一光隔离器的插入损耗反向隔离度回波损耗的测试

一光隔离器的插入损耗反向隔离度回波损耗的测试
一光隔离器的插入损耗反向隔离度回波损耗的测试

实验一光隔离器的插入损耗、反向隔离度、回波损耗的测试

一.实验目的和任务

1.了解光隔离器的工作原理和主要功能。

2.了解光隔离器各参数的测量方法。

3.测量光隔离器的插入损耗、反向隔离度、回波损耗参数。

二.实验原理

光隔离器又称为光单向器,是一种光非互易传输无源器件,该器件用来消除或抑制光纤信道中产生的反向光,由于这类反向光的存在,导致光路系统间将产生自耦合效应,使激光器的工作变得不稳定和产生系统反射噪声,使光纤链路上的光放大器发生变化和产生自激励,造成整个光纤通信系统无法正常工作。若在半导体激光器输出端和光放大器输入或输出端连接上光隔离器,减小反射光对LD的影响,因此,光隔离器是高码速光纤通信系统、精密光纤传感器等高技术领域必不可少的元器件之一。

光隔离器是利用了磁光晶体的法拉第效应,其组成元件有:光纤准直器(Optical Fiber Collimator)、法拉第旋转器(Faraday Rotator)和偏振器(Polarizator)。隔离器按照偏振特性来分,有偏振相关型和偏振无关型。它们的原理图如图1.1和图1.2所示:

图1.1 偏振相关的光隔离器

图1.2 偏振无关的光隔离器

对于偏振相关光隔离器,光通过法拉第旋转器时,在磁场作用下,光偏振方向旋转角为FHL =φ,式中H 为磁场强度,L 为法拉第材料长度,F 为材料的贾尔德系数。如图 1.1,当输入光通过垂直偏振起偏器后,成为垂直偏振光,经过法拉第旋转器旋转了045,而检偏器偏振方向和起偏器偏振方向成045角,使得光线顺利通过,而反射回来的偏振光经过检偏器、法拉第旋转器以后,继续沿同一方向旋转045,即偏振方向刚好与起偏器偏振方向垂直,则光无法反向通过。由于只有垂直偏振的光能通过光隔离器,因此称为偏振相关光隔离器。

偏振无关光隔离器如图1.2所示,图1.2(a)为光隔离器正向输入。当包含两个正交偏振的输入光波被一个偏振分束器分离,变为垂直偏振光和平行偏振光。这两束光通过法拉第旋转器,沿同一方向旋转045,再通过λ/2波片旋转045,垂直偏振光变为平行偏振光,平行偏振光变为垂直偏振光,经过偏振分束器合为一束光输出。图1.2(b)是反向输入光的偏振态在隔离器中的演化过程。在SWP 水平偏振态光折射,垂直偏振态光透射,则光不能从正向输入端输出。

(一) 光隔离器插入损耗测试的实验原理

光隔离器的插入损耗是光隔离器正向接入时,输出光功率相对输入光功率的比率(以dB 为单位)。假设光隔离器的正向输入光功率为正1P ,输出光功率为正2P ,则其计算公式

为: 正

正21lg 10P P Insertloss = (1-1) 其插入损耗实验原理图如图1.3所示。

光隔离器

图1.3 光隔离器插入损耗测量原理图

(二) 光隔离器隔离度测试的实验原理

反向隔离度是隔离器最重要的指标之一,它表征光隔离器对反向传输光的隔离能力。将光隔离器按图1.4反向接入,假设光隔离器反向输入光功率为反1P ,输出光功率

为反2P 。则光隔离器隔离度计算公式为:

反反

21lg 10P P Isolator = (1-2)

光隔离器隔离度测量的原理图如图1.4所示。

光隔离器

图1.4 光隔离器反向隔离度测量原理图

(三) 光隔离器回波损耗测试的实验原理

光隔离器的回波损耗turnloss Re 是指正向入射到隔离器中的光功率与沿输入路径返回隔离器输入端口的光功率之比(以dB 为单位)。隔离器的回波损耗主要由各元件和空气折射率失配并形成反射引起。这是一个相当重要的指标,因为如果隔离器的回波太

强,那么它对系统返回光进行抑制的同时,自身也会给系统带来一定的反射。假设光隔离器的输入光功率为P 1,其反射光功率为P r ,则光隔离器回波损耗的定义为:

r P P turnloss 1lg

10Re = (1-3) 光隔离器回波损耗测量的原理图如图1.5

所示。

图1.5 光隔离器回波损耗测量原理图

图中光环行器的作用是使反射光不返回光源,直接到达光功率计,由于P R 不能直接

测量,测试系统加了一个光环行器。则计算回波损耗的公式变为:

322

1lg 10Re --=Insertloss P P turnloss (1-4) 式中32-Insertloss 是光环行器2-3端的插入损耗。

三. 实验设备

1.AV38121A 1310nm 单模调制光源

2.光纤跳线

3.三端环形器

4.适配器

5.折射率匹配液

6.待测偏振无关光隔离器

7.AV2496光纤多用表

四.实验步骤

(一)光隔离器插入损耗测试的实验步骤

1.首先通过光纤跳线将LD光源输出端连接到光功率计,从光功率计读出其输出功

率,即光隔离器输入功率P

1

2.光隔离器正向接入,从光隔离器输出端测得光功率P

,即经过光隔离器的输出

2

功率。

3.由损耗公式(1-1)可以计算出光隔离器的插入损耗。

(二)光隔离器反向隔离度测试的实验步骤

1.首先通过光纤跳线将LD光源输出端连接到光功率计,从光功率计读出其输出功

率,即光隔离器输入功率P

1

2.将隔离器反向接入,由光功率计读出光信号反向通过光隔离器后的输出光功率P

2

3.光隔离器隔离度的计算公式(1-2)可以计算出它的隔离度。

(三)光隔离器回波损耗测试的实验步骤

1.首先,将LD光源输出端连接到光环形器1端,光信号经过环形器后,从2端输

,即光隔离器的输入光功率。

出。由光功率计测量2端输出光功率P

1

2.然后按照图1.5,将光隔离器输入端与光环形器2端相连接。在隔离器输出端涂上匹配液。在环形器3端,用光功率计测量输出光功率P

,即光隔离器反射光,经过

2

环形器后的输出光功率。

3.由回波损耗的计算公式(1-4),计算光隔离器的回波损耗。

五.实验报告要求

1.写出测试原理。

2.列出测试结果。

3.计算并列出光隔离器的各种参数

最新光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试 一.实验目的和任务 1.了解光隔离器的工作原理和主要功能。 2.了解光隔离器各参数的测量方法。 3.测量光隔离器的插入损耗、反向隔离度、回波损耗参数。 二.实验原理 光隔离器又称为光单向器,是一种光非互易传输无源器件,该器件用来消除或抑制光纤信道中产生的反向光,由于这类反向光的存在,导致光路系统间将产生自耦合效应,使激光器的工作变得不稳定和产生系统反射噪声,使光纤链路上的光放大器发生变化和产生自激励,造成整个光纤通信系统无法正常工作。若在半导体激光器输出端和光放大器输入或输出端连接上光隔离器,减小反射光对LD的影响,因此,光隔离器是高码速光纤通信系统、精密光纤传感器等高技术领域必不可少的元器件之一。 光隔离器是利用了磁光晶体的法拉第效应,其组成元件有:光纤准直器(Optical Fiber Collimator)、法拉第旋转器(Faraday Rotator)和偏振器(Polarizator)。隔离器按照偏振特性来分,有偏振相关型和偏振无关型。它们的原理图如图1.1和图1.2所示: 图1.1 偏振相关的光隔离器 图1.2 偏振无关的光隔离器

对于偏振相关光隔离器,光通过法拉第旋转器时,在磁场作用下,光偏振方向旋转角为FHL =φ,式中H 为磁场强度,L 为法拉第材料长度,F 为材料的贾尔德系数。如图 1.1,当输入光通过垂直偏振起偏器后,成为垂直偏振光,经过法拉第旋转器旋转了 045,而检偏器偏振方向和起偏器偏振方向成045角,使得光线顺利通过,而反射回来 的偏振光经过检偏器、法拉第旋转器以后,继续沿同一方向旋转045,即偏振方向刚好与起偏器偏振方向垂直,则光无法反向通过。由于只有垂直偏振的光能通过光隔离器,因此称为偏振相关光隔离器。 偏振无关光隔离器如图1.2所示,图1.2(a)为光隔离器正向输入。当包含两个正交偏振的输入光波被一个偏振分束器分离,变为垂直偏振光和平行偏振光。这两束光通过法拉第旋转器,沿同一方向旋转045,再通过λ/2波片旋转045,垂直偏振光变为平行偏振光,平行偏振光变为垂直偏振光,经过偏振分束器合为一束光输出。图1.2(b)是反向输入光的偏振态在隔离器中的演化过程。在SWP 水平偏振态光折射,垂直偏振态光透射,则光不能从正向输入端输出。 (一) 光隔离器插入损耗测试的实验原理 光隔离器的插入损耗是光隔离器正向接入时,输出光功率相对输入光功率的比率(以dB 为单位)。假设光隔离器的正向输入光功率为正1P ,输出光功率为正2P ,则其计算公式为: 正 正 21lg 10P P Insertloss = (1-1) 其插入损耗实验原理图如图1.3所示。 光隔离器 图1.3 光隔离器插入损耗测量原理图 (二) 光隔离器隔离度测试的实验原理 反向隔离度是隔离器最重要的指标之一,它表征光隔离器对反向传输光的隔离能力。将光隔离器按图1.4反向接入,假设光隔离器反向输入光功率为反1P ,输出光功率为反2P 。则光隔离器隔离度计算公式为:

(完整word版)积分球灯具测试报告解读

灯具测试报告解读 培训目的:能看懂灯具测试报告 一、使用积分球测试灯具报告 色播鑫敎 兰壬":v^D. 4046 M )=0. 254& v=0. 34B3 T =0. 5225 相芙色温:Tc=29L2K (duv=-0, 00061) 隆恆漩卓;aoira 丰童宴;LlB,4tii Ri: Ra= 80V R1 =79 R2 =91 R3 =94 刚=7E M =1 Rl&=31 RLl=:e R12=74feht: R=0.233 feO, 740 M. 02? 主浪长;E31 4m 鱼说度;0.543 R5 =£0 R6 =90 R7 =79 R8 =55 R13=£2 R14=9S 5115=71 iDGIi 1.3 光度参褻 光兰昼:57S.5 lm 司凄电叵光嗟量:ino. 5 I K 光效:75.52 1WT光琨躬功率:1.758 1电参敖 电旦;219. BUV电流:0,066OA 功率:T.GBff 功宰因数;0?龙和频克;50. OQHz 田吗迈耳:3a0n=i'£3Crn lu 玲百兰间:时逅匸 宇亏益京宜,起2背毎盟玄度洌直可法:iphtr fi p? cticr idi st:? r - ' Suh?r?;. J O I 岂分眄可:;47.54丰 色度参数 色品坐标X、Y、U、V:CIE1931色度图中,色品坐标以X、丫表示,在CIE1976色度图中则以U、V表示, 根据色品坐标计算出相关色温。 相关色温:用绝对温度“K表示,当光源所发出的光的颜色与黑体在某一温度下辐射的颜色相同时, 黑体的温度就称为该光源(灯具)的色温. 色温在2500-3300K的光源,颜色偏红,给人一种温暖的感觉。色温超过时,颜色偏兰,给人 一种清冷的感觉。

光隔离器的功能和基本原理教学文案

光隔离器的功能和基 本原理

光隔离器的功能和基本原理 光隔离器的功能是让正向传输的光通过而隔离反向传输的光,从而防止反射光影响系 统的稳定性,与电子器件中的二极管功能类似。光隔离器按偏振相关性分为两种:偏振相 关型和偏振无关型,前者又称为自由空间型(Freespace),因两端无光纤输入输出;后者 又称为在线型(in-Line),因两端有光纤输入输出。自由空间型光隔离器一般用于半导体 激光器中,因为半导体激光器发出的光具有极高的线性度,因而可以采用这种偏振相关的 光隔离器而享有低成本的优势;在通信线路或者 EDFA 中,一般采用在线型光隔离器,因 为线路上的光偏振特性非常不稳定,要求器件有较小的偏振相关损耗。 光隔离器利用的基本原理是偏振光的马吕斯定律和法拉第(Farady)磁光效应,自由 空间型光隔离器的基本结构和原理如下图所示,由一个磁环、一个法拉第旋光片和两个偏 振片组成,两个偏振片的光轴成45°夹角。正向入射的线偏振光,其偏振方向沿偏振片 1 的透光轴方向,经过法拉第旋光片时逆时针旋转45°至偏振片 2 的透光轴方向,顺利透射;反向入射的线偏振光,其偏振方向沿偏振片 2 的透光轴方向,经法拉第旋光片时仍逆 时针旋转45°至与偏振片 1 的透光轴垂直,被隔离而无透射光。自由空间型光隔离器相 对简单,装配时偏振片和旋光片均倾斜一定角度(比如4°)以减少表面反射光,搭建测 试架构时注意测试的可重复性,其他不赘述。下面详细介绍在线式光隔离器的发展情况。 最早的在线式光隔离器是用Displacer晶体与法拉第旋光片组合制作的,因体积大和 成本高而被Wedge型光隔离器取代;在线式光隔离器因采用双折射晶体而引入 PMD,因此相应出现 PMD 补偿型 Wedge 隔离器;某些应用场合对隔离度提出更高要求,因此出现双 级光隔离器,在更宽的带宽内获得更高隔离度。 下面依次介绍这些在线式光隔离器的结构和原理。 1) Displacer 型光隔离器 Displacer型光隔离器结构和光路如下图所示,由两个准直器、两个Displacer晶体,一个半波片、一个法拉第旋光片和一个磁环(图中未画出)组成。正向光从准直器 1入射在Displacer1 上,被分成o光和e光传输,经过半波片和法拉第旋光片后,逆时针 旋转45 +45 =90 ,发生o光与e光的转换,经Displacer2合成一束耦合进入准直器 2;反向光从准直器 2 入射在Displacer2 上,被分成o光和e光传输,经过法拉第旋光片和

插入损耗测试

EMI电源滤波器插入损耗的测量方法 EMI滤波器尚没有产品类国标,只是企业标准,EMI电源滤波器的主要性能指标一般包括插入损耗、频率特性、阻抗匹配、额定的电流值、绝缘电阻值、漏电流、物理尺寸及重量、使用环境以及本身的可靠性。在使用时考虑最多的是额定的电压及电流值、插入损耗、漏电流三项。本文主要介绍EMI滤波器插入损耗的测量方法。 EMI滤波器插入损耗测量方法是根据CISPR17(1981)出版物提出的滤波器标准测量方法包括共模、差模、常模和Q/ 100 Q阻抗测量方法。 1.共模插入损耗标准测量方法 根据CISPR17(1981)出版物B6提出的共模插入损耗标准测量方法(Asymmetrical Measureme nt),如图所示。根据插入损耗的定义,先要测量没有滤波器时,负载 50Q上的电压V1作为OdB的参考电压。再测量有滤波器后,负载500上的电压V2,通过频谱分析仪将20log(V1V2)随频率变化的结果显示在屏幕上或通过接口打印出来。测量时注意,滤波器的输入端和输出端是并联的,目的是取得共模插入损耗的平均值。因为滤波器的Cy电容量尽管标称值和误差等级一样,其实际值也不完全一样,电感尽管绕组匝数一样,但磁芯的磁导率误差和工艺上也很难实现在绕制和装配时完全对称,因此采用平均值才有意义。 图共模插入损耗的典型测量方法 2 ?差模插入损耗标准测量方法 根据CISPR17( 198出版物B5提出的差模插入损耗标准测量方法(Symmetrical

Meausurement ),如图 所示。 图差模插入损耗的典型测量方法 由于频谱分析仪(或标准信号发生器)输出、输入均采用对地非对称结构的 50 Q 同轴 电缆,为了测量对地对称的差模插入损耗,需对频谱分析仪跟踪发生器的输出信 号(滤波器的输入信号)进行不对称-对称变换,对频谱分析仪输入信号(滤波 器的输出信号)进行对称-不对称的逆变换,其他步骤同上。 3 ?常模插入损耗标准测量方法 根据 CISPR17(1981)出版物 B7提出的不对称测量方法 (Un symmetrical Measurement )又称常模(Normal Mode )测量,如图所示。 SQ£1 n 频常议¥ 500 负載V 图常模插入损耗的测量方法 与共模插入损耗测量电路相比,在 N 和地之间接入一个尚未被标准所批准 的50Q 电阻。常模也是经常用来表示差模的一种方法,尽管理论分析常模除了 L L N G 50U 5)書考电路

回波损耗的定义与标准中参数规定的理解

在电线电缆2003-2中<对称数字通信电缆结构回波损耗影响因素分析>中提到:当高频信号在电缆及通信设备中传输时,遇到波阻抗不均匀点时,就会对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会使传输信号畸变,对传输性能影响很大。这种由信号反射引起的衰减被称为回波损耗。那么这样理解回波损耗应该是衰减的一部分,那为什么标准中规定回波损耗要大于某个值呢,而且我们努力的都是如何提高回波损耗. 所以我想问回波损耗的定义和性质到底是什么?是理解为反射波引起的损耗,还是反射波的损耗呢?似乎怎么理解的都有,希望大家积极讨论,理清概念. 回波损耗(RETURN LOSS) 回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方,所以施工的质量是减少回波损耗的关键。回波损耗将引入信号的波动,返回的信号将被双工的千兆网误认为是收到的信号而产生混乱。 对于通讯信号分为有用和有害信号,对于有用信号,是衰减得越少越好,比如测试中常见的衰减参数,那是数值越小越好. 但是对于有害信号,比如回波,串音,就需要衰减得越大越好.

如果结构和阻抗稳定合理,则回波会很小,即使有也由于线缆阻抗在长度上比较平滑,不容易叠加而很快被衰减.所以好的线,对回波的衰减大. 比较好理解的是串音,比如NEXT,全称是:近端串音衰减(或近端串音损耗),这个数值也是越大越好. 它是这样测试的:用网络分析仪测量,一个输入信号加在主干扰线对上,同时在近端的被干扰线对输出端测量串音信号. 测得值当然是越小越好,越小就说明串音被线缆结构(比如屏蔽)衰减得越多. 对于NEXT,有人说是近端串音,口头说说可以,但是容易造成误解,因为串音当然是越小越好,怎么要求测量数值越大约好呢,其实后面少了两个字:衰减. 串音衰减定义:用以表示能量从主串回路串入被串回路时的衰减程度。即串音的衰减. 可以理解为串音这种干扰信号的衰减程度,也就是串音衰减越大串音衰减的越多.但回波损耗的定义为由信号反射引起的衰减被称为回波损耗。也就是回波造成的损耗.他们的名词结构是不一致的,这个我也考虑过.从定义到标准中的解释,都可以说回波损耗是一种干扰和衰减,可为什么还要增大这个参数的数值呢? 当高频信号在电缆及通信设备中传输时,遇到波阻抗不均匀点时,就会对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会使传输信号畸变,对传输性能影响很大。这种由信号反射引起的衰减被称为回波损耗。 我也来说说我对回路损失的理解吧!

射频中的回波损耗 反射系数 电压驻波比以及S参数的含义和关系

回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下: 回波损耗(Return Loss):入射功率/反射功率,为dB数值 反射系数(Г):反射电压/入射电压,为标量 电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。 四者的关系: VSWR=(1+Г)/(1-Г)(1) S11=20lg(Г)(2) RL=-S11(3) 以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的参数。其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输

线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗、反射系数、电压驻波比以及S参数的物理意义:以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到:以二端口网络为例,如单根传输线,共有四个S 参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21

插入损耗与回波损耗的概念

插入损耗 中文名称: 插入损耗 英文名称: insertion loss 定义: 将某些器件或分支电路(滤波器、阻抗匹配器等)加进某一电路时,能量或增益的损 耗。 所属学科: 通信科技(一级学科) ;通信原理与基本技术(二级学科) 插入损耗指在传输系统的某处由于元件或器件的插入而发生的负载功率的损耗,它表示为该元件或器件插入前负载上所接收到的功率与插入后同一负载上所接收到的功率以分贝为单位的比值。 1..插入损耗是指发射机与接收机之间,插入电缆或元件产生的信号损耗,通常指衰减。插入损耗以接收信号电平的对应分贝(dB)来表示。 2..插入损耗多指功率方面的损失,衰减是指信号电压的幅度相对 测量插入损耗的电路 原信号幅度的变小。譬如对一个理想无损耗的变压器,原 传输线变压器的插入损耗关系曲线

副理想变压器无损耗,即插入损耗为零。插入损耗的概念一般用在滤波器中,表示使用了该滤波器和没使用前信号功率的损失。 通道的插入损耗是指输出端口的输出光功率与输入端口输入光功率之比,以dB 为单位。插入损耗与输入波长有关,也与开关状态有关。定义为:IL=-10log(Po/Pi) 式中: Pi—→输入到输入端口的光功率, 单位为mw; Po—→从输出端口接收到的光功率,单位为mw。 对于OLP,具体分为发送端插入损耗和接收端插入损耗。 回波损耗 中文名称: 回波损耗 英文名称: return loss 定义: 反射系数倒数的模。通常以分贝表示。 所属学科: 通信科技(一级学科) ;通信原理与基本技术(二级学科) 百科名片 回波损耗测量仪 回波损耗,又称为反射损耗。是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方,所以施工的质量是提高回波损耗的关键。回波损耗将引入信号的波动,返回的信号将被双工的千兆网误认为是收到的信号而产生混乱。

积分球灯具测试报告解读

色度图中,色品坐标以X、Y表示,在CIE1976色度图中则以U、V表示, 灯具测试报告解读 培训目的:能看懂灯具测试报告。 一、使用积分球测试灯具报告 色度参数 色品坐标X、Y、U、V:CIE1931 根据色品坐标计算出相关色温。 相关色温:用绝对温度“K”表示,当光源所发出的光的颜色与黑体在某一温度下辐射的颜色相同时,黑体的温度就称为该光源(灯具)的色温. 色温在2500-3300K的光源,颜色偏红,给人一种温暖的感觉。色温超过时,颜色偏兰, 一种清冷的感觉。

暖白:2500-4000K 中性白:4000-5500K 正白光:5500-7000K 冷白光:7000以上 注:色温只对白光有意义,对于单色光,就要看它的主波长了。 主波长:用某一光谱色,按一定比例与一个确定的标准照明体相混合而匹配出的样 长就是样品色,该光谱色的波长就是样品色的主波长。 色比:光源的红、绿、蓝的三色比例。 峰值波长:光谱发光强度或辐射功率最大处所对应的波长。通常你所看到的一束光,它 并非是单一波长的光,它是由很多波长的光组合而成的。其中,某一波长的 光的能量相对其它波长的光能量都大,则这一波长就是该束光的峰值波长。 半宽度:对于一个LED器件,其所发的光会在峰值λP处有所展开,其波长半宽度通常

为10—30nm。对于单色光,半宽度越小,说明LED器件的材料越纯,性能越 均匀,晶体的完整性也越好。 色纯度:单色光是色纯度最高的颜色,当单色光掺入白光的成分越多时,色纯度就越低。 显色指数:光源对物体真实颜色的呈现程度称为光源的显色性。显色指数用Ra表示, Ra值越大,光源的显色性越好。显色指数中R1至R8的平均值就是Ra值。 R9至R15的含义:R9浓红色;R10浓黄色;R11浓绿色;R12浓蓝色;R13 亮的浅黄-粉红色;R14中等程度的橄榄绿色;R15东方女性肤色。 光度参数 光通量:光是电磁波辐射到人的眼睛,经过视觉神经转换为光线。光源发射并被人的眼睛接收的能量之和即为光通量。单位:流明(Lm) 光效:光源所发出的总光通量与该光源所消耗的电功率(瓦)的比值,称为该光源的光效。单位:流明/瓦(Lm/瓦)。 光辐射功率:单位时间内,发射的所有波长成份的辐射能量。单位是W。 1、Duv说明:

实验报告光隔离器(中大)

光隔离器相关参数测量 中山大学理工学院光信息专业 摘要:本文通过测量光隔离器的插入损耗、隔离度等相关参数,并对相关数据进行分析,得出结论,以进一步了解光隔离器的原理、功能。 关键词:光隔离器光功率插入损耗隔离度偏振相关损耗回波损耗 Measurement of the Parameters of an Optoisolator Major of optical information science and technology, SYSU, Guangzhou Abstract: In this experiment, we measured several important parameters of an optoisolator, then analyzed the data and draw some useful conclusions. After that, we got a further comprehension about the principles, the functions of the optoisolator. Key Words: optoisolator, optical power, insertion loss(IL), isolation, polarization dependent loss(PDL), return loss(RL); 一、实验目的 1.学习光隔离器的原理。 2.了解光准直器的原理及其应用。 3.学习测量光隔离器的主要技术参数。 二、实验用具及装置图 实验用具:稳定光远、光功率计(武邮)、单模标准跳线(用于测量器件的输入功率)、光隔离器(OISS1310ASO1111) 实验装置示意图如下所示: 三、实验原理与器件

积分球灯具检验测试报告解读

色度图中,色 品坐标以X、Y表示,在CIE1976色度图中则以U、V表示, 灯具测试报告解读 培训目的:能看懂灯具测试报告。 一、使用积分球测试灯具报告 色度参数 色品坐标X、Y、U、V:CIE1931 根据色品坐标计算出相关色温。 相关色温:用绝对温度“K”表示,当光源所发出的光的颜色与黑体在某一温度下辐射的颜色相同时, 黑体的温度就称为该光源(灯具)的色温. 色温在2500-3300K的光源,颜色偏红,给人一种温暖的感觉。色温超过时,颜色偏兰,给人一种清冷的感觉。

暖白:2500-4000K 中性白:4000-5500K 正白光:5500-7000K 冷白光:7000以上 注:色温只对白光有意义,对于单色光,就要看它的主波长了。 主波长:用某一光谱色,按一定比例与一个确定的标准照明体相混合而匹配出的样 长就是样品色,该光谱色的波长就是样品色的主波长。 色比:光源的红、绿、蓝的三色比例。 峰值波长:光谱发光强度或辐射功率最大处所对应的波长。通常你所看到的一束光,它并非是单一波长的光,它是由很多波长的光组合而成的。其中,某一波长的 光的能量相对其它波长的光能量都大,则这一波长就是该束光的峰值波长。 半宽度:对于一个LED器件,其所发的光会在峰值λP处有所展开,其波长半宽度通常为10—30nm。对于单色光,半宽度越小,说明LED器件的材料越纯,性能越 均匀,晶体的完整性也越好。 色纯度:单色光是色纯度最高的颜色,当单色光掺入白光的成分越多时,色纯度就越低。显色指数:光源对物体真实颜色的呈现程度称为光源的显色性。显色指数用Ra表示,Ra值越大,光源的显色性越好。显色指数中R1至R8的平均值就是Ra值。R9至R15的含义:R9浓红色;R10浓黄色;R11浓绿色;R12浓蓝色;R13 亮的浅黄-粉红色;R14中等程度的橄榄绿色;R15东方女性肤色。 光度参数 光通量:光是电磁波辐射到人的眼睛,经过视觉神经转换为光线。光源发射并被人的眼睛接收的能量之和即为光通量。单位:流明(Lm)

光隔离器

光隔离器的基本原理 光隔离器又称光单向器, 是一种光非互易传输的光无源器件。在光纤通信系统中总是存在许多原因产生的反向光。光源所发出的信号光, 以活动连接器的形式耦合到光纤线路中去, 活动接头处的光纤端面间隙会使约4% 的反射光向着光源传输。 一.光隔离器的类型 1.1光隔离器按其外部结构可分为型、连接器端口型(也称在线安装型)和微型化型(自由空间隔离器)。前两种也称为在线型, 可直接插入光纤网络中。微型化光隔离器则常用于半导体激光器及其他器件中。 自由空间隔离器 1.2 .隔离器按其性能可分为偏振灵敏型( 也称偏振相关) 和偏振无关型。一般情况下, 偏振灵敏型的光隔离器常做成微型化的, 偏振无关型光隔离器则常做成在线型的。 1.3.偏振无相关光隔离器的结构包括空间型和光纤型。由于不论入射是否为偏振光, 经 过这种光隔离器后的出射光均为线偏振光, 因而称之为偏振无相关光隔离器, 主要用于DFB激光器中。 1.4.偏振无关光隔离器是一种对输入光偏振态依赖性很小( 典型值 0. 2dB) 的光隔离器。一般来说, 偏振无关光隔离器的典型结构、工作原理都更复杂一些。它采用有角度的分离光束的原理来制成, 可起到偏振无关的目的。 1.5 根据光纤类型分为保偏隔离器和普通隔离器。

由于通过偏振相关型光纤隔离器的光功率依赖于输入光的偏振态,因此要求使用保偏光纤作尾纤。这种光纤隔离器将主要用于相干光通信系统。目前光纤隔离器用的最多的仍然是偏振无关型的。 1.6 保偏光纤:保偏光纤传输线偏振光,偏振光在光纤中传输的时候,其偏振态在很长一端光纤内几乎保持不变的光纤。广泛用于航天、航空、航海、工业制造技术及通信等国民经济的各个领域。在以光学相干检测为基础的干涉型光纤传感器中,使用保偏光纤能够保证线偏振方向不变,提高相干信躁比,以实现对物理量的高精度测量。 保偏光纤的使用:保偏光纤作为一种特种光纤,主要应用于光纤陀螺,光纤水听器等传感器和DWDM、EDFA等光纤通信系统。由于光纤陀螺及光纤水听器等可用于军用惯导和声呐,属于高新科技产品,而保偏光纤又是其核心部件,因而保偏光纤一直被西方发达国家列入对我禁运的清单。 保偏光纤的类型:熊猫型、椭圆型、领结型和类矩形

回波损耗与结构回波损耗

回波损耗作为评价电缆阻抗均匀性的指标,一直在电缆行业内广泛应用,然而很多国内电缆出口企业在与国外厂商接触中,发现国外客户更多地提出用结构回波损耗而非回波损耗来衡量电缆的好坏,如美国、澳大利亚等国。那么回波损耗和结构回波损耗有什么区别呢? 根据美国标准结ANSI/SCTE 03 2003及ASTM D 4566,结构回波损耗SRL的定义为: SRL =结构回波损耗,dB; Z in=输入阻抗(复数),Ω Z avg=平均阻抗(复数),Ω 根据标准: R i=电缆各个频率点下输入阻抗的实部; X i=电缆各个频率点下输入阻抗的虚部; R avg=电缆所有测试点实部的平均值; X avg=电缆所有测试点虚部的平均值。 根据IEC 61196或GB/T 17737标准,回波损耗RL的定义为: RL =回波损耗,dB, Z T=终端接标称阻抗时的输入端阻抗(复数),Ω Z L=校准负载。 回波损耗可以由网络分析仪直接测试得到,而结构回波损耗则需要用矢量网络分析仪测量电缆的输入阻抗,测得的数据经电脑计算后才能得到,因此结构回波损耗测量过程需要运用计算机程控技术来实现。 根据结构回波损耗的定义,我检验中心运用计算机程控技术组建了结构回波损耗测量系统。下面是同一根电缆的回波损耗和结构回波损耗的测量结果图,图中回波损耗的最差值为 21.92dB,而结构回波损耗的最差值为24.11dB,两最差值出现在同一频点。

SRL测试图 RL测试图 由定义可以看出:回波损耗反映的是电缆的输入阻抗与测量系统阻抗之间的偏差,它既体现了电缆的结构不均匀性又反映出电缆阻抗与测量系统阻抗的偏差(或匹配程度);而结构回波损耗只反映电缆的输入阻抗与电缆自身阻抗平均值的偏差,所以,结构回波损耗反映的只是电缆本身结构的不均匀性。虽然回波损耗和结构回波损耗两种指标都能反映电缆质量的好坏,但结构回波损耗只反映电缆结构的不均匀,而与电缆阻抗偏离系统阻抗无关。除非电缆特性阻抗的平均值非常接近与系统阻抗,否则结构回波损耗总是比回波损耗较好些。

S参数与反射系数插损回损驻波比

S参数与反射系数、插损、回损、驻波比 S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。 S参数的基本定义: S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1; 也可用输入回波损耗RL=2Olg(Г)(能量方面的反应)表示。 S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。 S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。 S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。 S参数的特点: 1、对于互易网络有S12=S21 2、对于对称网络有S11=S22 3、对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上 4、在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。 假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21 S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB; S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB。

EMI电源滤波器插入损耗测试

EMI 电源滤波器插入损耗测试 一、实验目的 掌握EMI 电源滤波器共模与差模等效原理,了解矢量网络分析仪的工作原理,并熟练掌握仪器的基本操作流程,深刻理解屏蔽、接地、滤波在工程设计实践中的相互关系。 二、实验原理 插入损耗是指电路中接入滤波器网络前后,由噪声源产生的干扰消耗在同一负载上的功率之比,用分贝值表示,即: 式中,P1和U1分别表示当EMI 滤波器滤波器未插入前,从噪声源传递到负载的功率和电压;P2和U2分别表示当EMI 滤波器滤波器接入后,从噪声源传递到负载的功率和电压。 利用矢量网络分析仪测试时,插入损耗 测量原理图如图1所示。 矢量网络分析仪 内阻:50Ω EMI 滤波器 50Ω 50Ω 共模 共模 差模 差模 测试夹具 连接电缆 连接电缆 ()()101/2201/2?IL log P P log U U ==

共模插入损耗测试原理 差模插入损耗测试原理 三、实验仪器 1.矢量网络分析仪 2.EMI 滤波器插入损耗测试夹具 3.测试电缆及附件 4.被测滤波器样件 5.滤波器型号:TF-1E0AM-6A 6.A4纸若干 四、实验内容及步骤 (一) 滤波器插入损耗测试 1.首先对矢网进行校准。 2.按照测试原理图,正确搭建插入损耗测试系统,分别测量直通时(不加滤波器),共模/差模测试状态下,在100KHz~50MHz 范围内,系统的插损,要 EMI 滤波器 信号发生器 接收机 50Ω 50Ω 50Ω 50Ω E L L N N EMI 滤波器 信号发生器 接收机 50Ω 50Ω E L L N N

求保存S21参数曲线,标记至少10个频点,并记录数据。 3.按原理图安装好受试滤波器样件。注意,确认引线连接的共模状态和差模状态,并要求滤波器外壳良好接地,同时注意滤波器的输入输出分别与矢网的port1和port2连接。 4.将夹具设定在共模工作状态下,从矢量网络分析仪上读取S21参数曲线,保存曲线图并记录至少10个频点处的数据;切换至差模工作状态再次测试,并记录数据。 (二)滤波器安装使用状态对插入损耗的影响 1、滤波器接地状态对插入损耗的影响 在共模测试状态下,改变滤波器接地状态,通过矢量网络分析仪测量得到其插入损耗曲线,与(一)中结果对比,并分析其原因。 2、滤波器输入输出屏蔽隔离对插入损耗的影响 分别在共模和差模测试状态下,去掉测试夹具中间的隔离挡板,并盖好盖板,通过矢量网络分析仪测量其插入损耗,与(一)中结果对比,并分析其原因。 五、实验数据处理 插入损耗测试数据记录(差模) 频率 MHz 0.6 5 11 18 25 差模直通0.0086 -0.0332-0.0878-0.3747 -0.8171 差模加滤波器-62.7871 -61.9650 -68.7614 -75.6476 -66.2136 差模不加隔板-62.7690 -63.5232 -61.3942 -57.4623 -51.9160 频率 MHz3136404549 差模直通-1.2292-1.5907-1.9083-2.3544-2.7544 差模加滤波器-63.0817-72.8001-72.5238-65.2789-61.2576差模不加隔板-51.1416 -48.4547 -46.2875-43.1701 -41.6450

光隔离器的功能和基本原理

光隔离器的功能和基本原理 光隔离器的功能是让正向传输的光通过而隔离反向传输的光,从而防止反射光影响系统的稳定性,与电子器件中的二极管功能类似。光隔离器按偏振相关性分为两种:偏振相关型和偏振无关型,前者又称为自由空间型(Freespace),因两端无光纤输入输出;后者又称为在线型(in-Line),因两端有光纤输入输出。自由空间型光隔离器一般用于半导体激光器中,因为半导体激光器发出的光具有极高的线性度,因而可以采用这种偏振相关的光隔离器而享有低成本的优势;在通信线路或者 EDFA 中,一般采用在线型光隔离器,因为线路上的光偏振特性非常不稳定,要求器件有较小的偏振相关损耗。 光隔离器利用的基本原理是偏振光的马吕斯定律和法拉第(Farady)磁光效应,自由空间型光隔离器的基本结构和原理如下图所示,由一个磁环、一个法拉第旋光片和两个偏振片组成,两个偏振片的光轴成45°夹角。正向入射的线偏振光,其偏振方向沿偏振片 1 的透光轴方向,经过法拉第旋光片时逆时针旋转45°至偏振片 2 的透光轴方向,顺利透射;反向入射的线偏振光,其偏振方向沿偏振片 2 的透光轴方向,经法拉第旋光片时仍逆时针旋转45°至与偏振片 1 的透光轴垂直,被隔离而无透射光。自由空间型光隔离器相对简单,装配时偏振片和旋光片均倾斜一定角度(比如4°)以减少表面反射光,搭建测试架构时注意测试的可重复性,其他不赘述。下面详细介绍在线式光隔离器的发展情况。 最早的在线式光隔离器是用Displacer晶体与法拉第旋光片组合制作的,因体积大和成本高而被Wedge型光隔离器取代;在线式光隔离器因采用双折射晶体而引入 PMD,因此相应出现 PMD 补偿型 Wedge 隔离器;某些应用场合对隔离度提出更高要求,因此出现双级光隔离器,在更宽的带宽内获得更高隔离度。 下面依次介绍这些在线式光隔离器的结构和原理。 1) Displacer 型光隔离器 Displacer型光隔离器结构和光路如下图所示,由两个准直器、两个Displacer晶体,一个半波片、一个法拉第旋光片和一个磁环(图中未画出)组成。正向光从准直器 1入射在Displacer1 上,被分成o光和e光传输,经过半波片和法拉第旋光片后,逆时针旋转45 +45 =90 ,发生o光与e光的转换,经Displacer2合成一束耦合进入准直器 2;反向光从准直器 2 入射在Displacer2 上,被分成o光和e光传输,经过法拉第旋光片和半波片后,逆时针旋转45 -45 =0 ,未发生o光和e光的转换,经Displacer1 后两束光均偏离准直器1 而被隔离。 Displacer 型光隔离器的缺点是,为了满足隔离度要求,反向光路中的两束光需偏移较大距离,可参考图 2(a),而双折射特性较好的钒酸钇 Displacer 晶体,其长度与偏移量

回波损耗的测试和计算

RL 的测试和计算 1、 RL 定义: in out P P IL lg 10-= in ref P P RL lg 10-= * 此处我们对所有的IL 和RL 定义为正值 2、 测试设备: A :Agilent 81680A TLS B :Agilent 81623A PM (PowerMeter ) C :50/50(3dB ) Coupler 3、 测试方法和步骤: A ??? ? ??-=in in p P dB lg 100 B :测试系统的RL :RLs ,搭建如图2所示的光路: 因为我们在步骤A 中做归零的时候已经将P in 作为基准功率,所以 ??? ? ??-=-in s ref s P P RL lg 10(式1) C :测试器件的RL :RL d ,搭建如图3所示的光路:

() ()()31lg 10lg 10lg 10?→?-+--+--+----??? ? ??--=??? ????????? ??-????? ??--=???? ??-=IL P p P P P P P P P P P RL in s ref d s ref in s ref d s ref s ref d s ref d ref in d ref d 根据式1,可以得出: 10 10 s RL in s ref P P --?= 设定:??? ? ??-=+-+in d s ref d s p p RL lg 10,推出: ()10 10 d s RL in P d s ref p +- ?=+- 将以上式3和式4带入式2,得到: ()311010311010311010lg 101010lg 10lg 10?→?--?→?--?→?-+--??? ? ??--=-????? ? ??????? ????? ? ?--=-??? ? ??--=++IL IL P P IL P p P RL s d s s d s RL RL in RL RL in in s ref d s ref d 令d s s RL RL x +-=,推出:x RL RL s d s -=+,将其带入式5,有: 3110103110 103110 1011010lg 101010lg 101010lg 10?→? -?→?---?→?---???? ? ????? ??--=-???? ? ?--=-???? ? ?--=+IL IL IL RL x RL RL x RL RL RL d s s s s d s 3110311010 110lg 10110lg 1010lg 10?→??→?--???? ??--=-???? ??--? ?? ? ??-=IL RL IL x s x RL s 综上,我们得出: 3110110lg 10?→?-??? ? ??--=IL RL RL x s d 试算如下: 设dB RL dB RL d s s 58,62==+,推出dB x 45862=-=,带入式6,得出: 31311042.60110lg 1062?→??→?-=-??? ? ??--=IL IL RL d (式2) (式3) (式4) (式5) (式6)

驻波比、插入损耗和回波损耗对照表

驻波比、插入损耗和回波损耗对照表 ρ=VSWR-1 VSWR+1RL=-20lg?ρVSWR=1+ρ 1-ρ 反射系数ρ回波损耗RL 驻波比VSWR 1.00 0.00 ∞ 0.90 0.92 19.00 0.80 0.94 9.00 0.70 3.10 5.67 0.60 4.44 4.00 0.50 6.02 3.00 0.40 7.96 2.33 0.30 10.46 1.86 0.20 13.98 1.50 0.10 20.00 1.22 0.09 20.92 1.20 0.08 21.94 1.17 0.07 23.10 1.15 0.06 24.44 1.13 0.05 26.02 1.11 0.04 27.96 1.08 0.03 30.46 1.06 0.02 33.98 1.04 0.01 40.00 1.02 0.00 ∞ 1.00

复反射系数:Γ=Z L-Z0 Z L+Z0 =ρsinθ+j cosθ 其中:幅度在0~1之间(为标量反射系数) 反射波相对于入射波的相角在+180°~-180°之间 定向耦合器: 耦合度C(dB)= -10lg P3 P1 隔离度I(dB)= -10lg P4 P1 方向性D(dB)= -10lg P3 P4 C-I=D 其中:P1为输入端口功率,P3为耦合端口输出功率,P4为隔离端口输出功率 网络基本参数: (一)反射参数 正向反向 反射系 数ΓΓ=S11Γ=S22 回波损 耗RL RL=-20lg?S11 RL=-20lg?S22 驻波比VSWR VSWR =(1+?S11 )(1-?S11 ) VSWR= (1+?S22 )(1-?S22 ) 阻抗Z Z=R+jX =Z0(1+?S11 )(1-?S11 ) Z=R+jX= Z0(1+?S22 )(1-?S22 ) (二)传输参数 正向反向

插入损耗

插入损耗 一.专业术语: 插入损耗—Insertion Loss 光纤—Optical Fiber 单模光纤—Single Mode Fiber(9/125) SMF 多模光纤—Multimode Fiber(50/125,62.5/125) MMF 保偏光纤—Polarization Maintaining Fiber PMF 光纤涂覆层—Fiber Cladding 纤芯—Core 光缆—Optical Fiber Cable 塑料光纤—Plastic Optical Fiber 玻璃光纤—Glass Optical Fiber 二.插入损耗: 光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的分贝数。 1).插入损耗愈小愈好,一般要求应不大于0.5dB; 2).中国电信要求: 平均值≤0.15Bb 极限值≤0.30Bb 三.产生插入损耗的原因: 1).光纤公差引起的固有损耗 主要是由光纤制造公差,即纤芯尺寸,数值孔径,纤芯/包层同心度和折射率分布失配等因素产生。 2).连接器加工装配引起的固有损耗 这是由连接器加工装配公差,即端面间隙,轴线倾角,横向偏移和菲涅尔反射及端面加工精度等因素产生。 四.影响插入损耗的各种因素 1).纤芯错位损耗 这是产生连接损耗的重要原因。 2).倾斜角度 若要求倾斜损耗≤0.1dB,则多模渐变型折射率光纤倾斜角度≤0.7゜ 单模光纤的倾斜角度≤0.3゜ 3).光纤端面间隙损耗 端面间隙控制在1μm,这种损耗就可以忽略不计,现在加工工艺已经可以做到 4).光纤端面多次反射(菲涅尔反射)引起的损耗 5).纤芯直径不同的光纤连接时产生的损耗 输入光纤的半径不小于光纤的半径时,才会产生这种损耗. 6).数值孔径不同引起的损耗 当NA1不小于NA2时,才会产生这种损耗

光隔离器实验汇总

廿一、光隔离器 实验人:合作人: (物理科学与工程技术学院,光信息科学与技术2011 级 1 班,学号11343026)一、实验目的: 1.学习光隔离器的原理 2.了解光准直器的原理及其应用 3.学习测量光隔离器的主要技术参数 二、实验原理与器件: 光隔离器是一种只允许光沿光路正向传输的互易性光无源器件,主要用于抑制光通信网络中的反射波。光隔离器广泛应用于光信号的发射、放大、传输等过程中。因为许多光器件对来自连接器、熔接点、滤波器等的反射光非常敏感,若不消除这些反射光将导致器件性能的急剧恶化。这时就需要用光隔离器来阻止反射光返回系统。 1.法拉第磁光效应 光隔离器的工作原理需要是利用磁光晶体的法拉第效应。典型的光隔离器采用法拉第旋转器,转光转角为45度,其材料主要为钇铁石榴石(YIG),现在多采用高性能磁光晶体。高性能磁光晶体是一种采用液相外延技术在石榴石单晶上生成掺镱、镓、钬或铽等元素的薄膜材料,如:(YbTbBi)3Fe5O12石榴石单晶薄膜,其单位长度的法拉第旋转角是传统YIG晶体的5倍以上,而所需磁感应强度B却仅为传统材料的一半或者1/3。 法拉第效应(1945年):对于给定的磁光晶体材料,光振动面旋转的角度θ与光在该物质中通过的距离L和磁感应强度B成正比(α为光线与磁场的夹角,): θcosα(21.1) = VLB 式中,V是比例系数,它是材料的特性常数,称维尔德(Verdet)常数,单位是:分/高斯?厘米。进一步研究表明,法拉第效应旋转角是材料的介电常数、旋磁比和饱和磁场强度以及光波频率、外加磁场强度的函数。 值得注意的事,磁致旋光效应和材料的固有磁光效应不同。固有磁光效应的方向受光的传播方向影响,而与外加磁场的方向无关,无论外界磁场如何变化,迎着光看去,光的偏振面总是朝同一方向旋转。因此,在材料的固有旋光效应中,如果光束沿着原光路返回时,其偏振面将转回到初始位置。而在法拉第磁光旋转效应中,磁场对此光材料产生作用,是导致磁致旋转现象发生的原因,所以磁光材料引起的光偏振面旋转的方向取决于外加磁场的方向,与光的传播方向无关。迎着光看去,当线偏振光方向沿磁力线方向通过介质时,其振动面向右旋转;当线偏振光方向沿磁力线反方向通过介质时,其振动面向左旋转。旋转角θ的大小受磁光材料的旋磁特性、长度、工作波长及磁场强度的影响。材料介质越长、磁场强度越强、工作波长越短,旋转角度将越大。 不同介质,振动面的旋转方向不同。顺着磁场方向看,使振动面向右旋的,称为右旋或正旋介质,V为正值。反之,则称为左旋或负旋介质,V为负值。 对于给定的磁光介质,振动面的旋转方向只决定于磁场方向,与光线的传播方向无关。这点是磁光介质和天然旋光介质之间的重要区别。就是说,天然旋光性物质,它的振动面旋转方向不只是与磁场方向有关,而且还与光的传播方向有关。例如,光线两次通过天然性的旋光物质,一次是沿着某个方向,

相关文档
最新文档