二极管伏安特性曲线的测试

二极管伏安特性曲线的测试
二极管伏安特性曲线的测试

二极管伏安特性曲线的测试

(一)原理图:

(二)原理分析:

二极管伏安特性是指二极管两端电压与通过二极管电流之间的关系,测试电

路如图所示。利用遂点测量法,调节电位器R

P,改变输入电压u

1

,分别测出二

极管V两端电压u

D 和通过二极管的电流i

P

,即可在坐标纸上描绘出它的伏安特

性曲线i

D =f(u

D

)

(三)各元件作用分析:

电阻:分压作用

电位器R

:调节电压,使输入的电压由0变为5V

电压源:提供输入电压

(四)实验过程:在面包板上连接电路,经检查无误后,接通5V直流电源。调

节电位器R

P,使输入电压u

1

按表所示从零逐渐增大至5V。用万用表分

别测出电阻R两端电压uR和二极管两端电压u

D , 并根据iD=u

R

/R算出通

过二极管的电流i

D

,记于表中。用同样方法进行两次测量,然后取其平均值,即可得到二极管的正向特性。

二极管的正向特性

二极管的反向特性

总结:1、二极管的功能单向导电性、稳压2、正向导通,反向截止

特性曲线图:

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

二极管的伏安特性曲线详细说明

二极管的伏安特性曲线图解 二极管的性能可用其伏安特性来描述。在二极管两端加电压U,然后测出流过二极管的电流I,电压与电流之间的关系i=f(u)即是二极管的伏安特性曲线,如图1所示。 图1 二极管伏安特性曲线 二极管的伏安特性表达式可以表示为式1-2-1 其中iD为流过二极管两端的电流,uD为二极管两端的加压,UT在常温下取26mv。IS为反向饱和电流。 1、正向特性 特性曲线1的右半部分称为正向特性,由图可见,当加二极

管上的正向电压较小时,正向电流小,几乎等于零。只有当二极管两端电压超过某一数值Uon时,正向电流才明显增大。将Uon 称为死区电压。死区电压与二极管的材料有关。一般硅二极管的死区电压为0.5V左右,锗二极管的死区电压为0.1V左右。 当正向电压超过死区电压后,随着电压的升高,正向电流将迅速增大,电流与电压的关系基本上是一条指数曲线。由正向特性曲线可见,流过二极管的电流有较大的变化,二极管两端的电压却基本保持不变。通过在近似分析计算中,将这个电压称为开启电压。开启电压与二极管的材料有关。一般硅二极管的死区电压为0.7V左右,锗二极管的死区电压为0.2V左右。 2、反向特性 特性曲线1的左半部分称为反向特性,由图可见,当二极管加反向电压,反向电流很小,而且反向电流不再随着反向电压而增大,即达到了饱和,这个电流称为反向饱和电流,用符号IS 表示。 如果反向电压继续升高,当超过UBR以后,反向电流急剧增大,这种现象称为击穿,UBR称为反向击穿电压。

图2 二极管的温度特性 击穿后不再具有单向导电性。应当指出,发生反向击穿不意味着二极管损坏。实际上,当反向击穿后,只要注意控制反向电流的数值,不使其过大,即可避免因过热而烧坏二极管。当反向电压降低后,二极管性能仍可能恢复正常。 3、温度对二极管伏安特性的影响 温度升高,正向特性左移,反向特性下移;室温附近,温度每升高1℃;正向压降减少2-2.5mV;室温附近,温度每升高10℃,反向电流增大一倍。二极管的温度特性如图2所示。

半导体二极管伏安特性的研究(可编辑修改word版)

半导体二极管伏安特性的研究 P101 【实验原理】 1.电学元件的伏安特性 在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与其两端电压之间的关系称为电学元件的伏安特性。一般以电压为横坐标,电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。 对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比,即其伏安特性曲线为一通过原点的直线,这类元件称为线性元件,如图3-1 的直线a。至于半导体二极管、稳压管、三极管、光敏电阻、热敏电阻等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线,这类元件称为非线性元件,如图3-1 的曲线b、c。伏安法的主要用途是测量研究非线性元件的特性。一些传感器的伏安特性随着某一物理量的变化呈现规律性变化,如温敏二极管、磁敏二极管等。因此分析了解传感器特性时,常需要测量其伏安特性。 图 3–1 电学元件的伏安特性 在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电 压和通过的电流均不超过元件允许的额定值。此外,还必须了解测量时所需其他仪器的规格(如电源、电压表、电流表、滑线变阻器、电位器等的规格),也不得超过仪器的量程或使用范围。同时还要考虑,根据这些条件所设计的线路,应尽可能将测量误差减到最小。 测量伏安特性时,电表连接方法有两种:电流表外接和电流表内接,如图3-2 所示。 (a)电流表内接;(b)电流表外接 图 3–2 电流表的接法 电压表和电流表都有一定的内阻(分别设为R v和R A)。简化处理时可直接用电压表读

电路元件特性曲线的伏安测量法实验报告

学生序号6 ` 实验报告 课程名称:电路与模拟电子技术实验指导老师:冶沁成绩:__________________ 实验名称:电路元件特性曲线的伏安测量法实验类型:电路实验同组学生:__________ 一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉电路元件的特性曲线; 2.学习非线性电阻元件特性曲线的伏安测量方法; 3掌握伏安测量法中测量样点的选择和绘制曲线的方法; 4.学习非线性电阻元件特性曲线的示波器观测方法。 二、实验容和原理 1、电阻元件、电容元件、电感元件的特性曲线 在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过 灯泡的电流有关,所以它的伏安特性为一条曲线。电流越大、温度越高,对应的灯丝电阻也越大。一 般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。该曲线的函数关系式称为电阻元件的伏安特性, 电阻元件的特性曲线就是在平面上的一条曲线。当曲线变为直线时,与其相对应的元件即为线性电阻 器,直线的斜率为该电阻器的电阻值。电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的 伏安特性类似。 线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。非线性电阻的伏安特 性在u-i平面上是一条曲线。 普通晶体二极管的特点是正向电阻和反向电阻区别很大。正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为 零。可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿 损坏。稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普 通二极管不同,在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称 为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再 随外加的反向电压升高而增大。 上述两种二极管的伏安特性均具属于单调型。电压与电流之间是单调函数。二极管的特性参数主要有开启电压V th,导通电压V on,反向电流I R,反向击穿电压V BR以及最大整流电流I F。 2、非线性电阻元件特性曲线的逐点伏安测量法 元件的伏安特性可以用直流电压表、电流表测定,称为逐点伏安测量法。伏安法原理简单,测量方便,但由于仪表阻会影响测量的结果,因此必须注意仪表的合理接法。 采用伏安法测量二极管特性时,限流电阻以及直流稳压源的变化围与特性曲线的测量围是有关系的,要根据实验室设备的具体要求来确定。在综合考虑测量效率和获得良好曲线效果的前提下,测量 点的选择十分关键,由于二极管的特性曲线在不同的电压的区间具有不同的性状,因此测量时需要合

光电二三极管特性测试实验报告分解

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

二极管的直流电阻和动态电阻如何区别

二极管的直流电阻和动态电阻如何区别? 半导体二极管是一种非线性器件,它对直流和交流(或者说动态量)呈现出不同的等效电阻。二极管的直流电阻是其工作在伏安特性上某一点时的端电压与其电流之比。 图(a)电路(b)二极管伏安特性和工作点Q(c)二极管的直流电阻 在直流电源V的作用下,对应于二极管电流ID和二极管两端电压UD的点称为静态工作点,该点对应的直流电阻为 动态电阻是在一个固定的直流电压和电流(即静态工作点Q)的基础上,由交流信号ui引起特性曲线在Q点附近的一小段电压和电流的变化产生的。若该交流信号ui是低频,而且幅度很小(通常称低频小信号),则由此引起的电流变化量也很小,这一小段特性曲线可以用通过Q点的切线来等效。 图(a)电路(b)二极管伏安特性(c)二极管的动态电阻 若在Q点的基础上外加微小的低频信号,二极管两端产生的电压变化量和电流变化量如图(b)中所标注,则此时的二极管可等效成一个动态电阻rd,根据二极管的电流方程可得 rd是用以Q点为切点的切线斜率的倒数。显然,Q点在伏安特性上的位置不同,rd的数值将不同。根据二极管的电流方程 可得:

因此 ID为静态电流,常温下UT=26mV。可知,静态电流ID越大,rd将越小。设UD=0.7V时,ID=2mA。由此可得直流电阻RD=350,而动态电阻(交流电阻) 可见二者相差甚远,切不可混淆。 根据上面的解释,应该很容易理解用普通万用表的电阻档对二极管进行测量时,所测到的电阻值应该表示二极管的直流电阻而非动态电阻。 同时,用普通万用表的欧姆档去测量二极管的正向电阻时,由于表的内阻不同,使测量时流过管子的电流大小不同,也就是工作点的位置不同,故测得的RD值也不同。

二极管伏安特性曲线的研究

二极管伏安特性曲线的研究 一、实验目的 通过对二极管伏安特性的测试,掌握锗二极管和硅二极管的非线性特点,从而为以后正确设计使用这些器件打下技术基础。 二、伏安特性描述 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。 二极管伏安特性示意图1-1,1-2 图1-1锗二极管伏安特性图1-2硅二极管伏安特性 三、实验设计 图1-3 二极管反向特性测试电路 1、反向特性测试电路 二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。测试电路如图1-3,电阻选择510Ω

2、正向特性测试电路 二极管在正向导道时,呈现的电阻值较小,拟采用电流表外接测试电路。电源电压在0~10V内调节,变阻器开始设置470Ω,调节电源电压,以得到所需电流值。 图1-4 二极管正向特性测试电路 四、数据记录 见表1-1、1-2 表1-1 反向伏安曲线测试数据表 U(V) I(A u) 电阻计算值(KΩ) 表1-2 正向伏安曲线测试数据表 正向伏安曲线测 试数据I(A m) U(V) 电阻直算值(KΩ) 注意:实验时二极管正向电流不得超过20mA。 五、实验讨论 1、二极管反向电阻和正向电阻差异如此大,其物理原理是什么? 2、在制定表1-2时,考虑到二极管正向特性严重非线性,电阻值变化范围很大,在表1-2中加一项“电阻修正值”栏,与电阻直算值比较,讨论其误差产生过程。

二极管伏安特性曲线的测定

实验四二极管伏安特性曲线的测定 【一】实验目的 电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三极管、光敏和热敏元件等。人们常需要了解它们的伏安特性,以便正确的选用它们。通常以电压为横坐标,电流为纵坐标作出元件的电压—电流关系曲线,叫做该元件的伏安特性曲线。如果元件的伏安特性曲线是一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则称其为非线性元件(例如晶体二极管、三极管)。本实验通过测量二极管的伏安特性曲线,了解二极管的单向导电性的实质。 【二】实验原理 晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。 当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二极管为0.2左右,硅二极管为0.7左右时),电流明显变化。在导通后,电压变化少许,电流就会急剧变化。 当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。

二极管一般工作在正向导通或反向截止状态。当正向导通时,注意不要超过其规定的额定电流;当反向截止时,更要注意加在该管的反向偏置电压应小于其反向击穿电压。但是,稳压二极管却利用二极管的反向击穿特性而恰恰工作于反向击穿状态。本实验用伏安法测定二极管的伏安特性,测量电路如图2所示。 测定二极管的电压与电流时,电压表与电流表有两种不同的接法。如图2,电压表接A 、D 两端叫做电流表外接;电压表接A 、D ′端叫做电流表内接。电流表外接时,其读数为流过二极管的电流I D 与流过电压表电流I V 之和,即测得的电流偏大;电流表内接时,电压表读数为二极管电压V D 与电流表电压V A 之和,即测得的电压偏大。因此,这两种接法都有测量误差。这种由于电表接入电路而引起的测量误差叫做接入误差。接入误差是系统误差,只要知道电压表的内阻R V 或电流表的内阻R A ,就可以把接法造成的测量误差算出来,然后选用测量误差较小的那种接法。电流表外接,造成的电流测量误差为: V D D V D D R R I I I I ==? 电流表内接,造成的电压测量误差为: D A D A D D R R V V V V ==? 其中R D 、R V 、R A 、分别是二极管的内阻,电压表的内阻和电流表的内阻。测量时究竟选用哪种接法,要看R D 、R V 、R A 的大小而定。显然,若R D /R V >R A /R D 应选用电流表内接,反之则选用电流表外接。 【三】 实验装置 直流稳压电源、直流电压表2个、直流电流表2个、滑线变阻器、待测二极管、开关、导线等。 注意事项: 1. 为保护直流稳压电源,接通或断开电源前均需先使其输出为零;对输出调节旋钮的调节 必须轻而缓慢。 2. 更换测量内容前,必须使电源输出为零,然后再逐步增加至需要值,以免损坏元件。 3. 测定2AP 型锗二极管的正、反向伏安特性曲线时,注意正向电流不要超过20mA ,反向 电压不要超过25V 。

二极管伏安特性曲线

模拟电子技术课程设计 本文档只需通过world文档繁转简工具,即可以把它 转化成简体字。 二極體伏安特性曲線的研究 一、設計目的 電路中有各種電學元件,如晶體二極管和三極管,光敏和熱敏元件等。人們通常需要瞭解它們的伏安特性,以便正確的選用它們。通常以典雅為橫坐標,電流為縱坐標作出元件的電壓——電流關係曲線,叫做該元件的伏安特性曲線。該設計通過測量二極體的伏安特性曲線,瞭解二極體的導電性的實質,使我們在設計電路時能夠準確的選擇二極體。 二、設計原理 1、二極體的伏安特性 (1)二極體的伏安特性方程為: 式中,Is為反向飽和電流,室溫下為常數;u為加在二極體兩端電壓;UT 為溫度的電壓當量,當溫度為室溫27℃時,UT≈26mV。 當PN結正向偏置時,若u≥UT,則上式可簡化為:IF≈ISeu/UT。 當PN結反向偏置時,若︱u︱≥UT,則上式可簡化為:IR≈-IS。可知- IS 與反向電壓大小基本無關,且IR越小表明二極體的反向性能越好。 對二極體施加正向偏置電壓時,則二極體中就有正向電流通過,隨著正向偏置電壓的增加,開始時,電流隨電壓變化很緩慢,而當正向偏置電壓增至接近其

導通電壓時,電流急劇增加,二極體導通後,電壓少許變化,電流的變化都很大。 對上述二種器件施加反向偏置電壓時,二極體處於截止狀態,其反向電壓增加至該二極體的擊穿電壓時,電流猛增,二極體被擊穿,在二極體使用中應竭力避免出現擊穿觀察,這很容易造成二極體的永久性損壞。所以在做二極體反向特性時,應串入限流電阻,以防因反向電流過大而損壞二極體。 二極體伏安特性示意圖1、2所示。 圖1鍺二極體伏安特性圖2矽二極體伏安特性 2、二極體的伏安特性曲線 下面我們以鍺管為例具體分析,其特性曲線如圖3所示,分為三部分: 圖3 半導體二極體(矽管)伏安特性

光电二极管特性测试及其变换电路

光电二极管特性测试及其变换电路 1实验目的 (1)学习掌握光电二极管的工作原理 (2)学习掌握光电二极管的基本特性 (3)掌握光电二极管特性测试的方法 (4)了解光电二极管的基本应用 2实验内容 (1)光电二极管暗电流测试实验 (2)光电二极管光电流测试实验 (3)光电二极管伏安特性测试实验 (4)光电二极管光电特性测试实验 (5)光电二极管时间特性测试实验 (6)光电二极管光谱特性测试实验 3实验仪器 (1)光电器件实验仪1台 (2)示波器1台 (3)万用表1个 (4)计算机1套 4实验原理 光电二极管又称光敏二极管。制造一般光电二极管的材料几乎全部选用硅或锗的单晶材料。由于硅器件较锗器件暗电流、温度系数都小得多,加之制作硅器件采用的平面工艺使其管芯结构很容易精确控制,因此,硅光电二极管得到了广泛应用。 光电二极管的结构和普通二极管相似,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,图1(a)是其结构示意图。光敏二极管在电路中通常处于反向偏置状态,如图1(b)所示。

(a)结构示意图(b)基本电路 图1 光电二极管结构图 PN结加反向电压时,反向电流的大小取决于P区和N区中少数载流子的浓度,无光照时P区中少数载流子(电子)和N区中的少数载流子(空穴)都很少,因此反向电流很小。但是当光照射PN结时,只要光子能量hv大于材料的禁带宽度,就会在PN结及其附近产生光生电子—空穴对,从而使P区和N区少数载流子浓度大大增加。这些载流子的数目,对于多数载流子影响不大,但对P区和N 区的少数载流子来说,则会使少数载流子的浓度大大提高,在反向电压(P区接负,N区接正)作用下,反向饱和漏电流大大增加,形成光电流,该光电流随入射光照度的变化而相应变化。光电流通过负载R L时,在电阻两端将得到随人射光变化的电压信号如果入射光的照度改变,光生电子—空穴对的浓度将相应变动,通过外电路的光电流强度也会随之变动,光敏二极管就把光信号转换成了电信号。 5注意事项 1、实验之前,请仔细阅读光电探测综合实验仪说明,弄清实验箱各部分的功能及拨位开关的意义; 2、当电压表和电流表显示为“1_”是说明超过量程,应更换为合适量程; 3、连线之前保证电源关闭。 4、实验过程中,请勿同时拨开两种或两种以上的光源开关,这样会造成实验所测试的数据不准确。 6实验步骤 6.1光电二极管暗电流测试 实验装置原理框图如图2所示,但是在实际操作过程中,光电二极管和光电三极管的暗电流非常小,只有nA数量级。这样,实验操作过程中,对电流表的要求较高,本实验中,采用电路中串联大电阻的方法,将图2中的RL改为20M,

二极管的伏安特性

1 二极管的伏安特性 1.2Vdc D1 仿真结果如下: V_V2 0V 0.2V 0.4V 0.6V 0.8V 1.0V 1.2V 1.4V 1.6V 1.8V I(D1) 0A 0.4A 0.8A 1.2A 2 电阻的分压特性 PARAMETERS: L1 C10.5u 设置如下

在这里电阻值是一个变量 仿真结果如下: R 50 55 60 65 70 75 80 85 90 95 100 V(L1:2) 2.5V 3.0V 3.5V 3 光耦的传输特性 在库文件special.olb 中找到PARAM ,编辑其属性,点击NEW ROW ,设置R ,1K 放置原理图如下: 仿真结果如下:

R 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K V(U2:c) 0V 4V 8V 12V 当输入电流大于2.17/0.8=2.7mA 时,输出低电平;即在输入电压不变下,输入电阻应小于0.8K ; 如果输出上拉电压由24V 减小到5V ,输出低电平的电阻阻值会右移至2.6K 左右。 即最高电压下输出低电平都能够满足的话,当电压降低时,也必然满足; 1)输出上拉电压24V 时,

12V 8V 4V 0V 01K2K3K4K5K6K7K8K9K10K V(U2:c)V(R6:2) R 三极管导通曲线拐点出现在电阻1K左右的位置; 2)输出上拉电压12V时, 8.0V 6.0V 4.0V 2.0V 0V 01K2K3K4K5K6K7K8K9K10K V(U2:c)V(R6:2) R 三极管导通曲线拐点出现在电阻2.4K左右的位置;

二极管伏安特性曲线测量方法

二极管伏安特性曲线 测量方法 电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三 极管、光敏和热敏元件等。人们常需要了解它们的伏安特性,以便正确 的选用它们。通常以电压为横坐标,电流为纵坐标作出元件的电压一电 流关系曲线,叫做该元件的伏安特性曲线。如果元件的伏安特性曲线是 一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件 为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则 称其为非线性元件(例如晶体二极管、三极管)。本实验通过测量二极 管的伏安特性曲线,了解二极管的单向导电性的实质。 1实验原理 晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。 当对晶体二极管加上正向偏置电压,则有正向电流流过二极管, 且随正向偏置电压的增大而增大。开始 电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二 极管为0.2左右,硅二极管为0.7左右时),电流明显变化。在导通 后,电压变化少许,电流就会急剧变化。 当加反向偏置电压时,二极管处于截止状态,但不是完全没有电 流,而是有很小的反向电流。该反向电流随反向偏置电压增加得很 慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二 极管PN结被反 向击穿。 2、实验方法 2.1伏安法 IN4007 Re 电流表外接法:如图2.1.1所示(开关K打向2位置)⑴,此时电压表的读数等于二极管两端电压U D ;电流表的读数I是流过二极管和电压表的电流之和(比实际值大),即I = |D +lv。

匸V/Rv+V/ R D(1.1)由欧姆定律可得:

用V、I所作伏安特性曲线电流是电压表和二极管的电流之和,显然不是二极管的伏安特性曲线, 所用此方法测量存在理论误差。在测量低电压时,二极管内阻较大,误差较大,随着测量点电压升高,二极管内阻变小,误差也相对减小;在测量二极管正向伏安曲线时,由于二极管正向内阻相对较小,用此方法误差相对较小。 2.1.1 电流表内接法:如图2.1.1所示(开关K打向1位置),这时电流表的读数I为通过二极管D的电流,电压表读数是电流表和二极管电压之和,U = U D + U A o 由欧姆定律可得:U =I ( R D+ R A) 此方法作曲线所用电压值是二极管和电流表电压之和,存在理论误差,在测量过程中随着电压 U提高,二极管的等效内阻R D减小,电流表作用更大,相对误差增加;小量程电流表内阻R A较大, 引起误差较大。但此方法在测量二极管反向伏安特性曲线时,由于二极管反向内阻特别大,故误差较小。 2.1.2 表2.1.3 此次测量在上图作标纸中绘出伏安曲线 采用伏安法测量时由于电压或电流总有其一不能准确测得,结果总存在理论误差,测量结果较粗略,但此方法电路简单,操作方便。 2.2补偿法 补偿法测量基本原理如图 2.2.1 所示[2]o

实验一、伏安法测二极管的特性(优.选)

1 / 3word. 实验一、伏安法测二极管的特性 一、实验目的 1、学习用伏安法测量二极管的伏安特性的方法 2、理解伏安法电路中电流表内接和外接两种方法 3、了解二极管的伏安特性 二、实验仪器和用具 直流稳压电源、直流电流表、直流电压表、滑线变阻器、可变电阻箱、微安表、开关、待测二极管. 三、实验原理 1.伏安特性曲线 当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻,以电压 V 为横坐标 ,以电流 I 为纵坐标, 作出 _V I 图线, 叫该元件的伏安特性曲线,若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 二极管就是一种非线性元件,二极管伏安特性 曲线上各点的电压和电流的比值并不是一个常量。 显然,此时说这个元件的阻值是多少意义是不明确 的,只有电压和电流均为确定值时,才有确定的意 义。或者说,任何一个阻值都不能表明这个元件的 电阻特性。故一般均用伏安特性曲线来反映非线性 元件的这种特性。 二极管的伏安特性曲线可用图1所示特性 曲线来描绘。 2、二极管伏安特性的测定 用伏安法测量二极管的特性实验操作线路图如图2和图3所示, 2R 是为分压器,1R 既是分压器又是限流器,改变滑线变阻器1R 、2R 的阻值可改变二极管两端的电压,用电压表测出二极管两端的电压,同时用电流表测出流过该二极管的电流,实验中可以测出一系列对应值V 与 I ,以电压 V 为横坐标 ,以电流 I 为纵坐标, 作出 _V I 图线, 叫二极管的伏安特性曲线。 3、电流表的连接和接入误差 图1 二极管伏安特性曲线 K E 3=图2 正向伏安特性接线电路图 mA 表从75mA 开始 K E 30=图3 反向伏安特性接线电路图 μA 表:15μA 或50μA

二极管的伏安特性

二极管的伏安特性 伏安特性是指加在二极管两端的电压u与流过二极管的电流,之间的关系,即,I=f(U)。2CPl2(普通型硅二极管)和2AP9(普通型锗二极管)的伏安特。 (1)正向特性。二极管伏安特性曲线的第一象限称为正向特性,它表示外加正向电压时二极管的工作情况。在正向特性的起始部分,由于正向电压很小,外电场还不足以克服内电场对多数载流子的阻碍作用,正向电流几乎为零,这一区域称为正向二极管的伏安特性曲线死区,对应的电压称为死区电压。硅管的死区电压约为0.5V,锗管的死区电压约为0.2V。 当正向电压超过某一数值后,内电场就被大大削弱,正向电流迅速增大,二极管导通,这一区域称为正向导通区。二极管一旦正向导通后,只要正向电压稍有变化,就会使正向电流变化较大,二极管的正向特性曲线很陡。因此,二极管正向导通时,管子上的正向压降不大,正向压降的变化很小,一般硅管为o.7V左右,锗管为0.3V左右。因此,在使用二极管时,如果外加电压较大,一般要在电路中串接限流电阻,以免产生过大电流烧坏二极管。 (2)反向特性。二极管伏安特性曲线的第三象限称为反向特性,它表示外加反向电压时二极管的工作情况。在一定的反向电压范围内,反向电流很小且变化不大,这一区域称为反向截止区。这是因为反向电流是少数载流子的漂移运动形成的;一定温度下,少子的数目是基本不变的,所以反向电流基本恒定,与反向电压的大小无关,故通常称其为反向饱和电流。 当反向电压过高时,会使反向电流突然增大,这种现象称为反向击穿,这一区域称为反向击穿区。反向击穿时的电压称为反向击穿电压,用%R表示。各类二极管的反向击穿电压从几十伏到几百伏不等。反向击穿时,若不限制反向电流,贝,J--极管的PN结会因功耗大而过热,导致PN结烧毁。

发光二极管及热敏电阻的伏安特性研究

非线性电阻特性研究(一) 【实验目的】 (1)了解并掌握基本电学仪器的使用。 (2)学习电学实验规程,掌握回路接线方法。 (3)学习测量条件的选择及系统误差的修正。 (4)探究发光二极管和热敏电阻在常温下的伏安特性曲线。 【实验仪器】 发光二极管(BT102)热敏电阻(根据实验室情况选择)滑动变阻器(0~100 Ω)定值电阻(400Ω)毫安表(0~50mA)微安表(0~50μA) 电压表(0~3v 0~6v)电源(10v)导线等 【实验原理】 (1)当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻R(R=U/I)。若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图b)。从图上看出,直线通过一、三象限。它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数。 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。 LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图一)。 常规的发光二极管芯片的结构如图二所示,主要分为衬底,外延层(图2中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。 图3 发光二极管的工作原理 ) ) )电 子 的 电 势 能 电 子 的 电 势 能

实验3-1 伏安法测晶体二极管特性.

实验3-1 伏安法测晶体二极管特性 给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。这种研究元件特性的方法称为伏安法。伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。伏安法的主要用途是测量研究线性和非线性元件的电特性。 非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。 【实验目的】 1.具体了解和分析二极管的伏安特性曲线。 2.学会分析伏安法的电表接入误差,正确选择电路使其误差最小。 3.学会电表、电阻器、电源等基本仪器的使用。 【仪器用具】 安培计、伏特计、变阻器、转盘电阻箱、甲电池、待测二极管、导线、双刀双掷倒向开关、单刀开关 【实验原理】 半导体二极管的核心是一个PN结,这个PN结处在一小片半导体材料的P区与N区之间(如图3-1-1),它由这片材料中的P型半导体区域和N型半导体区域相连所构成。连接P 型区域的引出线称为P极,连接N型区域的引出线称为N极。当电压加在PN结上时,若电压的正端接在P极上,电压的负端接在N极上(如图3-1-2),称这种连接为“正向连接”;反之,档PN结的两极反向连接到电压上时为“反向连接”。正向连接时,二极管很容易导 图3-1-1 图3-1-2 通,反向连接时,二极管很难导通。我们称二极管的这种特性为单向导电性。实验工作中往往利用二极管的单向导电性进行整流、检波、作电子开关等。 二极管电流随外加电压变化的关系曲线称为伏安特性曲线。二极管的伏安特性曲线如图3-1-3和图3-1-4所示。这两个图说明了二极管的单向导电性。由图可见,在正向区域,锗管和硅管的起始导通电压不同,电流上升的曲线斜率也不同。

非线性电阻伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。 关于p-n结的形成和导电性能可作如下解释。

图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。 结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用 九孔插件方板。

光电二极管02

贵州民族学院 《光电探测与信号处理》 课程论文 《光电二极管》 学院计算机与信息工程学院 专业光信息科学与技术 班级09 光信 姓名张家文 学号 2 0 0 9 0 7 0 4 0 0 5 4 指导教师李林福

光电二极管 张家文 摘要:通过实验测量的方法分析光电二极管的伏安特性、暗电流、光电流及光照特性、光谱特性参数,用测试参数进行数据处理和分析。 关键词:光电二极管伏安特性光电流光谱特性 一、光电二极管的工作原理: 光电二极管是将光信号变成电信号的半导体器件。它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。光电二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对,称为光生载流子。它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。光电二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。光电二极管、光电三极管是电子电路中广泛采用的光敏器件。光电二极管和普通二极管一样具有一个PN结,不同之处是在光电二极管的外壳上有一个透明的窗口以接收光线照射,实现光电转换。 二、光电二极管的种类、特性与用途: 1.PN型: 特性:优点是暗电流小,一般情况下,响应速度较低。 用途:照度计、彩色传感器、光电三极管、线性图像传感器、分光光度计、照相机曝光计。 2.PIN型: 特性:缺点是暗电流大,因结容量低,故可获得快速响应。 用途:高速光的检测、光通信、光纤、遥控、光电三极管、写字笔、传真。 3.发射键型: 特性:使用Au薄膜与N型半导体结代替P型半导体。 用途:主要用于紫外线等短波光的检测。 4.雪崩型: 特性:相应速度非常快,因具有倍速做用,故可检测微弱光。 用途:高速光通信、高速光检测。 三、光电二极管的特性测试: 1、光电二极管伏安特性测试: 光电二极管的基本特性:光电二极管的输出光电流与偏压的关系称为伏安特性。 图1为光电二极管正偏和反偏的工作状态:

电桥法精确测二极管特性

电桥测非线性元件的伏安特性曲线 物理学二班成贵林学号201333010206 指导教师 【摘要】本次实验的重点是用电桥法测量二极管的伏安特性和热敏电阻的温度特性,并且绘制出相应的曲线,以及了解半导体温度计的结构及使用方法。 【关键词】惠斯通电桥法非平衡电桥法二极管热敏电阻温度计【英文摘要】This key point of this experiment is to use a bridge to measure volt-ampe re characteristic of diode and thermistor temperature characteristic, and draw the corresponding curve, and understand the structure and using method of semiconductor thermometer. 引言 普通物理实验中都是用伏安法测二极管特性, 存在较大的系统误差。笔者对惠斯登电桥略加改进后用以侧二极管特性, 试脸结果比伏安法更灵教, 更精确, 更直观。 实验原理及理论法分析 一、电桥法侧二极管的伏安特性曲线 半导体二极管:半导体二极管的特性是单项导电性。即当外加正向电压时,它呈现的电阻(正向电阻)比较小,通过的电流比较大,当外加反向电压时,它呈现的电阻(反向电阻)很大,通过的电流比很小,(通常可以忽略不计)。反应二极管的电流随电压变化的关系曲线,叫做二极管的伏安特性。 测量二极管的伏安特性通常需要交替使用电流表的内接和外接法,才能减少电流表和电压表的接入影响所造成的系统误差。 但在实际测量中,由于二极管的正向压降很小,而通常低量程的直流电压表内阻Rv不是很大,电流表的内阻Ra也不太小,它们接入后对电路的影响仍然比较明显,因而测量误差的结果很难降低较多。 位置准确地测量二极管的伏安特性,必须有效的降低电流表,电压表的接入影响。 利用电桥平衡原理测二极管的伏安特性的电路如图1所示电流表和电压表分别作为直流电桥的一个桥臂。构成桥式电路,图中G为检流计,Rw3

相关文档
最新文档