以获得区域中空间上连续的结果,但它具有以下优点:一是计算量小得多,二是模型相对易于构造,三是方法众多,形式灵 ?收稿日期:2011-02-14;修回日期:2011-04-14. *基金项目:国家自然科学基金项目“汶川巨震对降水过程激发机制的初步控制”(编号:40975049);国家自然科学基金重大国际(地区)合作研究项目“亚洲和北美半干旱区大气—植被—水相互作用的比较研究”(编号:40810059003);淮河流域气象开放研究基 金项目“沂沭河流域暴雨洪水预警及灾害评估业务化技术”(编号:HRM200904)资助. 作者简介:刘永和(1976-),男,内蒙古卓资人,讲师,主要从事统计降尺度、分布式水文模型以及地球信息科学研究. E-mail:sucksis@163.com

尺度不变的额特征提取代码

function [ pos, scale, orient, desc ] = SIFT( im, octaves, intervals, object_mask, contrast_threshold, curvature_threshold, interactive ) % 功能:提取灰度图像的尺度不变特征(SIFT特征) % 输入: % im - 灰度图像,该图像的灰度值在0到1之间(注意:应首先对输入图像的灰度值进行归一化处理) % octaves - 金字塔的组数:octaves (默认值为4). % intervals - 该输入参数决定每组金字塔的层数(默认值为2). % object_mask - 确定图像中尺度不变特征点的搜索区域,如果没有特别指出,则算法将搜索整个图像 % contrast_threshold - 对比度阈值(默认值为0.03). % curvature_threshold - 曲率阈值(默认值为10.0). % interactive - 函数运行显示标志,将其设定为1,则显示算法运行时间和过程的相关信息;% 如果将其设定为2,则仅显示最终运行记过(default = 1). % 输出: % pos - Nx2 矩阵,每一行包括尺度不变特征点的坐标(x,y) % scale - Nx3 矩阵,每一行包括尺度不变特征点的尺度信息(第一列是尺度不变特征点所在的组, % 第二列是其所在的层, 第三列是尺度不变特征点的sigma). % orient - Nx1 向量,每个元素是特征点的主方向,其范围在[-pi,pi)之间. % desc - Nx128 矩阵,每一行包含特征点的特征向量. % 参考文献: % [1] David G. Lowe, "Distinctive Image Features from Sacle-Invariant Keypoints", % accepted for publicatoin in the International Journal of Computer % Vision, 2004. % [2] David G. Lowe, "Object Recognition from Local Scale-Invariant Features", % Proc. of the International Conference on Computer Vision, Corfu, % September 1999. % % Xiaochuan ZHAO;zhaoxch@https://www.360docs.net/doc/fe15499668.html, % 设定输入量的默认值 if ~exist('octaves') octaves = 4; end if ~exist('intervals') intervals = 2; end if ~exist('object_mask') object_mask = ones(size(im)); end if size(object_mask) ~= size(im)

结合尺度不变特征的Super 4PCS点云配准方法

第34卷第5期2019年10月 遥感信息 Remote Sensing Information Vol.34,No.5 Oct.,2019 结合尺度不变特征的Super4PCS点云配准方法 鲁铁定3,袁志聪i,郑坤i (1.东华理工大学,南昌330013;2,流域生态与地理环境监测国家测绘地理信息局重点实验室,南昌330013) 摘要:点云配准是三维模型重建中的关键步骤。针对传统初配准方法效率低等问题,提出一种结合点云特征的超四点快速鲁棒匹配算法(super four point fast robust matching algorithm,Super4PCS)。首先对点云数据进行尺度不变特征提取,凸显点云的局部特征;然后把提取的特征点作为Super4PCS算法的初始值,以便实现源点云与目标点云的初配准;最后在初配准的基础上利用最近点迭代(ICP)算法进行精确配准。通过斯坦福兔子点云及实测点云数据对比分析,表明该算法具有更好的配准性能。 关键词:点云配准;尺度不变特征;特征点;超四点快速鲁棒匹配算法;ICP算法 doi:10.3969/j.issn.1000-3177.2019.05.005 中图分类号:P232文献标志码:A文章编号:1000-3177(2019)165-0015-06 Super4PCS Point Cloud Registration Algorithm Combining Scale Invariant Features LU Tieding1'2,YUAN Zhicong1,ZHENG Kun1 (1.East China University of Science and Technology,Nanchang330013t China; 2.Key Laboratory Watershed Ecology and Geographical Environment Monitoring, National Administration of Surveying^Mapping and Geoinformation,Nanchang3300131China} Abstract:Point cloud registration is the key step in3D model reconstruction.In view of the low efficiency of the traditional initial registration methods,a super four point fast robust matching algorithm(Super4PCS)is proposed,which combines the feature of point cloud.Firstly,scale-invariant feature extraction is performed,to highlight the local features of the point cloud. Then,the extracted feature points are used as the initial values of the Super4PCS algorithm so as to realize initial registration between the source and the target point cloud?Finally,the closest point iteration(ICP)algorithm is used for accurate registration on the basis of the initial registration.By comparing and analyzing Stanford rabbit point cloud and measured point cloud data,the results show that the proposed algorithm has better registration performance. Key words:point cloud registration;scale invariant feature;feature point;Super4PCS;ICP algorithm 0引言 随着三维激光扫描技术的快速发展,三维重建技术的应用越来越广泛。点云配准是三维模型重建中的关键环节,点云配准按配准步骤可分为初配准和精配准初配准能够很大程度上减小两点云的旋转和平移错位,为精配准提供一个好的初始位置,提高配准精度和效率。常用的初配准□切方法有主成分分析法、标签法、中心重合法、4PCS算法3等。精配准是在初配准的基础上对点云进行精确配准,使两点云尽可能地重合,即两点云的距离之和最小。应用最广的精配准方法是由Besl和Mkcya提出的最近点迭代金门(ICP)算法。 近年来,Nicolas Mellado等田切提出的Super 收稿日期:2018-04-28修订日期:2019-07-17 基金项目:国家自然科学基金(41464001);国家重点研发计划(2016YFB0501405);国家重点研发计划(2016YFB0502601-04);江西省自然科学基金(2017BAB203032)。 作者简介:鲁铁定(1974—),男,教授,主要研究方向为测绘数据处理。 E-mail:tdlu@https://www.360docs.net/doc/fe15499668.html, 15

相关文档
最新文档