高中数学破题致胜微方法直线与双曲线的位置关系:10-求双曲线斜率已知的切线方程 含解析 精品

高中数学破题致胜微方法直线与双曲线的位置关系:10-求双曲线斜率已知的切线方程 含解析 精品
高中数学破题致胜微方法直线与双曲线的位置关系:10-求双曲线斜率已知的切线方程 含解析 精品

今天我们研究求双曲线斜率已知的切线方程。将直线与双曲线的方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则直线与双曲线相切0??=。过双曲线的对称中心不可能作出直线与双曲线相切。

先看例题:

例:证明斜率为k 的双曲线)0,0(122

22>>=-b a b

y a x 的切线方程为=y kx 证明:设切线方程为:l y kx m =+,联立)0,0(122

22>>=-b a b

y a x 方程得: 02)(222222222=----b a m a mkx a x k a b

若0222≠-k a b 即a

b k ±≠, ))((4)2(222222222b a m a k a b mk a -----=?,

令0,?=化简可得: 2222=-m k a b ,=m

故切线方程为=±y kx 注意:a

b k ±

≠,m 0≠,过双曲线的对称中心不可能作出直线与双曲线相切。

整理:

斜率为k 的双曲线)0,0(122

22>>=-b a b

y a x 的切线方程为=y kx

斜率为k 的双曲线22

22y x 1(a 0,b 0)a b

-=>>的切线方程为=y kx 注意:不要死记硬背公式,重要的是清楚推理过程,以及在什么情况下,直线可以与双曲线 相切。 例:已知双曲线22

x y 153

-=的一条切线的斜率为2,求这条切线方程。

解:利用公式=±y kx 222,5,3===k a b ,

代入得切线方程2=y x 。

总结:

1.斜率为k 的双曲线)0,0(122

22>>=-b a b

y a x 的切线方程为=y kx 切线的斜率k 满足||>b k a

2.斜率为k 的双曲线22

22y x 1(a 0,b 0)a b

-=>>的切线方程为=y kx 率k 满足||>a k b

。 3.过双曲线的对称中心不可能作出直线与双曲线相切。

练习:

1.已知双曲线22

x y 1106

-=的一条切线的斜率为2,求这条切线方程。 2.已知双曲线)0,0(122

22>>=-b a b

y a x 的切线的斜率为k ,求k 的范围。 3.已知直线y=kx+1与双曲线22

x 2y 1-=只有一个公共点,则公共点的坐标是 ( ) . 4. 已知双曲线E:22

221(0,0)x y a b a b

-=>>的两条渐近线分别为 12:2,:2l y x l y x ==-

(1)求双曲线E 的离心率;

(2)如图,O 为坐标原点,动直线l 分别交直线12,l l 于A ,B 两点(A ,B 分别在第一,四象限),且△OAB 的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.

答案:

1.解:利用公式=y kx 222,10,4===k a b ,

代入得切线方程2=y x 。

2.解:利用公式=y kx 2220->k a b , 得||>

b k a

。 3.

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -Q 在双曲线上 ∴(2 2 33 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

【精品】高中数学 选修1-1_双曲线及其标准方程_ 知识点讲解 讲义+巩固练习(含答案)提高

双曲线及其标准方程 【学习目标】 1.知识与技能: 从具体情境中抽象出双曲线的模型;掌握双曲线的定义、标准方程及几何图形;能正确推导双曲线的标准方程. 2.过程与方法: 学生亲自动手尝试画图、发现双曲线的形成过程进而归纳出双曲线的定义、图象和标准方程. 3.情感态度与价值观: 了解双曲线的实际背景,感受双曲线在刻画现实世界和解决实际问题中的作用,进一步感受数形结合的基本思想在解析几何中的作用. 【要点梳理】 要点一:双曲线的定义 把平面内到两定点1F 、2F 的距离之差的绝对值等于常数(大于零且小于12F F )的点的集合叫作双曲线. 定点1F 、2F 叫双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距. 要点诠释: 1. 双曲线的定义中,常数应当满足的约束条件:常数=1212PF PF F F -<,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若常数分别满足以下约束条件,则动点的轨迹各不相同: 若 常数=1212PF PF F F -<(常数0>),则动点轨迹仅表示双曲线中靠焦点2F 的一支; 若 常数=2112PF PF F F -<(常数0>),则动点轨迹仅表示双曲线中靠焦点1F 的一支. 若 常数=1212PF PF F F -=,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点); 若 常数=1212PF PF F F ->,则动点轨迹不存在; 若 常数=12=0PF PF -,则动点轨迹为线段F 1F 2的垂直平分线. 要点二:双曲线的标准方程

1.双曲线的标准方程 2.标准方程的推导 如何建立双曲线的方程?根据求曲线方程的一般步骤,可分为4步:建系、设点、列式、化简. (1)建系 取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴建立平面直角坐标系. (2)设点 设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0). (3)列式 设点M与F1、F2的距离的差的绝对值等于常数2a. 由定义可知,双曲线就是集合:P={M||M F1|-|M F2||=2a}={M|M F1|-|M F2|=±2a}. ∵2222 12 ||(),||(), MF x c y MF x c y ++=-+ ∴2222 ()()2 x c y x c y a ++-+=± (4)化简 将这个方程移项,得 当焦点在x轴上时, 22 22 1 x y a b -=(0,0) a b >>,其中222 c a b =+; 当焦点在y轴上时, 22 22 1 y x a b -=(0,0) a b >>,其中222 c a b =+

高中数学-双曲线例题

高中数学-双曲线典型例题 一、根据方程的特点判断圆锥曲线的类型。 例1 讨论19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 解:(1)当9-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92, 16222=-=b a c ,这些椭圆有共同的焦点(-4,0) ,(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为:()16014162 2<<=+--λλ λy x ∵双曲线过点()223,,∴1441618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=-y x 三、求与双曲线有关的角度问题。 例3 已知双曲线116 92 2=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小. 解:∵点P 在双曲线的左支上 ∴621=-PF PF ∴362212221=-+PF PF PF PF ∴10022 21=+PF PF ∵()100441222221=+==b a c F F ∴ο9021=∠PF F (2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索. 四、求与双曲线有关的三角形的面积问题。 例 4 已知1F 、2F 是双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足ο9021=∠PF F ,求21PF F ?的面积. 分析:利用双曲线的定义及21PF F ?中的勾股定理可求21PF F ?的面积. 解:∵P 为双曲线14 22 =-y x 上的一个点且1F 、2F 为焦点. ∴4221==-a PF PF ,52221==c F F ∵ο9021=∠PF F ∴在21F PF Rt ?中,202 2122 21==+F F PF PF

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

福建省邵武第一中学高中数学 双曲线及其性质变式练习 文 (学生版) 新人教A版选修11

福建省邵武第一中学高中数学 双曲线及其性质变式练习 文 (学生 版) 新人教A 版选修11 一、选择题: ( )1.在△ABC 中,若2=a ,b =060B = ,则角A 的大小为 A . 30或 150 B .60或 120 C .30 D . 60 ( )2.在ABC ?中“ 30=A ”是“21=SinA ”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 ( )3.下列关系式中,正确的是 A. c b c a b a -<-?> B. 22b a b a >?> C. 22bc ac b a >?> D. b a b a 1 10> ( )4.不等式2 1x x --≥0的解集是 A.[2, +∞) B. (],1-∞∪ (2, +∞) C. (-∞,1) D. (-∞,1)∪[2,+∞) ( )5.若不等式220ax bx ++>的解集是11 23x x ?? - <5 ; C. k<2或k>5; D. 以上答案均不对 ( )7.已知双曲线2 2 22x y 1a b -=和椭圆2 2 22x y 1m b += (a>0,m>b>0)的离心率互为倒数, 那么以a 、b 、m 为边长的三角形是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .锐角或钝角三角形 ( )8.已知双曲线22 22x y 1a b - = (a>0,b>0)的一条渐近线方程是 它的一个焦点在 抛物线y2=24x 的准线上,则双曲线的方程为 A.22 x y 136108-= B.2 2 x y 1927-= C.2 2 x y 110836-= D.2 2 x y 1 279-= ( )9.抛物线y2=2px(p>0)上有一点M ,它的横坐标是3,它到焦点的距离是5,则抛物线方程为

双曲线习题及标准答案

圆锥曲线习题——双曲线 1. 如果双曲线2 42 2y x - =1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A) 3 64 (B) 3 6 2 (C)62 (D)32 2. 已知双曲线C ∶22 221(x y a a b -=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的 圆的半径是 (A )a (B)b (C)ab (D)22b a + 3. 以双曲线 221916 x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .2 2 1090x y x +-+= B .22 10160x y x +-+= C .2 2 10160x y x +++= D .2 2 1090x y x +++= 4. 以双曲线2 2 2x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.2 2 430x y x +--= B.22 430x y x +-+= C.2 2 450x y x ++-= D.2 2 450x y x +++= 5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它到左准 线的距离,则双曲线离心率的取值范围是( ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 6. 若双曲线122 22=-b y a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心 率是( ) (A )3 (B )5 (C )3 (D )5 7. 过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的 两条渐近线的交点分别为,B C .若1 2 AB BC = ,则双曲线的离心率是 ( )

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

高中数学双曲线导学案及答案

高三理科数学 导学案 平面解析几何 编制: 审阅: 第二讲 双曲线(2课时) 班级 姓名 【考试说明】1.了双曲线的定义、几何图形和标准方程,知道其简单几何性质(范围、对称性、顶点、离心率、)2. 理解数形结合的思想. 3.了解双曲线的简单应用. 【知识聚焦】(必须清楚、必须牢记) 1.双曲线定义 平面内与两个定点F 1,F 2的____________等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做_____________,两焦点间的距离叫做_______________.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.(1)当______________时,P 点的轨迹是双曲线;(2)当_____________时,P 点的轨迹是两条射线; (3)当_____________时,P 点不存在. 2.双曲线的标准方程和几何性质 3实轴和_________相等的双曲线叫做等轴双曲线.离心率e =2是双曲线为等轴双曲线的充要条件,且等轴双曲线两条渐近线互相垂直.一般可设其方程为x 2-y 2=λ(λ≠0). 4.巧设双曲线方程 (1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2 b 2=t (t ≠0). (2)过已知两个点的双曲线方程可设为x 2m +y 2 n =1 (mn <0).

【链接教材】(打好基础,奠基成长) 1.(教材改编)若双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 2.(2015·安徽)下列双曲线中,渐近线方程为y =±2x 的是( ) A .x 2 -y 24=1 B.x 24-y 2=1 C .x 2 -y 2 2 =1 D.x 22 -y 2 =1 高三理科数学 导学案 平面解析几何 编制: 审阅: 3.(2014·广东)若实数k 满足00)的一个焦点,则点F 到C 的一条渐近线的距离为________. 5.(教材改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为_______. 6. 设双曲线x 2a 2-y 2 9 =1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ) A.4 B.3 C.2 D.1 7 (2013·湖北)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2 sin 2θtan 2θ =1的( ) A.实轴长相等 B .虚轴长相等 C.焦距相等 D.离心率相等 8. 已知曲线方程x 2λ+2-y 2 λ+1 =1,若方程表示双曲线,则λ的取值范围是________________. 【课堂考点探究】 探究点一 双曲线定义的应用 例1 1.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 2. 设P 是双曲线2 2 11620 y x -=上的一点,F1F2 分别是双曲线的左右焦点,若为 1 29PF PF ==则( ) A.1 B.17 C.1或17 D.以上答案均不对 [总结反思] 探究点二 双曲线的标准方程的求法 例2 1.根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为5 4 ;(2)经过两点P (-3,27)和Q (-62,-7). 2 .(2014·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 2 25=1 [总结反思] 变式题 (1)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±1 2x ,则该双曲线的标准方程为

高考数学-圆锥曲线-双曲线题型总结

二、双曲线 1、(21)(本小题满分14分)08天津 已知中心在原点的双曲线C的一个焦点是()0,3 1 - F,一条渐近线的方程是0 2 5= -y x. (Ⅰ)求双曲线C的方程; (Ⅱ)若以()0≠k k为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐 标轴围成的三角形的面积为 2 81 ,求k的取值范围. (21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分. (Ⅰ)解:设双曲线C的方程为 22 22 1 x y a b -=(0,0 a b >>).由题设得 229 a b b a ?+= ? ? = ? ? ,解得 2 2 4 5 a b ?= ? ? = ?? ,所以双曲线方程为 22 1 45 x y -=. 的方程为y kx m =+(0 k≠).点 11 (,) M x y, 22 (,) N x y的坐标满足方程组(Ⅱ)解:设直线l 22 1 45 y kx m x y =+ ? ? ? -= ?? 将①式代入②式,得 22 () 1 45 x kx m + -=,整理得222 (54)84200 k x kmx m ----=. 此方程有两个一等实根,于是2 50 4k -≠,且222 (8)4(54)(420)0 k m k m ?=-+-+>.整理得22 540 m k +->.③ 由根与系数的关系可知线段MN的中点坐标 00 (,) x y满足 12 02 4 254 x x km x k + == - , 002 5 54 m y kx m k =+= - . 从而线段MN的垂直平分线方程为 22 514 () 5454 m km y x k k k -=-- -- . 此直线与x轴,y轴的交点坐标分别为 2 9 (,0) 54 km k - , 2 9 (0,) 54 m k - .由题设可得22 19981 |||| 254542 km m k k ?= -- .整理得 22 2 (54) || k m k - =,0 k≠. 将上式代入③式得 22 2 (54) 540 || k k k - +->,整理得22 (45)(4||5)0 k k k --->,0 k≠.

高中数学双曲线基础练习题

双曲线基础练习题 1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( ) A .116922=+y x B. 116922=-y x C. 116922=+-y x 19 16.2 2=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( ) A .191622=-y x B. 191622=+-y x C.116922=+y x D.116 92 2=-y x 3.双曲线19 162 2=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 18 4.双曲线19 162 2=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5.方程6)5()5(2222=++-+-y x y x 化简得: A .116922=-y x B. 191622=+-y x C.116922=+y x D. 19 162 2=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( ) A . 116922=-y x 和116922=+-y x B. 116922=-y x 和19 162 2=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和125 162 2=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( ) A .1222=-y x B .122=+-y x C .122=-y x D. 122 2=+-y x 8.P 为双曲线19 162 2=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 36 9.双曲线19 162 2=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0) 10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )

高中数学双曲线抛物线知识点总结

双曲线 平面到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22 2 21x y a b -=共渐近线的方程可设为2222(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1, F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则 C 的离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .2=± y x D .2 =±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和 2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

高中数学双曲线抛物线知识点的总结

双曲线 平面内到两个定点, 的距离之差的绝对值是常数2a(2a< )的点的轨迹。 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为22 22(0)x y m n λλ-=≠,与双曲线 2222 1x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,A -。

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= ( 3,A -在双曲线上 ∴(2 2 3 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离 1d = , 同理得到点(-1,0)到直线l 的距离 2d =

高中数学-双曲线选择题练习

高中数学-双曲线选择题练习 1、双曲线=1左支上一点P到左焦点的距离为14,则P到右准线的距离是 ( ) (A) (B) (C)12 (D) 2、a、b、c、p分别表示双曲线的实半轴长、虚半轴长、半焦距、焦准距(焦点到相应准线的距离),则p= (A) 3、方程mx2+ny2+mn=0(m

6、双曲线的离心率为,则两条渐近线的方程为 ( ) (A) (B) (C) (D) 7、下列各对曲线中,即有相同的离心率又有相同渐近线的是 ( ) (A)-y2=1和-=1 (B)-y2=1和y2-=1 (C)y2-=1和x2-=1 (D)-y2=1和-=1 8、与双曲线有共同的渐近线,且经过点A的双曲线的一个焦点到一条渐近线的距离是 ( ) (A)8 (B)4 (C)2 (D)1 9、以为渐近线,一个焦点是F(0,2)的双曲线方程为 ( ) (A)(B) (C)(D) 10、双曲线kx2+4y2=4k的离心率小于2,则k的取值范围是 ( ) (A)(-∞,0)(B)(-3,0) (C)(-12,0) (D)(-12,1)

11、已知平面内有一固定线段AB,其长度为4,动点P满足|PA|-|PB|=3,则|PA|的最小值为 (A)1.5 (B)3 (C)0.5 (D)3.5 12、已知双曲线b2x2-a2y2 = a2b2的两渐近线的夹角为2,则离心率e为( ) (A)arcsin(B)(C)(D)tg2 13、一条直线与双曲线两支交点个数最多为 (A)1 (B)2 (C)3 (D)4 14、双曲线顶点为(2,-1),(2,5),一渐近线方程为3x-4y+c = 0,则准线方程为 (A) (B) (C) (D) 15、与双曲线=1(mn<0)共轭的双曲线方程是 ( ) (A) (B) (C) (D) 16、下列方程中,以x±2y=0为渐近线的双曲线方程是 (A) 17、过点(3,0)的直线l与双曲线4x2-9y2=36只有一个公共点,则直线l共有

高中数学双曲线题型归纳

高中数学双曲线题型归纳 类型一 双曲线的定义 【例1】已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________. 1-1设P 是双曲线120 162 2=- y x 上一点,F 1,F 2分别是双曲线左、右焦点,若|PF 1|=9,则|PF 2|=( ) A .1 B .17 C .1或17 D .以上答案均不对 1-2已知F 是双曲线112 42 2=- y x 的左焦点,A (1,4),P 是双曲线右支上的动点, 则|PF |+|P A |的最小值为( ) A .5 B .5+43 C .7 D .9 1-3已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 类型二 几何性质 【例2】设F 1,F 2分别为双曲线122 22=-b y a x (a >0,b >0)的左、右焦点.若在双曲线右 支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x ±5y =0 C .4x ±3y =0 D .5x +4y =0

2-1若双曲线()01322 2>=-b b y x 的一个焦点到一条渐近线的距离等于焦距的4 1,则该双 曲线的虚轴长是( ) A .2 B .1 C . 5 5 D . 5 5 2 2-2设直线x -3y +m =0(m ≠0)与双曲线122 22=-b y a x (a >0, b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________. 2-3中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2, 且F 1F 2=213,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为3∶7. (1)求这两曲线方程; (2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.

双曲线练习题及答案

双曲线相关知识 双曲线的焦半径公式: 1:定义:双曲线上任意一点P 与双曲线焦点的连线段,叫做双曲线的焦半径。 2.已知双曲线标准方程x^2/a^2-y ^2/b^2=1 点P(x,y)在左支上 │PF1│=-(ex+a) ;│PF2│=-(ex -a) 点P(x,y )在右支上 │PF1│=ex+a ;│PF2│=ex-a 运用双曲线的定义 例1.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( ) A 、第一象限 B、第二象限 C 、第三象限 D、第四象限 练习1.设双曲线19 162 2=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或23 例2. 已知双曲线的两个焦点是椭圆10x 2 +32 y 52=1的两个顶点,双曲线的两条准 线分别通过椭圆的两个焦点,则此双曲线的方程是( )。 (A)6x 2-4y 2=1 (B )4x 2-6y 2=1 (C )5x 2-3y 2=1 (D )3x 2 -5 y 2=1 练习2. 离心率e=2是双曲线的两条渐近线互相垂直的( )。 (A)充分条件 (B )必要条件 (C )充要条件 (D)不充分不必要条件 例3. 已知|θ|< 2 π ,直线y=-tg θ(x-1)和双曲线y 2co s2θ-x2 =1有且仅有一个公共点,则θ等于( )。 (A)±6π (B)±4π (C )±3π (D )±12 5π 课堂练习

1、已知双曲线的渐近线方程是2 x y ±=,焦点在坐标轴上且焦距是10,则此双曲线 的方程为 ; 2、焦点为(0,6),且与双曲线12 22 =-y x 有相同的渐近线的双曲线方程是 ( ) ?A.124 122 2=-y x B . 124 122 2=-x y C. 112 242 2=-x y D. 112242 2=-y x 3. 设e 1, e 2分别是双曲线1b y a x 2222=-和1a y b x 22 22=-的离心率,则e 12+e 22与e 12·e 2 2 的大小关系是 。 4.若点O 和点(2,0)F -分别是双曲线2 221(a>0)a x y -=的中心和左焦点,点P 为双 曲线右支上的任意一点,则OP FP ?的取值范围为 ( ) A .)+∞ B .[3)++∞ C .7[-,)4+∞ D.7 [,)4+∞ 5. 已知倾斜角为 4 π 的直线l 被双曲线x 2-4y2=60截得的弦长|AB |=82,求直线l 的方程及以AB 为直径的圆的方程。 6. 已知P 是曲线xy=1上的任意一点,F (2,2)为一定点,l :x+y -2=0为一定直线,求证:|PF |与点P到直线l 的距离d 之比等于2。 7、已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为 ) .

相关文档
最新文档