制冷剂R410A热力计算物理性质参数表(压熵焓粘密比热)

1/2

2/2

水物性参数

水物性参数物性参数 (1) (1) 常规性质常规性质常规性质 中文名: 水 英文名: WATER CAS 号: 7732185 化学式: H2O 结构简式: 所属族: 其他无机物 分子量: 18.0153 g/mol 熔点: 273.15 K 沸点: 373.15 K 临界压力: 22055.00745 kPa 临界温度: 647.13 K 临界体积: 5.5948E-05 m3/mol 偏心因子: 0.34486 临界压缩因子: 0.229 偶极距: 1.84972 debye 标准焓: -57.7949 kcal/mol 标准自由焓: -54.6343 kcal/mol 绝对熵: .18872 kJ/mol/K 熔化焓: 未知 kcal/mol 溶解参数: 22.9 (cal/cm3)1/2 折光率: 1.3325 等张比容: 51.1492 (2) (2) 饱和蒸气饱和蒸气饱和蒸气压压 系数(Y 单位:Pa) 使用温度范围:273.16 - 647.13K A= 73.649 B=-7258.2 C=-7.3037 D= .0000041653 E= 2 (3) (3) 液体热容液体热容液体热容

系数(Y 单位:J/kmol/K) 使用温度范围:273.16 - 533.15K A= 276370 B=-2090.1 C= 8.125 D=-.014116 E= .0000093701 (4) (4) 理想气体比热容理想气体比热容理想气体比热容 系数(Y 单位:J/mol/K) 使用温度范围:100 - 2273.15K A= 33363 B= 26790 C= 2610.5 D= 8896 E= 1169 (5) (5) 液体粘度液体粘度液体粘度 系数(Y 单位:Pa·s) 使用温度范围:273.16 - 646.15K A=-52.843 B= 3703.6 C= 5.866 D=-5.879E-29 E= 10

水的物性参数表

温度t °C 密度p比热容 cp 热导率入运动黏度V动力黏度n 普朗特数Pr kg/m3 kJ/(kg .K) W/(m ?K) m2/s Pa - s 0 999.9 4.212 0.551 1.789E-06 1.788E-03 13.67 1 999.9 4.210 0.553 1.741E-06 1.740E-03 13.26 2 999.9 4.208 0.556 1.692E-06 1.692E-0 3 12.84 3 999.9 4.206 0.558 1.644E-06 1.643E-03 12.43 4 999.8 4.204 0.560 1.596E-06 1.595E-03 12.01 5 999.8 4.202 0.563 1.548E-0 6 1.547E-03 11.60 6 999.8 4.199 0.565 1.499E-06 1.499E-03 11.18 7 999.8 4.197 0.567 1.451E-06 1.451E-03 10.77 8 999.7 4.195 0.569 1.403E-06 1.402E-03 10.35 9 999.7 4.193 0.572 1.354E-06 1.354E-03 9.94 10 999.7 4.191 0.574 1.306E-06 1.306E-03 9.52 11 999.6 4.190 0.577 1.276E-06 1.276E-03 9.27 12 999.4 4.189 0.579 1.246E-06 1.246E-03 9.02 13 999.3 4.189 0.582 1.216E-06 1.215E-03 8.77 14 999.1 4.188 0.584 1.186E-06 1.185E-03 8.52 15 999.0 4.187 0.587 1.156E-06 1.155E-03 8.27 16 998.8 4.186 0.589 1.126E-06 1.125E-03 8.02 17 998.7 4.185 0.592 1.096E-06 1.095E-03 7.77 18 998.5 4.185 0.594 1.066E-06 1.064E-03 7.52 19 998.4 4.184 0.597 1.036E-06 1.034E-03 7.27 20 998.2 4.183 0.599 1.006E-06 1.004E-03 7.02 21 998.0 4.182 0.601 9.859E-07 9.838E-04 6.86 22 997.7 4.181 0.603 9.658E-07 9.635E-04 6.70 23 997.5 4.180 0.605 9.457E-07 9.433E-04 6.54 24 997.2 4.179 0.607 9.256E-07 9.230E-04 6.38 25 997.0 4.179 0.609 9.055E-07 9.028E-04 6.22 26 996.7 4.178 0.610 8.854E-07 8.825E-04 6.06 27 996.5 4.177 0.612 8.653E-07 8.623E-04 5.90 28 996.2 4.176 0.614 8.452E-07 8.420E-04 5.74 29 996.0 4.175 0.616 8.251E-07 8.218E-04 5.58 30 995.7 4.174 0.618 8.050E-07 8.015E-04 5.42 31 995.4 4.174 0.620 7.904E-07 7.867E-04 5.31 32 995.0 4.174 0.621 7.758E-07 7.719E-04 5.20 33 994.7 4.174 0.623 7.612E-07 7.570E-04 5.09 34 994.3 4.174 0.625 7.466E-07 7.422E-04 4.98 35 994.0 4.174 0.627 7.320E-07 7.274E-04 4.87 36 993.6 4.174 0.628 7.174E-07 7.126E-04 4.75 37 993.3 4.174 0.630 7.028E-07 6.978E-04 4.64 38 992.9 4.174 0.632 6.882E-07 6.829E-04 4.53 39 992.6 4.174 0.633 6.736E-07 6.681E-04 4.42 40 992.2 4.174 0.635 6.590E-07 6.533E-04 4.31 41 991.8 4.174 0.636 6.487E-07 6.429E-04 4.23

焓和熵的由来

焓和熵的由来 熵S:物理学上指热能除以温度所得的商,标志热量转化为功的程度。熵的单位就是焦耳每开尔文,即J/K。熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。(可逆过程熵不变)热力学能与动能、势能一样,是物体的一个状态量。能量可以转化为功,能量守恒定律宣称,宇宙中的能量必须永远保持相同的值。那么,能够把能量无止境地转化为功吗?既然能量不灭,那么它是否可以一次又一次地转变为功?1824年,法国物理学家卡诺证明:为了作功,在一个系统中热能必须非均匀地分布,系统中某一部分热能的密集程度必须大于平均值,另一部分则小于平均值,所能荼得的功的数量妈决于这种密集程度之差。在作功的同时,这种差异也在减小。当能量均匀分布时,就不能再作功了,尽管此时所有的能量依然还存在着。德国物理学家克劳修斯重新审查了卡诺的工作,根据热传导总是从高温到低温而不能反过来这一事实,在1850年的论文中提出:不可能把热量从低温物体传到高温物体而不引起其他变化。这就是热力学第二定律,能量守恒则是热力学第一定律。1854年,克劳修斯找出了热与温度之间的某一种确定产关系,他证明当能量密集程度的差异减小时,这种关系在数值上总在增加,由于某种原因,他在1856年的论文中将这一关系式称作“熵”(entropy)。 在作理论分析时,有时用熵的概念比较方便。在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。

例如,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,要将它们分离则必须消耗功。混合前后虽然温度、压力不变,但是两种状态是不同的,单用温度与压力不能说明它的状态。两个温度不同的物体相互接触时,高温物体会自发地将热传给低温物体,最后两个物体温度达到相等。但是,相反的过程不会自发地发生。上述现象说明,自然界发生的一些过程是有一定的方向性的,这种过程叫不可逆过程。过程前后的两个状态是不等价的。用什么物理量来度量这种不等价性呢?通过研究,找到了“熵”这个物理量。有些过程在理想情况下有可能是可逆的,例如气缸中气体膨胀时举起一个重物做了功,当重物下落时有可能将气体又压缩到原先的状态。根据熵的定义,熵在一个可逆绝热过程的前后是不变的。而对于不可逆的绝热过程,则过程朝熵增大的方向进行。或者说,熵这个物理量可以表示过程的方向性,自然界自发进行的过程总是朝着总熵增加的方向进行,理想的可逆过程总熵保持不变。对上述的两个不可逆过程,它们的终态的熵值必大于初态的熵值。 在制氧机中常遇到的节流阀的节流膨胀过程和膨胀机的膨胀过程均可近似地看成是绝热过程。二者膨胀后压力均降低。但是,前者是不可逆的绝热膨胀,膨胀前后熵值肯定增大。后者在理想情况下膨胀对外作出的功可以等于压缩消耗的功,是可逆绝热膨胀过程,膨胀前后熵值不变,叫等熵膨胀。实际的膨胀机膨胀会有损失,也是不可逆过程,熵也增大。但是,它的不可逆程度比节流过程小,增加的熵值也小。因此,熵的增加值反映了这个绝热过程不可逆程度的大小。

水蒸汽的焓熵图

水蒸汽的焓熵图 水蒸汽的焓熵图如下图所示。图中饱和水线x=1的上方为过热蒸汽区;c-d线为干饱和蒸汽线,在a-c-d线下面为湿蒸汽区,c-d线的上方为过热蒸汽区。h-s图中还绘制了等压线、等温线、等干度线和等容线。在湿蒸汽区,等压线与等温线重合,而且是一组斜率不同的直线。在过热蒸汽区,等压线与等温线分开,等压线为向上倾斜的曲线,而等温线是弯曲而后趋于平坦。此外,在h-s图上还有等容线(图中未画出),在湿蒸汽区中还有等干度线。由于等容线与等压线在延伸方向上有些近似(但更陡些),为了便于区别,在通常的焓熵图中,常将等容线印成红线或虚线。 水蒸汽的h-s图 由于工程上用到的蒸汽,常常是过热蒸汽或干度大于50%的湿蒸汽,故h-s 图的实用部分仅是它的右上角。工程上实用的h-s图,即是将这部分放大而绘制的。 水和水蒸汽性质计算机程序简介 目前大多数水和水蒸汽热力性质的计算软件均采用第六届国际水蒸汽性质会议上成立的国际公式化委员会提出的一套水和水蒸汽热力性质的公式。这套公式的适用范围:温度从273.16K到1073.15K,压力从理想气体极限值 (p=0)到100MPa。可以预计,在今后相当长的一段时间里工业上应用的水和水

蒸汽的参数不会超出此一范围。国际公式化委员会拟定的水和水蒸汽热力性质公式简称IFC公式,IFC公式把整个区域分成6个子区域,如图2-10所示。不同的子区域采用不同的计算公式,各区域之间的边界线方程也分别用函数表达。各子区域的计算公式及边界线函数请读者参阅有关文献。 水蒸汽作工质的大量工程应用问题,主要关键是工质初、终态参数的确定。为了能适应各种工程问题热力计算的需要,计算程序都以子程序形式编制,应用时,只要根据不同的已知参数调用相应的子程序,即可确定其他状态参数。如文献[9]提供的“确定水和水蒸汽热力计算的FORTRAN程序”编制了9个子程序,各子程序的输入参数及功能如下: 序号子程序名 功能 已知输入 参数 输出结果参数 函数子程序1 PSK(T)T P 2 TSK(P)P T 子例程子程序3 PTF(P,T,V, H,S) p,t 过冷水、饱和水v,h、s 4 PTG(P,T,V, H,S) p,t 过热蒸汽、饱和蒸汽:v,h、s 5 PT(P,T,X, V,H,S) p,t 过冷水、过热蒸汽:v,h、s 6 PH(P,H,X, T,V,S) p,h 过冷水、饱和水、过热蒸汽、饱和蒸 汽、湿蒸汽:x,t,v,s 7 PS(P,S,X, T,V,H) p,s 过冷水、饱和水、过热蒸汽、饱和蒸 汽、湿蒸汽:x,t,v,h 8 HS(H,S,X, P,T,V) h,s 过热蒸汽、饱和蒸汽、湿蒸汽:x,p、 t,v 9 PX(P,X,T,p,x 饱和水、饱和蒸汽、湿蒸汽:t,v,h、

锅炉水蒸气的焓熵图及其使用说明

锅炉水蒸气的焓熵图及其使用说明本节概要 水蒸气不能作为理想气体处理~对蒸气热力性质的研究~包括状态方程式、比热容、热力学能、焓和熵等参数目前还难以用纯理论方法或纯实验方法得出能直接用于工程计算的准确而实用的方程。现多采用以实验为基础~以热力学一般关系式为工具的理论分析和实验相结合的方法~得出相关方程。这些方程依然十分复杂~仅宜于用计算机计算。为方便一般工程应用~由专门工作者编制出常用蒸气的热力性质表和图~供工程计算时查用。 本节介绍了由我国学者编撰的水和水蒸气热力性质表和h-s图及确定水和水蒸气热力性质的计算程序~考虑到我国的国情两者不应偏废。 本节内容 2.8.1 国际水蒸气骨架表和IFC公式 2.8.2 水蒸气表 2.8.3 水蒸气的焓熵图 2.8.4 水和水蒸气性质计算机程序简介 2.8.5 例题 本节习题 2-13、2-14 水蒸气的焓熵图 利用水蒸气表确定水蒸气状态参数的优点是数值的准确度高~但由于水蒸气表上所给出的数据是不连续的~在遇到间隔中的状态时~需要用内插法求得~甚为不便。另外~当已知状态参数不是压力或温度~或分析过程中遇到跨越两相的状态时~使用水蒸气表尤其感到不便。为了使用上的便利~工程上根据蒸汽表上已列出的

各种数值~用不同的热力参数坐标制成各种水蒸气线图~以方便工程上的计算。除了前已述及的p-v图与T-s图以外~热工上使用较广的还有一种以焓为纵坐标、以熵为横坐标的焓熵图,即h-s图,。水蒸气的焓熵图如图2-9所示。图中饱和水线x =1的上方为过热蒸汽区,下方为湿蒸汽区。h-s图中还绘制了等压线、等温线、等干度线和等容线。在湿蒸汽区~等压线与等温线重合~是一组斜率不同的直线。在过热蒸汽区~等压线与等温线分开~等压线为向上倾斜的曲线~而等温线是弯曲而后趋于平坦。此外~在h-s图上还有等容线,图2-9中未画出,~在湿蒸汽区中还有等干度线。由于等容线与等压线在延伸方向上有些近似,但更陡些,~为了便于区别~在通常的焓熵图中~常将等容线印成红线或虚线。 图2-9水蒸气的h-s图

关于焓和熵的概念

关于焓和熵的概念 熵和焓的概念 (2008-11-22 15:23:21) 转载 标签: 杂谈 解释1、焓是物体的一个热力学能状态函数。在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,

水的物性参数表

温度t ℃ 密度ρ kg/m3 比热容cp kJ/(kg﹒K) 热导率λ W/(m﹒K) 运动黏度ν m2/s 动力黏度η Pa﹒s 普朗特数Pr 0 999.9 4.212 0.551 1.789E-06 1.788E-03 13.67 1 999.9 4.210 0.553 1.741E-06 1.740E-03 13.26 2 999.9 4.208 0.556 1.692E-06 1.692E-0 3 12.84 3 999.9 4.206 0.558 1.644E-06 1.643E-03 12.43 4 999.8 4.204 0.560 1.596E-06 1.595E-03 12.01 5 999.8 4.202 0.563 1.548E-0 6 1.547E-03 11.60 6 999.8 4.199 0.565 1.499E-06 1.499E-03 11.18 7 999.8 4.197 0.567 1.451E-06 1.451E-03 10.77 8 999.7 4.195 0.569 1.403E-06 1.402E-03 10.35 9 999.7 4.193 0.572 1.354E-06 1.354E-03 9.94 10 999.7 4.191 0.574 1.306E-06 1.306E-03 9.52 11 999.6 4.190 0.577 1.276E-06 1.276E-03 9.27 12 999.4 4.189 0.579 1.246E-06 1.246E-03 9.02 13 999.3 4.189 0.582 1.216E-06 1.215E-03 8.77 14 999.1 4.188 0.584 1.186E-06 1.185E-03 8.52 15 999.0 4.187 0.587 1.156E-06 1.155E-03 8.27 16 998.8 4.186 0.589 1.126E-06 1.125E-03 8.02 17 998.7 4.185 0.592 1.096E-06 1.095E-03 7.77 18 998.5 4.185 0.594 1.066E-06 1.064E-03 7.52 19 998.4 4.184 0.597 1.036E-06 1.034E-03 7.27 20 998.2 4.183 0.599 1.006E-06 1.004E-03 7.02 21 998.0 4.182 0.601 9.859E-07 9.838E-04 6.86 22 997.7 4.181 0.603 9.658E-07 9.635E-04 6.70 23 997.5 4.180 0.605 9.457E-07 9.433E-04 6.54 24 997.2 4.179 0.607 9.256E-07 9.230E-04 6.38 25 997.0 4.179 0.609 9.055E-07 9.028E-04 6.22 26 996.7 4.178 0.610 8.854E-07 8.825E-04 6.06 27 996.5 4.177 0.612 8.653E-07 8.623E-04 5.90 28 996.2 4.176 0.614 8.452E-07 8.420E-04 5.74 29 996.0 4.175 0.616 8.251E-07 8.218E-04 5.58 30 995.7 4.174 0.618 8.050E-07 8.015E-04 5.42 31 995.4 4.174 0.620 7.904E-07 7.867E-04 5.31 32 995.0 4.174 0.621 7.758E-07 7.719E-04 5.20 33 994.7 4.174 0.623 7.612E-07 7.570E-04 5.09 34 994.3 4.174 0.625 7.466E-07 7.422E-04 4.98 35 994.0 4.174 0.627 7.320E-07 7.274E-04 4.87 36 993.6 4.174 0.628 7.174E-07 7.126E-04 4.75 37 993.3 4.174 0.630 7.028E-07 6.978E-04 4.64 38 992.9 4.174 0.632 6.882E-07 6.829E-04 4.53 39 992.6 4.174 0.633 6.736E-07 6.681E-04 4.42 40 992.2 4.174 0.635 6.590E-07 6.533E-04 4.31 41 991.8 4.174 0.636 6.487E-07 6.429E-04 4.23

附录2 工质热物理性质参数

附录2 工质热物理性质参数 空气、纯燃气、燃气的焓和熵(其中T 为温度,f 为油气比) 空气的焓 642-33-64-95-136 -177 -0.30183674100.1048965210-0.232840570.4528843110 -0.31308477100.1134136210-0.2129808710 0.1636360010Hair T T T T T T T =?+???+????+????+?? 纯燃气的焓 6323 54951261670.11152575100.3102020610 2.99611970.2793478820.187********.73499597100.150********.1251098410Hst T T e T T T T T ----=-?-??+?--?+??-??+??-?? 燃气的焓 1f f Hgas Hair Hst f +=+?其中为油气比。 空气的熵 4-342-43-74-115-156-3 Sair=(0.1048965210)ln(T 10)+0.8055864310+ (-465.6811T+ 0.6793T -4.174510T +1.417710T -2.555810T +2.290910T )10??????????????? 纯燃气的熵 3-34-3323-74 -105-146Sst=(-0.3102020610)ln(T 10)-0.1780063310+10(5.992210T -4.1902T +0.0025T -9.187410T + 1.807510T -1.459610T ) ??????????????? 燃气的熵 1f f Sgas Sair Sst f +=+?其中为油气比。

焓熵的相关概念

焓是物体的一个热力学能状态函数。<br/>在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:<br/>1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。<br/>在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。<br/>既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。<br/>分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。<br/>物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,焓是流动式质的热力学能和流动功之和,也可认为是做功能力。<br/>2、熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。(可逆过程熵不)热力学能与动能、势能一样,是物体的一个状态量。<br/>能可以转化为功,能量守恒定律宣称,宇宙中的能量必须永远保持相同的值。那么,能够把能量无止境地转化为功吗?既然能量不灭,那么它是否可以一次又一次地转变为功?<br/>1824年,法国物理学家卡诺证明:为了作功,在一个系统中热能必须非均匀地分布,系统中某一部分热能的密集程度必须大于平均值,另一部分则小于平均值,所能荼得的功的数量妈决于这种密集程度之差。在作功的同时,这种差异也在减小。当能量均匀分布时,就不能再作功了,尽管此时所有的能量依然还存在着。<br/>德国物理学家克劳修斯重新审查了卡诺的工作,根据热传导总是从高温到低温而不能反过来这一事实,在1850年的论文中提出:不可能把热量从低温物体传到高温物体而不引起其他变化。这就是热力学第二定律,能量守恒则是热力学第一定律。<br/>1854年,克劳修斯找出了热与温度之间的某一种确定产关系,他证明当能量密集程度的差异减小时,这种关系在数值上总在增加,由于某种原因,他在1856年的论文中将这一关系式称作“熵”(entropy),entropy一诩源于希腊语,本意是“弄清”或“查明”,但是这与克劳修斯所谈话的内容似乎没有什么联系。热力学第二定律宣布宇宙的熵永远在增加着。<br/>然而,随着类星体以及宇宙中其他神秘能源的发现,天文学家们现在已经在怀疑:热力学第二定律是否果真在任何地方任何条件下都成立<br/>熵与温度、压力、焓等一样,也是反映物质内部状态的一个物理量。它不能直接用仪表测量,只能推算出来,所以比较抽象。在作理论分析时,有时用熵的概念比较方便。<br/>&nbsp;&nbsp;&nbsp;&nbsp;在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。例如,如图4a所示,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,

-蒸汽和饱和蒸汽热焓表

热焓表(饱和蒸汽或过热蒸汽)1、饱和蒸汽压力- 焓表(按压力排列)

2、饱和蒸汽温度-焓表(按温度排列)

3、过热蒸汽温度、压力-焓表(一) 4、过热蒸汽温度、压力-焓表(二)

1吨280度的1MPa的过热蒸汽热焓为 1吨280度的1MPa的过热蒸汽折合3008300/29307600=0.1026吨标煤 1度电=404g标煤大型电厂折合390g标煤 1吨标煤减排二氧化碳2.4567(t-CO2/tce) 1度电折合二氧化碳:2.4567*404g=992.5g 1度(千瓦时)= 3600000焦耳,而标准煤的定义是:凡能产生29.27MJ的热量(低位)的任何数量的燃料折合为1kg标准煤。这样就可以算出来理论上(即能量完全转化的情况下)一千克标准煤可以发多少电了。

不过,实际上因为不可能完全转化,所以肯定会低于理论值。国家发改委提供的数据是火电厂平均每千瓦时供电煤耗由2000年的392g标准煤降到360g标准煤,2020年达到320g标准煤。即一千克标准煤可以发三千瓦时的电。 按2009年全国发电标煤消耗342克/度计算: 1、反应式:C + O2 = CO2 2、条件:标煤碳元素含量85%(重量);C分子量12;CO2分子量44; 理想气体常数22.4升/摩尔。 则每发一度电产生的二氧化碳为:342克×0.85/12×44=1065.9克 1万立方的水如何折成吨标煤? 悬赏分:50 - 解决时间:2009-8-31 18:39 问题补充: 急用!我只要水的折算方法! 提问者:mapla - 二级 最佳答案 各类能源折算标准煤的参考系数 能源名称平均低位发热量折标准煤系数 原煤20934千焦/公斤0.7143公斤标煤/公斤 洗精煤26377千焦/公斤0.9000公斤标煤/公斤 其他洗煤8374 千焦/公斤0.2850公斤标煤/公斤 焦炭28470千焦/公斤0.9714公斤标煤/公斤 原油41868千焦/公斤1.4286公斤标煤/公斤 燃料油41868千焦/公斤1.4286公斤标煤/公斤 汽油43124千焦/公斤1.4714公斤标煤/公斤 煤油43124千焦/公斤1.4714公斤标煤/公斤 柴油42705千焦/公斤1.4571公斤标煤/公斤 液化石油气47472千焦/公斤1.7143公斤标煤/公斤 炼厂干气46055千焦/ 公斤1.5714公斤标煤/公斤 天然气35588千焦/立方米12.143吨/万立方米 焦炉煤气16746千焦/立方米5.714吨/万立方米 其他煤气3.5701吨/万立方米 热力0.03412吨/百万千焦 电力3.27吨/万千瓦时 1、热力其计算方法是根据锅炉出口蒸汽和热水的温度压力在焓熵图(表)内查得每千克的热焓减去给水(或回水)热焓,乘上锅炉实际产出的蒸汽或热水数量(流量表读出)计算。如果有些企业没有配齐蒸汽或热水的流量表,如没有焓熵图(表),则可参下列方法估算: (1)报告期内锅炉的给水量减排污等损失量,作为蒸汽或热水的产量。 (2)热水在闭路循环供应的情况下,每千克热焓按20千卡计算,如在开路供应时,则每千克热焓按70千卡计算(均系考虑出口温度90℃,回水温度20℃)。

常用制冷剂R134a的特性

常用制冷剂R134a的特性 时间:2010-02-22 来源:互联网发布评论进入论坛 R134a(SUVA 134a),化学名:1,1,1,2-- 四氟乙烷,分子组成:CH2FCF3,CAS注册号:811-97-2,分子量:102.0,HFC型制冷剂,ODP值为零。R134a 的热力和物理性质,以及其低毒性,使之成为一种非常有效和安全的替代品。HFC-134a可用在目前使用CFC-12(二氯二氟甲烷)的许多领域,包括:汽车空调、家用电器、小型固定制冷设备、超级市场的中温制冷、工商业的制冷机,聚合物发泡,气雾剂产品,以及镁合金保护气体等。 R134a 作为新一代的环保制冷剂,用于替代R12(二氯二氟甲烷),R22,主要应用于汽车空调,冰箱,冷柜,饮水机,除湿机,中央空调(冷水机组)等制冷空调设备中。 用作保护气体:用于镁合金加工上的保护气体。 用于聚合物发泡:聚合物发泡。 用于气雾剂:HFC-134a也可用于那些对毒性和可燃性要求严格的气雾剂中;由于HFC-134a 的低毒和不易燃性,它被研制用于药物吸入剂的载体(即医用气雾剂)。 压缩机生产商通常建议使用多元醇酯POE(Polyol Ester)和聚二醇PAG(Polyalkylene Glycol)(汽车空调)冷冻机油。 HFC-134a的主要物化性质

中温制冷情况下CFC-12和HFC-134a理论性能的对照 膨胀阀的结构和工作原理 1热力膨胀阀的作用: 热力膨胀阀安装在蒸发器入口,常称为膨胀阀,主要作用有两个:1)节流做用:高温高压的液态制冷剂经过膨胀阀的节流孔节流后,成为低温低压的雾状的液压制冷 剂,为制冷剂的蒸发创造条件; 2)控制制冷剂的流量:进入蒸发器的液态制冷剂,经过蒸发器后,制冷剂由液态蒸发为气态,吸收热量,降低车内的温度。膨胀阀控制制冷剂的流量,保证蒸发器的出口完全为气态制冷剂,若流量过大,出口含有液态制冷剂,可能进入压缩机产生液击;若制冷剂流量过小,提前蒸发完毕,造成制冷不足;

焓&熵

焓enthalpy 为了引出焓这个概念,我们先讨论恒容和恒压过程的热效应。 对于一个封闭体系,△U=Q-W,封闭体系,恒容变化(不做体积功),且不做非体积功时,△U=Q,即封闭系、恒容、W'=0时,△U=Q v(Q v为恒容热效应),dU=δQ v。 上式是热力学中常用的一个公式,使用此公式时,一定要满足前面的条件,请大家注意,在热力学中用公式必须满足条件。 在化学中,我们更关心恒压过程,因为化学效应一般是在恒压条件下进行的。 封闭体系、恒压时,△U=Q p-W,若W'=0,则Q p=△U+W=△U+P e△V=U2-U1+ (P e V2-P e V1),因恒压P e=P1=P2,则Q p=(U2+P2V2)-(U1+P1V1),为了数学表达的方便,引进一个物理量,焓:H=U+PV,这里要说明一下,焓在这里无明确的物理意义,可以理解为,为了表达方便,专门设为一个符号,H即U+PV,之所以要提出焓这一物理量,是因为U+PV经常会用到,所以专门用一个符号来代替它。则上式 Qp=H2-H1=△H。 ∴封闭体系、恒压、W'=0时, Qp=△H,dH=δQ p。 这里要特别说明的是,H是状态系数,因为U、P、V都是状态系数,状态确定,U、P、V都是一定值,当然H也是确定值,也就是说从始态→终态,所有途径的△H都是的一样的,也就是说,在计算△H时,可以设计一条方便计算得途径。 焓是热力学的基本概念之一,以后经常要用到。总的来说,封闭体系不做非体积功时的过程,内能变化可以通过测定恒容热效应来求,焓变可以通过测恒压热效应求得。 焓 焓(enthalpy),符号H,是一个系统的热力学参数。 物理意义:⑴H=U+pV 焓=流动内能+推动功 ⑵焓表示流动工质所具有的能量中,取决于热力状态的那部分能量 定义一个系统内: H = U + pV 式子中"H"为焓,U为系统内能,p为其压强,V则为体积。 对于在大气内进行的化学反应,压强一般保持常值,则有 ΔH = ΔU + pΔV 规定放热反应的焓取负值。如:

熵焓自由能

熵、焓、自由能 熵 . 熵:热量与温度之商乘坐熵,记作S。 S = Q / T . 熵变; 熵的变化量称为熵变,记作ΔS ΔS = ΔQ / T . Q 为系统吸收的热量,T为系统的温度。 熵变等于系统从热源吸收的热量与系统的热力学温度之比,可用于度量热量转变 为功的程度。 熵表示热量转化为功的程度,也表示系统中的无序程度, 1、熵越大,其做功能力下降,无序程度增加。 2、熵是表示物质系统状态的一个物理量,它表示该状态可能出现的程度。、 3、孤 立体系(即绝热体系)中实际发生的过程必然要使它的熵增加。 4、对于纯物质的晶体,在热力学零度时,熵为零. :有两种表述形式。 表述1:不可能用有限个手段和程序使一个物体冷却到绝对温度零度。表述2: 一切纯物质的晶体,在热力学零度时,熵为零。 标准熵:1 mol物质在下所计算出的熵值,称标准摩尔熵,简称标准熵。用ST q 表示,单位:J·mol-1 ·K-1 熵的规律:

(1) 同一物质,气态熵大于液态熵,液态熵大于固态熵; ST q(g) > ST q(l) > ST q(s) S q H2O (g) > H2O (l) > H2O (s) (2) 相同组成的分子中,分子中原子数目越多,熵值越大; S q O2 (g) < S q O3 (g) S q NO (g) < S q NO2 (g) < S q N2O4 (g) S q CH2=CH2 (g) < S q CH3-CH3 (g) (3) 相同元素的原子组成的分子中,分子量越大,熵值越大; S q CH3Cl(g) < S q CH2Cl2 (g) < S q CHCl3(g) (4) 同一类物质,越大,结构越复杂,熵值越大; S qCuSO4(s) < S qCuSO4·H2O(s) < SqCuSO4·3H2O(s) < SqCuSO4·5H2O (s) S qF2(g) < S qCl2(g) < S qBr2(g) < SqI2 (g) (5) 固体或液体溶于水时,熵值增大,气体溶于水时,熵值减少。 反应熵变的计算公式 一般地,对于标准状态下的反应:m A + n B =x C + y D 熵变 =(x × C 的标准熵 + y × D的标准熵)-(m × A的标准熵 + n × B的标准熵) = [x Sq,C + y Sq,D] – [m Sq,A + n Sq,B] 热力学第二定律: 孤立体系(即绝热体系)的自发过程是体系熵增加的过程,即:

常见物性参数表word版本

常见物性参数表

常用溶剂 一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH, (4)外观与性状:无色液体,有酒香。 (5)熔点(℃):-114.1 (6)沸点(℃):78.3 溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记 7(易燃液体); 主要用途:用于制酒工业、有机合成、消毒以用作溶剂 不同压力下乙醇物性参数变化 表压液态密 度比热容气体密 度 蒸发 热 分子 量 粘度沸 点 MPa Kg/m3KJ/Kg*K Kg/m3KJ/Kg g/mol MPa*s ℃ 0.06 750.49 2.811 2.4693 830.21 46.07 0.58 90.6 5 0.04 752.35 2.790 2.1825 837.84 46.07 0.59 87 0.02 754.38 2.767 1.8917 845.99 46.07 0.61 83 常压756.65 2.742 1.5966 854.89 46.07 0.63 78.3 5 -0.02 759.50 2.711 1.2984 865.7 6 46.0 7 0.66 72. 8 -0.04 762.93 2.674 0.9936 878.32 46.07 0.6 9 65.9 -0.06 767.38 2.627 0.6806 893.85 46.07 0.74 56.8 2 -0.08 774.37 2.556 0.3559 916.51 46.07 0.83 42.4

物性参数表

物性参数表

常用溶剂 一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH , (4)外观与性状:无色液体,有酒香。(5)熔点(℃):-114.1 (6)沸点(℃):78.3 溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记7(易燃液体); 主要用途:用于制酒工业、有机合成、消毒以用作溶剂

二、甲醇(methyl alcohol,Methanol)CAS No.:67-56-1 (1)分子式 CH4O (2)相对分子质量32.04 (3)结构式 CH3O, (4)外观与性状:无色澄清液体,有刺激性气味。 (5)熔点(℃):-97.8,凝固点 -97.49℃,沸点64.5℃.闪点(开口)16℃,燃点470℃,折射率1. 3285,表面张力22.55×10-3N/m (6)相对密度(20 ℃/4℃)0.7914 溶解度参数δ=14.8,能与水、乙醇、乙醚、丙酮、苯、氯仿等有机溶剂混溶,甲醇对金属特别是黄铜有轻微的腐蚀性。易燃,燃烧时有无光的谈蓝色火焰。蒸气能与空气形成爆炸混合物.爆炸极限6.0%-36.5%(vol)。纯品略带乙醇味,粗品刺鼻难闻。有毒可直接侵害人的肢体细胞组织.特别是侵害视觉神经网膜,致使失明。正常人一次饮用4一10g纯甲醉可产生严重中毒。饮用7-8g可导致失明,饮用

30-100g就会死亡。空气中甲酵蒸气最高容许浓度5mg/m3。

熵和焓的理解

熵 entropy 描述的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为提供了定量表述。 为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。克劳修斯在研究卡诺热机时,根据卡诺定理得出,对任意循环过程都有,式中 Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。可逆循环的表明存在着一个态函数熵,定义为 对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。 能量是物质运动的一种量度,形式多样,可以相互转换。某种形式的能量如内能越多表明可供转换的潜力越大。熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了。内能、熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。 从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。 在信息论中,熵可用作某事件不确定度的量度。信息量越大,体系结构越规则,功能越完善,熵就越小。利用熵的概念,可以从理论上研究信息的计量、传递、变换、存储。此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。 注:熵的增加系统从几率小的状态向几率大的状态演变,也就是从有规则、有秩序的状态向更无,更无秩序的演变。 焓 enthalpy

相关文档
最新文档