6.3 全微分

6.3 全微分
6.3 全微分

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数

微分形式及其应用

微分形式及其应用 1 引子 两个函数,如何检验它们是否互为函数呢? 比如 y x f +=2 ,6022 2 4 +++=y y x x g ,它们之间就有关系602 +=f g ,这很 明显。但是对于复杂的函数就未必一眼看得出。 另一个老实的办法是,计算它们的雅克比行列式 ()0221 442////) ,(,22 =++=????????=??y x xy x x y g y f x g x f y x g f ,因此它们相关,互为函数关系。 对于多元的就要麻烦些,要计算多个雅克比。比如),,(),,,(z y x g z y x f ,要想判定他们是否互为函数,就要判定 ()() y x g f ,,??, ()() z y g f ,,??, ()() x z g f ,,??都为0才对。 有没有更好的表达方式呢?有利用外微分(过一会再解释) 44444444)44()22(2) 22()22(2) 2()2()602()602()602()(3 3 3 3 3 2 2 24 2 2 2 2 4 2 2 2 2 2422422 2 4 2 =∧-∧-∧+∧=∧+∧+∧+∧=+∧++∧=++∧+++∧=+∧++∧=+++∧++++∧=+++∧+=∧dy xydx dy dx x dy xydx dy dx x dx xydy dx dy x dy xydx dy dx x xydx dx x dy ydy dy x xdx dy x y dx dx dy dy dy x y dx xdx y x x d dy y y x d dx y y x x d dy y y x x d dx y y x x d y x d dg df 好奇怪的运算规则:任何两个函数微分的外积,互换次序得负;任何相同表达式微分的外积为0。da db db da ∧-=∧,0=∧da da 这让我们想起了面积的定义。对了!外积的意义就是面积。 我们重新理解一下(见图) 如果将),(g f 作为两个变量,则组成空间。),(g f 作为),(y x 的函数,当),(y x 改变时, ),(g f 也随之改变。当函数g f ,互不关联(不互为函数时),由于各自独立改变,当) ,(y x 遍历一个非常小的方形区域)(dy dx ∧时,),(g f 也形成一个小面积。但是当函数g f ,互为关联(互为函数时),由于各自改变不独立,当),(y x 遍历一个非常小的方形区域)(dy dx ∧时,),(g f 仅在一个小线段上(或者在一个点,总之在低维的空间上)运动。由于dg df ∧就代表面积元,因此为0.

微分流形

《微分流形》课程教学大纲 课程编号: 02200030 课程名称:微分流形 英文名称: Differential Manifolds 课程类型: 选修课 总学时: 56 讲课学时:42 习题课学时: 14 学分: 3 适用对象: 数学与应用数学专业本科四年级 先修课程:数学分析、高等代数、微分几何 一、课程简介 微分流形是20世纪数学有代表性的基本观念,是描述许多自然现象的一种空间形式。本课程属于大范围分析与几何范畴,是学习现代数学的基础。主要论述与流形有关的最重要,最基本的知识。通过对本课程的学习,目的是使学生掌握必要的现代几何基础知识。这门课程的主要内容是介绍微分流形的基本概念,流形上的切问题,张量与外微分形式等概念和一些主要定理,以及流形上的积分和Stokes定理。适于高年级本科生。 四、教学内容及要求 第一章准备知识(讲课6 , 习题课2) §1. n维欧氏空间 §2. 光滑映射 §3. 曲纹坐标 §4. 张量 §5. 外代数 第二章微分流形(讲课 12 , 习题课4) §1. 微分流形的定义 §2. 光滑映射 §3. 切向量和切空间 §4. 子流形 第三章切向量场(讲课 12 , 习题课4) §1. 切丛 §2. 光滑切向量场 §3. 单参数变换群 §4. Frobenius定理 §5. 光滑张量场 第四章外微分式(讲课 12 , 习题课4)

§1. 外微分式 §2. 外微分 §3. Pfaff方程组和Frobenius定理 §4.外微分式的积分和Stokes定理 十、推荐教材和教学参考书 教材:《微分流形初步》,陈维桓编著,高等教育出版社,1998年。 参考书: 1、《黎曼几何初步》,白正国,沈一兵等编著,高教出版社。 2、《微分几何讲义》,陈省身,陈维桓等编著,北京大学出版社。 大纲制订人:贾兴琴、冷雁 大纲审定人:冯淑霞 制订日期:2007年3月15日

偏导数与全导数-偏微分与全微分的关联

1。偏导数 代数意义 偏导数是对一个变量求导,另一个变量当做数 对x求偏导的话y就看作一个数,描述的是x方向上的变化率 对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义 对x求偏导是曲面z=f(x,y)在x方向上的切线 对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分 偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在detax趋进于0时偏增量的线性主要部分 detaz=fx(x,y)detax+o(detax) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分 这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分 全增量:x,y都增加时f(x,y)的增量 全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分

同样也有求全微分公式,也建立了全微分和偏导数的关系 dz=Adx+Bdy 其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数 全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。 u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数 如果z=f(x^2,2^x) 只有这种情况下dz/dx才是全导数!

学习外微分形式的一些感受

学习外微分形式的一些感受 PB07210141 焦凡书 外微分形式把Stokes,Gauss 公式联系起来,而且推广到高维空间。初学时觉得很“神奇”,查阅了一些书籍后才知道Poincare ’指出多重积分的体积元素应有一个正负定向导致了外微分的出现。而外微分的出现可以说标志着微积分从古典走向现代。在物理,力学,偏微分方程,微分几何中,外微分发挥了巨大的作用。外微分有其更本质的含义,下面是我的一些总结和感受。 如果我们研究曲面(双侧曲面)的方向性,那么:在双侧曲面上任意取定一点M ,并在M 处选定一个单位法向量n(M),对于曲面S 上任意一点M ’,在S 上做一条连接M,M ’的曲线,由n(M ’)沿曲线连续变化的原则,就可以唯一的确定M ’处的单位法向量n(M ’),从而就完全确定了双侧曲面的一个侧。曲面S 在M 处的单位法向量有且仅有两个,它们是互为相反方向的单位向量,这两个向量正好确定了曲面的两个定侧。 在双侧曲面内令:x=x(u,v) y=y(u.,v) 则面积元素dA=dxdy=| ()) (v u y x ,,??|dudv=| v y u y v x u x ????????|dudv=( u y v x v y u x ????????_ )dudv 若将x,y 对换dA=dydx=| ()) (v u x y ,,??|dudv=| v x u x v y u y ????????|dudv=( v y u x u y v x ????????_ )dudv 可得dxdy=-dydx dxdx=0 我们把满足上述关系即:两个相同微分乘积为零,不同微分乘积变换顺序时变号的微分之间的乘积称为微分外积,用∧ 表示。由微分的外乘积乘上函数组成的微分形式称为外微分形式。若P ,Q,R,H 是x,y,z 的函数,则Pdx+Qdy+Rdz 为一次外微分形式。Pdy ∧dz+Qdz ∧dx+Rdx ∧dy 为二次外微分形式,Hdx ∧dy ∧dz 为三次外微分形式。 可以证得(1)Newton-Leibniz 公式用外微分表示?D df =f(b)-f(a)=??D f (2)Green 公式用外微分表示=ωPdx+Qdy, ? ?+D Qdy Pdx =dxdy y P x Q D )( ??- ???, ???= D D d ωω (3)Gauss 公式用外微分表示=ωPdy ∧dz+Qdz ∧dx+Rdx ∧dy, ?? S Pdy ∧dz+Qdz ∧dx+Rdx ∧dy= )( z R y Q x P V ??+ ??+ ????? dx ∧dy ∧dz, ????? ?=V V d ωω (4 ) Stokes 公 式用外微分表示=ωPdx+Qdy+Rdz,

偏导数与全微分习题

偏导数与全微分习题 1. 设y x y x y x f arcsin )1(),(-+=,求)1,(x f x '。 2. 习题8 17题。 3. 设?? ??? =+≠++=0 001sin ),(22222 2 y x y x y x y y x f ,考察f (x , y )在点(0,0)的偏导数。 4. 考察?? ??? =+≠++=0 001sin ),(22222 2 y x y x y x xy y x f 在点 (0,0)处的可微性。 5. 证 明 函 数 ?? ???=+≠+++=0 001sin )(),(222 22 22 2y x y x y x y x y x f 在 点(0,0)连续且偏导数存在,但偏导数在(0,0)不连续,而f (x , y )在点(0,0)可微。 }

1. 设y x y x y x f arcsin )1(),(-+=,求)1,(x f x '。 y y x y x y y x f x 1) (2111 )1(1),(21 ??- -+='- ∴ 1)1,(='x f x 。 : &

2.习题8 17题。 17. 设22)()(ln b y a x z -+-=(a , b 为常数),证明 02 22 2=??+??y z x z 。 先化简函数 ))()ln((2 1 22b y a x z -+-=, , 2 222)()() ()()()(221b y a x a x b y a x a x x z -+--= -+--?=??, 2222) ()() ()()()(221b y a x b y b y a x b y y z -+--=-+--?=??, 2 22 2 222 2))()(()(2)()(b y a x a x b y a x x z -+----+-= ?? 2 22 22) )()(()()(b y a x a x b y -+----= , 2 222 222 2))()(()(2)()(b y a x b y b y a x y z -+----+-= ?? 2 2222) )()(()()(b y a x b y a x -+----= , ∴ 02 22 2=??+ ??y z x z 。 3. $

外微分

利用外微分对场论中三个算子的讨论 【摘要】 本文通过引入外微分算子,对经典场论中的梯度,旋度,散度做了统一的解释,寻找其中的关系.同时利用其寻找Newton—Leibniz公式、Green公式、Stokes公式和Gauss公式之间的联系. 关键词:外微分场论 1、引言 在关于多元函数积分的学习中,我们可以得出各种积分之间的联系.但是我们可以看到,关于统一这些积分形式的Newton—Leibniz公式、Green公式、Stokes公式和Gauss公式之间也是有一定联系的.通过查找资料知道,我们可以通过另一个形式——外微分,将它们统一起来.同时,也可以用外微分算子来解释经典场论中的三个算子:梯度算子、散度算子和旋度算子的引进.在三维空间中,我们只能得到四种相应的外微分形式,但是按照外微分算子的定义,其可以推广到n维.以上问题将在下面进行简要的讨论与证明. 2、主要结论及其证明 2.1场论的简单引入 2.1.1 场的概念 依据空间中坐标系的表现形式,场是关于点的坐标的多变量函数.根据原物理量,可以将场分为数量场和向量场. 2.1.2 场论中的三个算子 从对数量场的方向微商的定义中,可以引申出梯度的概念. 定义2.1:数量场u在点M处的梯度是一个向量,记为grad u,其大小为场u在点M的所有方向微商中的最大值,其方向为取到这个最大值所沿的那个方向. 在三维的直角坐标系中可以表达为: . 从对向量场的通量的定义中,可以引申出散度的概念. 定义 2.2:设是区域上的向量场,是内一点.在场中围绕点做任意的闭 曲面,是所围成的闭区域,其体积记为.是外侧的单位法向量.若当区域无限收缩于点时,比式 的极限存在,就称该极限为向量场在点的散度,记为,即

第三章 外分是和活动标架

第三章 外微分是 和活动标架 一 外微分形式 1 Grassmann 代 数 (1) 主要概念 2n 维向量空间()v G ,外乘、 Grassmann 代数 设V 是n 维向 量 空间,{}e e e n ,ΛΛ21是它 的一组基。 ()V V V V n p V G ΛΛΛ⊕⊕⊕⊕=10其中 R ,R V V n ≈=0 ??????∧∧∧=∑<<≤a i i i i i i p i p p a p e e e a V ΛΛΛ12111(2)主要性质和 公式

命题 1 Grassmanm 代数 满足反交换律。 V V q p y ,x ∈∈则 ()x y y x pq ∧=∧-1 推论 设V y ,x 1 ∈ 则 0,=∧∧-=∧x x x y y x 命题 2 设 {}e e e n ,ΛΛ21是V 一维基 , ,,,21V y y y p ∈Λ,则 有() ∑===n j j ij i p i e a y 12,1ΛΛ ∑≤≤≤≤=∧∧∧n p i i pi pi i i p p p a a a a y y y ΛΛΛ ΛΛΛΛ11112111p i i i e e e ∧∧∧ (21)

推论 1 V 中 的一组向量 y y y p ,Λ21是线性无关的必要和充 分条件是: 021≠∧∧∧y y y p Λ. 推论 2 设{} y y y n ,ΛΛ21是V 的另一组基,并 且()∑===n j j ij i n i e a y 1 ,,2,1Λ ()0det ≠a ij 则有 ()a y y y ij n det 21=∧∧∧Λe e e n ∧∧∧Λ21 2 外微分形式 (1) 主要概念 坐标域U 上 的-∞ C 函数环K 上的模V ,外微

微分形式的外微分

习 题 14.4 微分形式的外微分 1. 计算下列微分形式的外微分: (1)1-形式; dy x xydx 22+=ω(2)1-形式xdy ydx sin cos ?=ω; (3)2-形式dz xydx dy zdx ∧?∧=6ω。 解(1)0222=∧+∧+∧=dy xdx dx xdy dx ydx d ω。 (2)dy dx x y dy xdx dx ydy d ∧?=∧?∧?=)cos (sin cos sin ω。 (3)=∧∧?∧∧=dz dx xdy dy dx dz d 6ωdz dy dx x ∧∧+)6(。 2.设ω=+++a x dx a x dx a x dx n n n 111222()()()"是n R 上的1-形式,求d ω。 解 d ω0)(1=∧′=∑=n i i i i i dx dx x a 3.设ω=∧+∧+∧a x x dx dx a x x dx dx a x x dx dx 12323213313121(,)(,)(,)2是3R 上的 2-形式,求d ω。 解 设 323211),(dx dx x x a ∧=ω,由于 0,0323322=∧∧=∧∧dx dx dx dx dx dx , 则有 =1ωd 03233 132221=∧∧??+∧∧??dx dx dx x a dx dx dx x a 。 类似地,设 133122),(dx dx x x a ∧=ω,212133),(dx dx x x a ∧=ω,则 032==ωωd d , 从而 0321=++=ωωωωd d d d 。 4. 在3R 上在一个开区域?=××(,)(,)(,)a b c d e f 上定义了具有连续导数 的函数,,,试求形如 )(1z a )(2x a )(3y a dz x b dy z b dx y b )()()(321++=ω 的1-形式ω,使得 dy dx y a dx dz x a dz dy z a d ∧+∧+∧=)()()(321ω 。 解 由题意,可得 )()(),()(),()(2312 31x a x b z a z b y a y b ?=′?=′?=′, 所以 dx dy y a ))((3∫?=ωdy dz z a ))((1∫?dz dx x a ))((2∫?。 5. 设(∑=∧=n j i j i ij dx dx a 1,ωji ij a a ?=,n j i ,,2,1,"=)是n R 上的2-形式,证 明

全微分方程及积分因子

1.5 全微分方程及积分因子

一、全微分方程的定义及条件 则它的全微分为 是一个连续可微的函数设,),(y x U U =dy y U dx x U dU ??+??=如果我们恰好碰见了方程 0),(),(=??+??dy y y x U dx x y x U 就可以马上写出它的通积分 . ),(c y x U =

定义1使得 若有函数),,(y x U dy y x N dx y x M y x dU ),(),(),(+=则称微分方程) 1(,0),(),(=+dy y x N dx y x M 是全微分方程..),()1(c y x U =的通积分为此时如0 =+ydx xdy 0 )2()3(322=+++dy xy x dx y y x 0 )()(=+dy y g dx x f 是全微分方程.=)(xy d =+)(23xy y x d =+òò))()((y d y g x d x f d 1.全微分方程的定义

需考虑的问题(1) 方程(1)是否为全微分方程? (2) 若(1)是全微分方程,怎样求解? (3) 若(1)不是全微分方程,有无可能转化为全微分方程求解?2 方程为全微分方程的充要条件 定理1则方程 偏导数中连续且有连续的一阶域在一个矩形区和设函数,),(),(R y x N y x M ) 1(,0),(),(=+dy y x N dx y x M 为全微分方程的充要条件是 ). 2(,),(),(x y x N y y x M ??=??)1(, 0),(),(=+dy y x N dx y x M

证明“必要性”设(1)是全微分方程,使得 则有函数),,(y x U dy y U dx x U y x dU ??+??=),(dy y x N dx y x M ),(),(+=故有),,(y x M x U =??),(y x N y U =??从而从而有都是连续的和由于,22y x U x y U ??????,22y x U x y U ???=???故.),(),(x y x N y y x M ??=??y x U y N x y U y M ???=?????=??22 ,

十偏导数与全微分(学生用)

第十四章 偏导数与全微分 §1. 偏导数与全微分的概念 1.求下列函数的偏导数: (1) 2 2 2 ln()u x x y =+; (2) ()cos()u x y xy =+; (3) arctan x u y =; (4) sin()xy u xye =. 2.设22 22 221sin , 0,(,)0, 0.y x y x y f x y x y ?+≠?+=??+=? ,考察函数在(0,0)点的偏导数. 3 .证明函数u =(0,0)点连续但偏导数不存在. 4.求下列函数的全微分: (1) u = (2) yz x u xe e y -=++.

5.求下列函数在给定点的全微分: (1) u =在点(1,1,1); (2) (u x y =+-0,1). 6.证明函数22222 22, 0,(,) 0, 0.x y x y f x y x y x y ?+≠?=+??+=? 在(0,0)点连续且偏导数存在,但在此点不可微。 7 .证明:函数22 220(,)0, 0x y f x y x y +≠=+=?在点(0, 0)处偏导数存在,但不可微. 8.设,x y 很小,利用全微分推出下列式(1)(1)m n x y ++的近似公式:

9.求下列函数指定阶的偏导数: (1) 3 3 sin sin u x y y x =+,求633u x y ???; (2) ln()u ax by =+,求m n m n u x y +???. §2. 求复合函数偏导数的链式法则 1.求下列函数指定的偏导数: (1).设(,,),x y z Φ=Φ ,,,x u v y u v z uv =+=-=求, u v ?Φ?Φ ??. (2) 设),,22(xyz z y x f z --=求x z ?? 2. 求下列函数指定的偏导数(假定所有二阶偏导数都连续) (1) 2 2 (,)u f xy x y =,22u x ?? ; (2) (,)x y u f y z =,2u x y ???; (3) 2 2 2 ()u f x y z =++,22u y ??; (4) (,,)x u f x y xy y =+,2u y x ???.

积分因子与全微分方程

积分因子与全微分方程 1 微分方程的用途 镭是一种放射性物质,它的原子不停地向外放射出氦原子和其它的射线.从而自身的原子量减少,这样就变成了其它的物质(如常见的铅).一定质量的镭随着时间的变化,它的质量就会减少.现在已经发现镭的裂变速度(即单位时间裂变的质量)与它的剩余量成正比,设一块镭在时刻0t t =时,其质量0R R =,请确定这块镭在时刻t 的质量R . 分析:时刻t 时镭的剩余量R 是t 的函数,由于R 将随时间t 的流逝而减少.故镭的裂变速度dR dt 应该是负值,于是按照镭的裂变规律可列出方程 dR kR dt =-,其中k 为一正的比例常数. 1.1 微分方程 定义1 []() 1P 1 联系着自变量、未知函数以及它的导数的方程叫做微分方程. 上式是一个关于未知函数R 的微分方程,上述的问题就是要从这个式子中求出未知函数 ()R R t =来. 不仅镭的质量满足这样的规律,其它的放射性物质也都满足这一规律,不同的只是各种放射性物质具有各自不同的系数k .从这个关系式出发,可以利用放射性物资来测定某种物体的绝对年龄,实际上,火箭的升空,弹道的计算,自动控制,化学反应过程中稳定性的研究等都要用到微分方程. 微分方程其实就是联系着自变量,未知函数以及它的导数的关系式,它的本质也是一个方程.像上面这些例子都可以建立成微分方程的的模型. 我们了解了什么是微分方程,和微分方程在现实中的应用.那么解这样的方程就是理所应当该首先考虑的问题了. 2 全微分方程的定义 我们可以将一阶方程 (),dy f x y dx =写成微分的形式(),0f x y dx dy -=, 写成具有对称形式的一阶微分方程 ()(),,0M x y dx N x y dy +=. 其中(),M x y ,(),N x y 在某矩形域内是x , y 的连续且具有连续的一阶偏导数. 2.1 全微分方程 定义2 []() 139P 如果微分方程()(),,0M x y dx N x y dy +=的左边恰好是某个二元函数

外微分

外 微 分 尹 小 玲 以下仅在三维空间中讨论。 一、微分的外积运算 微分的外积定义:对三维空间中自变量的微分dx ,dy ,dz ,其外积运算用∧表示,如dx 与dy 的外积记为dy dx ∧,它们满足以下运算法则: (1))()(dy dx a dy adx ∧=∧,(a 是实数); (2)外积运算对加法有分配律,如dz dx dy dx dz dy dx ∧+∧=+∧)(; (3)反交换律,即任何两个微分的外积交换次序后变号,如dx dy dy dx ∧-=∧; (4)任意一个微分与自身的外积等于0,如0=∧dx dx ; (5)结合律,dz dy dx dz dy dx ∧∧=∧∧)()(; dx ,dy ,dz 在几何上可以理解为有向长度微元。 dy dx dx dz dz dy ∧∧∧,,在几何上可以理解为有向面积微元,dz dy dx ∧∧在几何上可以理解为有向体积微元。因此,它们与dxdy dzdx dydz ,,,dxdydz 的区别在于前者是有向度量,即值有正负之分,而后者是无向的,永远是正的。 把微分的外积运算与向量的外积运算b a ?相比较,上述运算法则(1)~(4)是完全 类似的。而||b a ?在几何上是以b a ,为边的平行四边形的面积,对应于 dydz dz dy =∧||,dzdx dx dz =∧||,dxdy dy dx =∧|| 二、外微分式及其外微分式的外积运算 设F C B A R Q P ,,,,,,都是三维空间的函数,则分别称(1)~(4)式为零阶、一阶、二阶和三阶外微分式 F (1) Rdz Qdy Pdx ++ (2) dy Cdx dx Bdz dz Ady ∧+∧+∧ (3) dz dy Fdx ∧∧ (4)

第十三讲:多元函数的偏导数与全微分的练习题答案

第十三讲:多元函数的偏导数与全微分的练习题答案 一、单项选择题(每小题4分,共24分) 1. 设2(,)f x y x y xy y +-=+ 则(,)f x y = (A ) A . ()2x x y - B .2xy y + C .()2 x x y + D .2x xy - 解: (,)()f x y x y x y y +-=+ []1()()()2 x y x y x y = ++-- (,)()2x f x y x y ∴=- 2. 22 1cos lim 1x x y o e y x y →→++= (D ) A . 0 B .1 C . 1e D . 2 e 解:22cos (,)1x e y f x y x y =++在点(1,0)连续 '221cos cos 0lim 11102x x y o e y e e x y →→∴==++++ 3.设(,) f x y 在点00(,)x y 处有偏导数存在,则0000(2,)(,)lim h o f x h y f x h y h →+--=(D ) A .0 B .'00(,)x f x y C .'002(,)x f x y D .'003(,)x f x y 解:原式=0000(2,)(,)lim 22h o f x h y f x y h →+-? 0000(,)(,)lim h o f x h y f x y h →--+- ='''0000002(,)(,)3(,)x x x f x y f x y f x y += 4.(,)z f x y =偏导数存在是(,)z f x y =可微的 (B ) A .充分条件 B .必要条件 C .充分必要条件 D .无关条件

全微分方程的不定积分解法及其证明

全微分方程的不定积分解法及其证明 一个一阶微分方程写成 P (x,y ) dx + Q (x,y ) dy = 0 ⑴ 形式后,如果它的左端恰好是某一个函数u= u (x,y ) 的全微分: du (x,y ) = P (x,y ) dx + Q (x,y ) dy 那么方程⑴就叫做全微分方程。这里 5u 5x = P (x,y ), 5u 5y = Q (x,y ) 方程⑴就是du (x,y ) = 0,其通解为: u (x,y ) = C(C 为常数) 可见,解全微分方程的关键在于求原函数u (x,y )。因此,本文将提供一种求原函数u (x,y ) 的简捷 方法,并给出证明。 1引入记号 为了表述方便,先引入记号如下: 设M (x,y ) 为一个含有变量x,y 项的二元函数,定义: ⑴“M (x q ,y ) ”表示M (x,y ) 减去它里面含有变量x 的项; ⑵“M (x,y q )”表示M (x,y ) 减去它里面含有变量y 的项; 注意:常数项看作既不含变量x 也不含变量y 的项。 现举一例如下: 设:M (x,y ) = xy + x ey+ x 1- x + sinx+ co sx co sy + y 2+ 1 按记号定义有: M (x q ,y ) = M (x,y ) - (x y + x ey + x 1 - x + sinx + co sx co sy ) = y 2 + 1 M (x,y q )= M (x,y ) - (x y + x ey + co sx co sy + y 2) = x 1 - x

+ sinx + 1 2u (x,y ) 的简捷求法 引理设开区域G 是一个单连通域,函数P (x,y ),Q (x,y ) 在G 内具有一阶连续偏导数,则 P (x,y ) dx + Q (x,y ) dy 在G 内为某一函数u (x,y ) 的全微分的充分必要条件是等式 5P 5y = 5Q 5x

第八节微分形式的外微分

第八节 微分形式的外微分 一 微分形式及其外积 我们知道, 一个可微函数12(,, ,)n f x x x 的全微分为 1 n i i i f df dx x =?=?∑ . 它是12,,n dx dx dx 的线性组合, 一个很自然的想法是将12,, n dx dx dx 看作一个线性空间 的基. 设Ω是n ?上的区域, 记12(,,)n x x x x =, 1()C Ω(1,2, ,i n =)为Ω上连续可微函数全 体. 将12,, n dx dx dx 看作一组基, 其线性组合 11122()()(),()()(1,2, ,)n n i a x dx a x dx a x dx a x C i n ++ +∈Ω= 称为一次微分形式,简称1-形式. 1-形式的全体记为1 ()ΛΩ(或1 Λ). 如果对1Λ中的元素定义加法、数乘、零元和负元等, 就可以使1 Λ成为一个1 ()C Ω上的 线性空间. 对于任意1 ,ξη∈Λ: 1122()()()n n a x dx a x dx a x dx ξ=+++, 1122()()()n n b x dx b x dx b x dx η=++ +, 定义ξη+和λξ(1 ()C λ∈Ω)为 111222(()())(()())(()())n n n a x b x dx a x b x dx a x b x dx ξη+=++++ ++, 1122(()())(()())(()())n n x a x dx x a x dx x a x dx λξλλλ=++ +, 进一步定义1 Λ中的零元为 120000n dx dx dx =++ +, 且定义负元为 1122(())(())(())n n a x dx a x dx a x dx ξ-=-+-+ +- 显然1 Λ成为一个1 ()C Ω上的线性空间. 为了得到二次微分形式, 我们先引入向量的外积这个概念. 设12(,)a a a =, 12(,)b b b =为平面2 ?上两个线性无关的向量, 我们将行列式 121 2 a a b b

全微分方程与积分因子法

万方数据

万方数据

万方数据

全微分方程与积分因子法 作者:段志霞, 卫艳荣 作者单位:济源职业技术学院,河南·济源,454650 刊名: 宿州教育学院学报 英文刊名:JOURNAL OF SUZHOU EDUCATION INSTITUTE 年,卷(期):2009,12(1) 被引用次数:0次 参考文献(4条) 1.同济大学数学教研室高等数学 2002 2.王高雄.周之铭常微分方程 1983 3.潘鼎坤高等数学习题详解 2000 4.陈小柱.陈敬佳高等数学习题全解 2002 相似文献(5条) 1.期刊论文徐安农.段复建全微分方程与积分因子法-桂林电子工业学院学报2002,22(2) 在常微分方程理论的形成过程中,求解一阶微分方程曾出现过许多方法,如分离变量法、变量替换法、常数变易法以及积分因子法等等.其中尤以积分因子法出现的最晚,而作用也最大.在教学中注意积分因子法在求解一阶微分方程中的重要作用是必要的. 2.期刊论文马来焕.MA Lai-huan一类新复合型积分因子的存在定理及应用-科学技术与工程2010,10(7) 给出M(x,y)dx+N(x,y)dy=0复合类型积分因子的定义,得到了复合类型积分因子存在的充要条件和计算公式,为解决某些非全微分方程求解问题提供了更加快捷的工具,避免了传统求解方法的繁琐及盲目. 3.期刊论文赵冠华.陈海俊.ZHAO Guan-hua.CHEN Hai-jun乘积型积分因子的存在定理-聊城大学学报(自然科学版)2004,17(4) 积分因子法是求解一阶常微分方程的一个极其重要的方法.但是在通常情况下,积分因子的寻求比较困难.通过定义常微分方程的乘积型积分因子,得到了乘积型积分因子存在的充要条件和计算公式. 4.期刊论文李刚升浅谈积分因子与偏微分方程-科技信息(学术版)2008,""(2) 采用积分因子法将一阶微分方程转化成全微分方程是求解常微分方程的一个重要手段.为了得到方程的积分因子,需要求解积分因子所满足的偏微分方程.写出偏微分方程所对应的特征方程,从而将求解积分因子转化成为求解常微分方程的首次积分.为了简化首次积分的计算,本文给出了一些特征方程有关条件的限制,并利用比例性质对特征方程变形,得到一些特殊的积分因子,从而使常微分方程转化为全微分方程. 5.期刊论文姚红梅.YAO Hong-mei新复合型积分因子的存在定理及应用-科学技术与工程2010,10(15) 给出了微分方程P(x,y)dx+Q(x,y)dy=0的复合积分因子定义,并讨论了一类复合积分因子存在的充要条件及计算公式.介绍一种通过积分因子法求解一阶线性微分方程的新解法. 本文链接:https://www.360docs.net/doc/f117333858.html,/Periodical_szjyxyxb200901064.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:e1b0d643-c81b-4324-9ea1-9dcc0105e959 下载时间:2010年8月8日

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分? x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=????????-??μμμ1 )(x μ: N x N y M dx d ??-??=μμ1 )(y μ: M x N y M dy d ??-??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解: x N y M ??≡??=x 2 ??=-+x y C dy y xydx 002)0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y

解: x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+ dy y x dx y x x 解: x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23232322 )(32)(32)(32 既C y x x =-+23 22)(32 4)0)ln (3=++dy x y dx x y 解: x N y M ??≡??=x 1 C dy y dx x y y x =+??030既C y x y =+4/||ln 4 5)05233 3222=+-+dy y y x dx y y x 解: x N y M ??≡??=326--y x ??=-+-x y C dy y dx y y x 00222253 C y x y x =++-/523 6)02cos )2sin 1(2=-+xdy y dx x y 解: x N y M ??≡??=x y 2sin 2 C ydy dx x y x y =-+??002)2sin 1(

相关文档
最新文档