电力系统低频振荡现象以及实例浅析

电力系统低频振荡现象以及实例浅析
电力系统低频振荡现象以及实例浅析

电力系统低频振荡现象以及实例浅析

黄河万家寨水电站(山西偏关万家寨) 薛善启李焱刚

【摘要】本文阐述了电力系统低频振荡的原因和解决的办法,并用万家寨电站低频振荡的实例进行浅析,使读者便于理解。

【关键词】电力系统;低频振荡;分析;处理

1. 电力系统低频振荡的概念

电力系统振荡分为同步振荡和异步两大类,同步振荡以低频振荡为主。异步振荡是两个联络运行的系统或发电厂,因为短路事故或不同期并列等原因,系统的静态或暂态稳定招到破坏,出现异步运行传送功率电流电压发生来回中期性的振荡,这是很严重的一类电力系统事故。而电力系统发生比较频繁的一种振荡现象却是低频振荡,这类事故多半发生在重负荷弱联系或远距离弱联系的系统或电厂之间,在联络的电厂采用快速响应高放大倍数励磁系统的条件下更容易出现。低频振荡持续的频率很低,周期一般在0.5秒到5秒之间。低频振荡的发生一般有下面几种情况:a. 系统在负阻尼时发生的自发功率振荡。

b. 系统在受到扰动后,由于阻尼弱其功率振荡长久不能平息。

c.系统振荡模式与系统中某种功率波动的频率相同,且由于弱阻尼,使联络线上该功率波动得到放大,产生强烈的功率振荡。

d.由发电机转速变化引起的电磁力矩变化和电气回路藕合产生的机电振荡。

2.电力系统低频振荡的一般现象和判断

电力系统低频振荡发生后,由于联络运行的系统间或电厂间还处于同步运行状态,所以往往让运行调度值班人员很难确认正在发生的低频振荡的现象或判断低频振荡的发生根源。低频振荡发生时候振荡中心附近将有下面一些现象:a.系统频率发生小幅周期性的变化。b.机组、线路功率发生周期性摆动。

c.机组、母线以及线路电压发生周期性的小幅摆动,可能出现电压越限报警。

d.省网间或大区联络线功率发生周期性摆动。低频振荡很重要的一个特别就是电气量的周期性异常变化以及虽然同步但不稳定的运行状态,另外低频振荡的发生还可能与系统运行方式的改变息息相关。比如多条联络线运行的某电厂与变电站间某条联络线退出运行等。运行调度值班人员可以从这些现象和线索中推断低频振荡的发生以及振源方位,以便快速进行处理。

3.电力系统低频振荡处理方法

由于电力系统低频振荡发生的原因多与系统联络阻尼功率系数小有关,有的甚至出现负阻尼系统。当系统受到扰动,发电机转速调节时或发电机固有振荡频率与系统功率波动频率相同时共振都可能发生电力系统低频振荡。所以发生低频振荡时应设法以减小系统阻尼等措施将振荡消除。a.退出快速响应的机组有功无功二次调频调压装置包括有功PID无功PID等,增大机组阻尼系数,尽量由机组调速器励磁调节器自发调节。b.在不超过系统电压运行上限的情况下尽量增加机组无功功率,可以减小发电机攻角提高发电机静稳极限,增加减速面积,有利于低频振荡平息。c.让电厂机组PSS电力系统稳定装置投入增加机组阻尼系数。d.电压降低很大时投入励磁系统的强行励磁装置,提高机组静态稳定。e.在保证系统有功供给平衡并系统频率不能低于49.5HZ的前提下特别是满负荷运行的发电机组应尽量降低机组有

功功率到合理范围,以降低联络负荷功率,增加减速面积,增加系统静态稳定。e.系统频率很低接近49.5HZ 应适当增加机组有功或减少变电站负荷。

4.2005年9月1日万家寨电站与蒙西电网低频振荡实例浅析

2005年9月1日18点53分至21点12分发生了三次蒙西电网机组对主网的低频振荡。前两次振荡

自行平息,第三次振荡有逐渐加大的趋势,万家寨电站#1机、#3机相继跳闸,蒙西电网机组对主网的振荡平息。

4.1万家寨电站简况

万家寨并入内蒙电网共三台水轮机组(#1、#2、#3),每台机容量为180MW,机组额定电压为15.75kV。机组励磁调节器采用自并励方式,为广科所产品,现场整定的调节模式为恒电压方式。机组的PSS未投运。万永线、万杨线运行。万薛线停电,进行破口接入宁格尔变电站的切改工作。

4.2万家寨电站机组调节系统问题分析

a、万家寨电站监控系统采用恒无功控制,机组有功发生大幅度变化时,因为无功不变,由于电枢反应致使机端电压波动较大,特别是有功大幅度增加时,低端电压会明显降低。

b、万家寨电站由于监控采用恒定无功调节,励磁调节器是恒定电压调节,当改变无功出力时候,监控系统调节无功电压下降,励磁系统也会参与调节,控制方式不同,有时引发相位差,导致电压“畸变”。

4.3万家寨电站机组振荡初始工况分析

通过万家寨计算机监控系统记录波形判断:a、振荡的引发与万家寨电站机组的运行工况关系密切。

b、机组发生摆动与两个条件有关:一是三台机几乎满发,二是机端电压低于15.5kV。

振荡前系统中阻尼最弱的是万家寨电站对主系统的振荡模式,阻尼比为0.002其频率为0.90Hz;增加万家寨电站机组有功出力或降低机组机端电压,会降低万家寨电站的阻尼;万家寨电站机组投入PSS,会显著增加万家寨电站的阻尼;合入万薛线,也会显著增加万家寨电站的阻尼。

“9.1”蒙西电网对主网的低频振荡是由万家寨电站的有功无功的摆动引起的。①用机组详细模型和Eq’恒定模型两种方法计算得万永线静稳极限为780MW和690MW。第一次振荡前万永线传送功率为385MW,低于静稳极限,满足要求。②如果万家寨电站1-3#机组满发,机组详细模型时为弱阻尼,可见万家寨电站发电机组模型参数对阻尼有减弱的影响。

5、万家寨电站低频振荡分析结论

a、这次振荡为低频同步振荡。

b、这次振荡的振源在万家寨电站,原因是万家寨电站机组对系统的阻尼很弱,随着有功出力的增加和无功出力的减少,更加降低了阻尼,引发了万家寨电站机组对蒙西低频振荡,并激发了蒙西电网对主网的低频振荡。

c、万家寨电站1-3#机满发且电压较低的情况下会出现负阻尼的情况。

d、万家寨电站励磁调节器与监控系统励磁调节控制方式有冲突。

e、投入万家寨电站或蒙西电网其他机组的PSS都可以提高万家寨电站的阻尼。

电力系统低频振荡的产生原因及危害性

电力系统低频振荡的产生原因及危害性(图文) 2010-10-23 10:28:14 互联网浏览: 1111 发布评论( 0) 介绍电力系统低频振荡的产生原因及危害性、PSS的基本原理、参数、作用及现场试验过程,并对实验结果进行探讨。 关键词:低频振荡励磁调节器电力系统稳定器(PSS) 1 前言 天津大唐盘山发电有限责任公司是装机容量为2×600MW的新建大型火力发电厂,它同原有天津国华盘山发电有限责任公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。 根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2 低频振荡产生原因分析及危害性 电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界-) 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。 3 PSS原理及其作用 为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最

次同步振荡、同步振荡、异步振荡、低频振荡及其区别上课讲义

次同步振荡、同步振荡、异步振荡、低频振荡及其区别一、次同步振荡(SSR,SubsynchronousResonance):发电机经补偿度较高的串补线路接入系统或者直流输电、静止无功补偿装置控制装置参数设置不当时,较易出现网络的电气谐振频率与大型汽轮发电机轴系的自然扭振频率接近的情况,造成发电机大轴扭振、破坏大轴,由于振荡频率低于同步频率,该现象称为次同步振荡。 二、同步振荡:当发电机输入或输出功率变化时,功角δ将随之变化,但由于机组转动部分的惯性,δ不能立即达到新的稳态值,需要经过若干次在新的δ值附近振荡之后,才能稳定在新的δ下运行。 同步振荡主要现象: (1)机组和线路电流、功率指示周期性变化,但波动较小,发电机有功出力不过零; (2)发电机机端和500kV母线电压表指示波动较小; (3)系统及发电机频率变化不大,全系统频率未出现—局部升高、另一局部降低现象; (4)发电机轰鸣声较小,导叶开度无明显变化。 有关机械量、电气量出现摆动,以平均值为中心振荡,不过零;振荡周期稳定清晰接近不变,摆动频率低,一般在0.2-2.0Hz;指针式仪

表摆动平缓无抖动,机组振动较小;用视角可以估算振荡周期;中枢点电压保持较高水平,一般不低于80%;同步振荡出现时各机组仍保持同步运行,频率基本相同。 处理方法: (1)已经振荡的发电厂可不待调度指令立即增加发电机励磁提高电压,但不得危及设备安全,必要时可适当降低发电机有功。 (2)处于送端的机组适当降低有功出力,处于受端的机组增加有功出力。 (3)若正在进行线路或主变停运等操作时,应立即暂停操作。(4)尽快查找并去除振荡源。着重了解本厂是否存在强迫振荡源(如发电机组非同期并网、发电机组调速器、励磁调节器有异常等)。若有,应立即消除调速器或励磁调节器的故障(故障励磁调节器可暂时倒备励)。如一时无法消除,则解列发电机组。 (5)在采取以上措施后,应报告调度值班人员,听侯调度指令。 三、异步振荡:发电机因某种原因受到较大的扰动,其功角δ在0-360°之间周期性地变化,发电机与电网失去同步运行的状态。

电力系统低频振荡

第36卷第22期电力系统保护与控制Vol.36 No.22 2008年11月16日Power System Protection and Control Nov. 16, 2008 电力系统低频振荡 郭权利 (沈阳工程学院电气工程系,辽宁 沈阳 110136) 摘要:由于系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在 0.1~2.0 Hz之间,通常称之为低频振荡。随着电力系统规模的不断扩大和快速励磁系统的大量应用,电网的低频振荡问题越来越引起人们的关注。低频振荡影响电力系统稳定性和继电保护装置的可靠性。介绍了低频振荡的一些概念、各种机理、研究现状、常用的分析方法和控制方法,并对以后的工作重点做了进一步的阐述。 关键词: 低频振荡;频率波动;负阻尼;分析方法 Low Frequency Oscillation in Power System GUO Quan-li (Electrical Engineering Department,Shenyang Institute of Engineering,Shenyang 110136,China) Abstract: Because of the lack of damping system or negative damping system on the transmission line caused power fluctuations generally between 0.1-2.0 Hz, usually called as low-frequency oscillations. With the development of the size of the power system and large applicationl of the rapid excitation system, the low-frequency oscillation (LFO) of the power system are causing for more and more concern. And low-frequency oscillation affect the stability of the power system and the reliability of the relay device. This text introduces the concept of low-frequency oscillations, all kinds of mechanism and research status, analysis and control methods, and elaborate the focus of the work for a further step. Key words: low-frequency oscillation; frequency fluctuating; negative damping; analysis method 中图分类号: TM711 文献标识码: A 文章编号: 1674-3415(2008)22-0114-03 0 引言 低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、重负荷输电线路上,在采用快速、高放大倍数励磁系统的条件下更容易发生。系统缺乏阻尼甚至阻尼为负,对应发电机转子间的相对摇摆,表现在输电线路上就出现功率波动,由系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在 0.1~2.0 Hz之间,通常称之为低频振荡(又称功率振荡,机电振荡)。一般来说,电力系统振荡模式可分为两种类型:地区振荡模式和区域振荡模式,若系统低频振荡频率很低(0.1~0.5 Hz),则一般认为属互联系统区域间振荡模式。而如果振荡较高,在1 Hz以上,则认为是本地或区域间机组间的振荡模式[1]。对于地区振荡模式,振荡频率较高,参与的机组较少,因而只要在少数强相关机组上增加阻尼,就能显著地增加振荡模式的阻尼。对于区域振荡模式,振荡频率较低,参与的机组较多,因而只有在多数参与机组上增加阻尼,才能显著地增加振荡模式的阻尼。显然,抑制区域振荡模式的低频振荡要比抑制地区振荡模式的低频振荡更加复杂和困难,所以,系统运行中更容易发生区域振荡模式的低频振荡。 由于低频振荡影响着系统的安全稳定运行,并对继电保护装置动作行为产生相当大的影响,因而本文从低频振荡的一些概念和当前研究状况分析,总结了当前分析低频振荡问题的方法和进一步的研究方向。 1 低频振荡的负阻尼机理 电力系统受到扰动时,会发生发电机转子间的相对摇摆,表现在输电线上就会出现功率波动。如果扰动是暂时的,在扰动消失后,可能出现两种情况:一是发电机转子间的摇摆很快平息,二是发电机转子间的摇摆平息的很慢甚至持续增长,若振荡幅值持续增长,以致破坏了互联系统之间的静态稳定,最终将使互联系统解列。产生后者情况的原因是系统缺乏阻尼或者系统阻尼为负,现象表现为受

电力系统次同步振荡产生原因分析及对策

电力系统次同步振荡产生原因分析及对策 作者姓名 (单位名称,省份城市邮政编码) 摘要:在电网中串联补偿电容可以提高输电能力和稳定性,但也可能发生次同步振荡(SSO,Subsynchronous Oscillation)运行状态。发电机组以低于同步频率的振荡频率运行,严重影响机组的安全运行,对于电力系统的稳定性及其不利。本文分析了电力系统次同步振荡产生的原因和影响,在此基础上,阐述了解决次同步振荡问题的具体步骤。并探讨了有效抑制次同步振荡的保护方法,对于降低次同步振荡现象对电网安全的影响,提高电力系统的安全性和稳定性具有积极的意义。 关键词:次同步;振荡;输电;抑制;可控串补 发生机电扰动时,汽轮机驱动转矩与发电机电磁制动转矩之间失去平衡,使轴系这个弹性质量系统产生扭转振动[1-2]。引起扭振的原因包括机械扰动与电气扰动。机械扰动指不适当的进汽方式、调速系统晃动、快控汽门等。电气扰动分为两类:一类是次同步谐振(SSR,Subsynchronous Resonance)及次同步振荡(SSO,Subsynchronous Oscillation) ;另一类指各种急剧扰动如短路、自动重合闸、误并列等。 一电力系统次同步振荡产生的原因及抑制步骤 (1)次同步振荡产生原因 通过串联电容的形式进行补偿可以提高输电线路的输送能力,优化输电线路间的功率分布,并可以增加电力系统的稳定性,是交流输电系统中广泛采用的方法[3-4]。但这种方法也可能引发电力系统中的电气系统或汽轮发电机组以小于同步频率的振动频率进行能量交换,称为次同步振荡(SSO)。诱发次同步振荡的原因包括串联电容、稳定器的加装、励磁系统、直流输电等。次同步谐振会造成汽轮机或发电机的轴系长时间呈现低振幅扭振的状态,又因为发电机或汽轮机的转子具有较大的惯性,轴系具有灵敏的低阶扭转模态特性,所以发电机或汽轮机会出现低周高应力的机电共振,对发电机组的安全运行造成严重的威胁。次同步振荡在交流输电系统和直流输电系统中的形成原理不同,在交流输电系统由于又谐振回路的存在所以称为次同步谐振(SSR),主要从异步发电效应、暂态力矩放大作用和机电扭振相互作用三个角度进行描述和分析。其中,发电机扭振时最重要的一种影响,长时间的机电扭振的存在会加剧发电机组的疲劳损耗。也会产生隐性故障,一旦发展成机电材料破损,将会造成恶性事故,对电力系统的安全稳定运行带来极大的威胁。 (2)抑制步骤 对于次同步振荡的问题可以通过三个步骤加以解决。第一步是通过对系统进行分析,选择合适的运行方式。由汽轮发电机轴系扭振监测系统对发电机组的各种电气扰动下的轴系扭振进行实时路波,分析机组轴系的模态、阻尼以及扭振对轴系造成的损失。从而由阻尼值是收敛还是发散决定不同的运行方式下是否存在次同步振荡或次同步谐振。第二步是对次同步振荡进行抑制或消除。具体的办法是提高发电机组的阻尼来抑制或消除次同步振荡。例如,可以通过发电机端阻尼控制系统(GTSDC)对发电机组定子电流进行控制达到提高阻尼的效果;还可以通过次同步阻尼控制系统,根据系统的具体控制要求,向电力系统或发电机组提高次同步电流,使发电机组增加与次同步扭振相适应的次同步阻尼扭矩,达到抑制次同步振荡的作用。第三步是建立发电机组扭振保护系统(TSR),实时连续地监视汽轮发电机轴系的转速情况,并及时进行分析。当轴系的疲劳值达到极限或者当轴系被激发特征频率的扭振、振幅逐步发散可能对机组安全构成威胁时,进行保护跳闸、告警及联动。

振荡电路的原理

高频放大器 使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。 高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。 原理 放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。 For personal use only in study and research; not for commercial use 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 本级振荡电路 本级振荡电路图 本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。 混频器 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

电力系统次同步振荡.

第8章HVDC引发SSO的机理及抑制 8.1 概述 由HVDC输电系统引起电力系统SSO的原因可以归纳为三种情况: (1)与HVDC的辅助控制器相关; (2)与HVDC系统的不正常运行方式相关; (3)与HVDC系统的电流控制器相关。 第一种情况可以通过改造辅助控制器来消除隐患,第二种情况尽管难以预测,但在实际工程中很少碰到,可以通过规范系统的运行来解决,第三种情况较为常见,可以通过在HVDC 控制器中做些改变加以解决,如加入SSDC。本文重点讨论由HVDC电流控制器引发的SSO 问题。 实际经验表明,次同步振荡基本上只涉及汽轮发电机组,尤其是30万千瓦以上的大容量机组。水轮发电机组转子的惯量比汽轮机要大得多,且水轮机的水轮上具有黏性阻尼,故其转子的固有阻尼很高,不易发生次同步振荡。对于汽轮发电机组,HVDC系统也只有在一系列不利因素同时作用时,才可能产生次同步振荡不稳定。这些不利因素主要包括:(1)汽轮发电机组与直流输电整流站之间的距离很近; (2)该汽轮发电机组与交流大电网的联系很薄弱; (3)该汽轮发电机组的额定功率与HVDC系统输送的额定功率在同一个数量级上。 其中,汽轮发电机组与交流系统大电网之间联系的强弱对其能否发生次同步振荡起着非常重要的作用。常规电力负荷的特性随频率而变化,它们对发电机组次同步振荡有一定的阻尼作用,但当发电机与大电网的联系较弱时,这个阻尼基本上不起作用。此外,若HVDC 系统所输送的功率大部分由附近的汽轮发电机组供应,则功率振荡通常发生在整流站和这些发电机组之间,当HVDC的额定功率与附近发电机组的额定容量相差不大时,振荡情况较严重。 在逆变站附近的汽轮发电机组一般不会发生次同步振荡,因为它们并不向直流输电系统提供有功功率,而只是与逆变站并列运行,向常规负荷供电。HVDC系统中的次同步振荡与HVDC运行工况、控制方式、控制参数、输送功率、直流线路参数,以及发电机同直流输电线的耦合程度等因素有关。 8.2 次同步电气量在交直流侧间的传递关系分析 HVDC换流器具有离散采样和调制的特性,可以用开关函数法对其进行分析。对换流器进行开关函数分析后,可以得到系统的次同步电气量在发电机组转子、交流网络、HVDC 直流侧系统之间的相互传递关系。 当交流侧电压中有频率为ωm的次同步分量时,经过换流器调制作用后在直流电压中将存在显著的频率为(ω0-ωm)的分量,其中ω0为系统的额定频率;反之,当直流电流中存在次同步频率为ωr的纹波分量时,经过换流器调制作用后在交流侧相电流中将存在显著的频率为(ω0±ωr)的分量。 发电机组转子与交流网络的次同步分量是通过定、转子磁场的相对运动产生的。转子上频率为ωs的扰动会在定子侧感应出与ωs互补的次同步(ω0-ωs)分量和超同步(ω0+ωs)分量。对

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

电力系统振荡的原因及危害知识讲解

电力系统振荡的原因 及危害

电力系统振荡的原因及危害 1前言 XXXX公司是装机容量为2×600MW的新建大型火力发电厂,它同原有XXXX公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV 线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。 根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2低频振荡产生原因分析及危害性 电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。 3PSS原理及其作用 为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机

二滩水电厂低频振荡现象及根源分析

二滩水电厂低频振荡现象及根源分析 庞晓艳 李明节 梁汉泉 陈苑文  四川省电力公司调度中心    摘要:本文介绍了二滩水电厂多次出现的低频振荡现象和机组励磁系统,分析了低频振荡现象发生的背景和根源。现场试验表明,机组励磁系统设计存在缺陷,其伏特/赫兹(V/Hz)限幅环节限制了PSS输出信号。在二滩机组带满负荷运行,多台机组增加励磁调压时,多台机组PSS功能同时退出,致使PSS功能未能真正发挥作用。这些教训对大容量机组励磁系统设计、调试及运行等具有指导意义。 关键词:低频振荡;电力系统稳定器(PSS);伏特/赫兹(V/Hz)限制 一前言 二滩水电厂位于四川省西南部攀枝花地区,装机容量6550MW,经1100多公里的500kV输电通道向川渝和华中电网送电。根据川渝孤立电网、川渝-华中互联电网的小干扰稳定性分析,在二滩大功率远距离输电方式下,系统均存在1个与二滩、宝珠寺和铜街子机组强相关的负阻尼振荡模式。为此在二滩、宝珠寺和铜街子机组励磁系统中,投入了电力系统稳定器(以下简称PSS)附加控制功能,并经过现场调试投入运行,而且时域数字仿真表明,系统PSS配置方案可以明显改善系统阻尼特性,防治低频振荡现象的发生。  但是自2001年8月以来,二滩水电厂已多次发生低频振荡现象,而且电厂现场打印记录显示机组PSS功能一直处于投运状态。为了弄清低频振荡发生的根源,我们对多次发生低频振荡的背景和二滩机组励磁系统进行了分析,并通过现场试验,最终查明了低频振荡的根源。本文将介绍二滩水电厂多次出现的低频振荡现象、机组励磁系统及现场试验情况等,提出了在大容量机组及励磁系统设计、调试和实际运行中需注意的问题。 二低频振荡现象及特点 1.2001年8月3日低频振荡 20:47 因负荷中心电压低,四川省调通知二滩将电压调至电压曲线上限,二滩5台机组相继增加了励磁。 20:48 二滩汇报电压在532KV至539KV之间波动。 20:53 龚嘴电厂汇报7台机有功、无功均在波动,无功摆动大,有功摆动小。 20:54 洪沟站汇报500KV、220KV所有电流表计均在摆动;龙王站汇报电压在510-520KV之间波动;江油电厂汇报机组励磁电流波动大;映秀湾汇报110KV有功波动大,电压基本无波动。

电力系统振荡的结果及处理方式

电力系统振荡的结果及处理方式 2012/7/13 15:35:41 当发生短路或突然有大负荷切除或投入时,发电机与大系统之间的功角会发生变化,发电机的输出功率就会沿着发电机的功角特性曲线来回摆动,这就是电力系统的振荡。 电力系统振荡的结果有两种:一个是发电机的输出功率和负载能重新在一个点上实现平衡,经过一段时间的振荡后重新达到稳定,保持同步运行。一个是发电机的输出功率和负载能无法再在任何一个点上实现平衡,从而导致发电机失去同步。 发电机的原动机输入力矩突然变化,如:水轮机调速器不正常动作;系 统发生突然短路;大机组或大容量线路突然变化等。通常,短路是引起 系统振荡,破坏稳定运行的主要原因。 电力系统振荡的预防:预防是多方面的,有继电保护上的要求,如快速切断故障线路;也有运行操作上的要求,如避免使发电机的容量大于被 投入空载线路的充电功率,避免发电机带空载线路启动和以全电压向空载线路合闸;也有设计上的考虑,如避免发生发电机的次同步共振。 系统振荡有多种:异步振荡、同步振荡、低频振荡 异步振荡——其明显特征是,系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。如发电机、变压器和联络线的电流表,功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的

电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输 送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。 引起电力系统异步振荡的主要原因: 1、输电线路输送功率超过极限值造成静态稳定破坏; 2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间 发生较大突变等造成电力系统暂态稳定破坏; 3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步; 4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏; 5、电源间非同步合闸未能拖入同步。 异步系统振荡的一般现象: (1)发电机,变压器,线路的电压,电流及功率周期性的剧烈摆动,发 电机和变压器发出有节奏的轰鸣声。 (2)连接失去同步的发电机或系统的联络线上的电流和功率摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零一次。(3)失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。 同步振荡——其系统频率能保持相同,各电气量的波动范围不大,且振荡在有限的时间内衰减从而进入新的平衡运行状态。 低频振荡——在电力系统中,发电机经输电线路并列运行时,在负荷突变等小扰动的作用下,发电机转子之间会发生相对摇摆,这时电力系统

电力系统的低频振荡

发电机的转子角、转速,以及相关电气量,如线路功率、母线电压等发生近似等幅或增幅的振荡,因振荡频率较低,一般在0.1-2.5Hz,故称为低频振荡。 其产生的原因主要为电力系统中发电机并列运行时,在扰动下发生发电机转子间的相对摇摆,并在缺乏阻尼时持续振荡导致。 低频振荡是随着电网互联而产生的。联网初期,同步发电机之间联系紧密,阻尼绕组可产生足够的阻尼,低频振荡少有发生。随着电网互联规模的扩大,高放大倍数快速励磁技术的广泛采用,以及受经济性、环保等因素影响下电网的运行更加接近稳定极限,在世界各地许多电网陆续观察到低频振荡。 大致可分为局部模式振荡和区域间模式振荡两种。一般来说,涉及机组越多、区域越广,则振荡频率越低。 低频振荡的多重扰动特征 一般认为,低频振荡是电力系统在遭受扰动后联络线上的功率摇摆。系统动态失稳是扰动后由于阻尼不足甚至是负阻尼引起的发散振荡导致的。失稳的因素主要是系统电气阻尼不足或缺乏合适的有功配合,通常是由以下几种扰动引发的:(1)切机;(2)输电线故障或保护误动;(3)断路器设备事故;(4)损失负荷。扰动现象一般要经历产生、传播、消散的过程,在传播过程中可能引起新的扰动,同时针对扰动的操作本身也是一种扰动。所以,这些情况往往不是孤立的,而是相互关联的,在时间、空间上呈现多重现象。这就是多重扰动存在的实际物理背景。持续恶化的互相作用最终将导致系统失稳、解列,形成大规模的停电事故。 电厂系统低频振荡的现象及处理 主要现象:系统频率在一定范围内振荡,且具有与同步振荡类似现象。 处理: 1) 应根据振荡频率、振荡分布等信息正确判断低频振荡源; 2) 如振荡源为本厂,则降低机组有功,直至振荡平息; 3) 提高振荡区域系统电压; 4) 若有运行机组PSS未投入,应立即将其投入。

电力系统振荡的原因及危害

电力系统振荡的原因及危害 1前言 XXXX公司是装机容量为2×600MW的新建大型火力发电厂,它同原有XXXX公 司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。 根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁 系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003 年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2低频振荡产生原因分析及危害性 电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上, 或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列, 严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。 3PSS原理及其作用 为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁 系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机轴速度偏差(△w)以及它们的组合等。它不仅可以补偿励磁调节器的负阻尼,而且 可以增加正阻尼,使发电机有效提高遏制系统低频振荡能力。 尽管PSS已是成熟的普遍技术,但它仍是消除互联电网负阻尼低频振荡最经济有效的方法。当系统规模较小、互联程度较低时,系统振荡不明显,PSS整定不为人们所关注。但在当今大电网互联迅速发展的情况下,PSS的作用已经引起人们的高度重视。1994

低频振荡问题综述

电力系统低频振荡分析综述 1. 低频振荡概念 电力系统在某一正常状态下运行时,系统的状态变量具有一个稳态值,但是电力系统几乎时刻都受到小的干扰影响,如负荷的随机变化或风吹架空线摆动等。当系统经受扰动后,其运行状态会偏离原来的平衡点,这时希望系统在阻尼的影响下经历一个振荡过程,回到稳定的平衡运行点。在这一过程中,如果系统的阻尼不足则会出现或观测到电力系统的低频振荡现象。 所谓的低频振荡,一般有如下的定义描述。电力系统中的发电机经输电线路并列运行时,在某种扰动作用下,发生发电机转子之间的相对摇摆,当系统缺乏正阻尼时会引起持续的振荡,输电线路上的功率也发生相应的振荡。这种振荡的频率很低,范围一般是,称其为低频振荡[1]。 在互联电力系统中,低频振荡是广泛存在的现象。根据当今电力系统中出现过的低频振荡现象来看,功率振荡的频率越低时,涉及到的机组相对地就越多。研究中,按低频振荡的频率大小和所涉及的范围将其分为两类[2]或者说两种形式。 一种为区域内的振荡模式,涉及同一电厂内的发电机或者电气距离很近的几个发电厂的发电机,它们与系统内的其余发电机之间的振荡,振荡的频率约为。

另一种为互联系统区域间的振荡模式,是系统的一部分机群相对于另一部分机群的振荡,由于各区域的等值发电机具有很大的惯性常数,因此这种模式的振荡频率要比局部模式低,其频率范围约为。 关于这两种分类,可以在应用发电机经典二阶模型,并利用小干扰分析法说明低频振荡的过程中,通过讨论机组间的电气距离定性地分析出来,在本文后面的简单数学模型分析中将有说明。 由扰动引发的低频振荡受许多因素的影响,研究认为,当今电力系统发生低频振荡问题大多是由系统的阻尼不足引起。而一般来说,发电机转子在转动过程中受到机械阻尼作用,转子闭合回路、转子的阻尼绕组会产生电气阻尼作用。从互联系统自身来看,系统本身具有的自然正阻尼微弱性是发生低频振荡的内在因素。当然,在电力系统发生低频振荡时,往往是在系统中产生了负阻尼,这种负阻尼效应,使得总体的正阻尼作用减小甚至使系统的阻尼变为负。 研究认为,关于系统产生负阻尼的原因,较为确定的结论[3]有:发电机的励磁系统,尤其是高顶值倍数快速励磁系统会引起系统负阻尼;电网负荷过重时也会使系统阻尼下降;电网互联也可能导致系统的阻尼降低。 2. 简单的数学分析 由上所述,一般负担电压控制、无功功率分配等任务的发电机的励磁系统,在系统中可以提高同步发电机并联运行的稳定性,但它在

电力系统次同步谐振振荡的形态分析

作为电力系统稳定性的重要侧面,次同步谐振/振荡,从20世纪70年代至今,一直得到广泛的关注和研究。而随着电力系统的演变发展,SSR/SSO的形态和特征也处在不断的变化之中。1970年代,美国Mohave电厂发生的恶性SSR事件开启了机组轴系扭振与串补、高压直流等相互作用引发SSR/SSO的研究高潮;1990年代初开始,柔性交流输电系统(flexibleACtransmissionsystems,FACTS)技术兴起,推动了电力电子控制装置参与、影响以及抑制SSR/SSO的研究。21世纪以来,随着风电、光伏等新型可再生能源发电迅速发展,其不同于传统同步发电机的,采用变流器接入电网的方式,不仅影响传统的扭振特性,且与电网的互动正导致新的SSR/SSO形态,它们的内在机理和外在表现都跟传统SSR/SSO有很大的区别,难以融入IEEE在20世纪中后期逐步建立的术语与形态框架中,从而给该方向的研究和交流带来不便。目前,亟需针对SSR/SSO的新问题和新形态,扩展进而构建更通用的“学术语境”。 本文先简要回顾SSR/SSO的发展历史,重点讨论其形态分类,然后尝试提出一种新的分类方法,继而通过实例分析风电机组参与的新型SSR/SSO,最后讨论多形态SSR/SSO的共存与互动问题。 1 历史回顾 20世纪30年代,人们就认识到同步发电机和电动机对于电网中电抗与串补电容导致的次同步频率电流呈感应发电机(inductiongenerator,IG)特性,进而导致电气振荡或自励磁(self-excitation,SE)[1]。但是,1970年以前只是将发电机轴系看成一个单质块刚体,没有意识到机械扭振模式的参与。直到1970年底和1971年美国Mohave电厂先后发生2次大轴损坏事件,人们才认识到串补电网与汽轮机组机械系统之间相互作用可能导致扭振机械谐振(torsionalmechanicalresonance)的风险。 文[2]首次提出了SSR、SSO、感应发电机效应(inductiongeneratoreffect,IGE)和暂态扭矩放大(torqueamplified,TA)等概念。文[3]提出了扭振(模态)互作用(torsional(mode)interaction,TI)的概念,并说明其为串补输电系统的3种稳定性问题之一(其他2种是机电振荡和电气自激(electricalself-excitation)),并首次讨论了暂态扭矩(transienttorque)问题。 1974年,IEEE电力系统工程委员会的动态系统性能工作组成立了一个专门的工作小组来推动对SSR现象的认识,它在1976年首次公开发布了第1份IEEE委员会报告[4],并在1979年对该报告进行了第一次文献补充[5],将SSR的形态划分为感应电机效应(inductionmachineeffect,IME)和扭振(torsionaloscillation,TO)。此后每隔6年出版一次文献补遗[6-8],总结相关理论、分析方法与控制手段的最新进展。1977—1980年间,美国西部电网的Navajo电厂[9]、SanJuan电厂[10]相继出现SSR问题,以此为契机,学术界对SSR/SSO开展了大量的理论与实证研究。1980年,IEEE委员会在其报告中明确了SSR、SE(包括IGE/IME和TI)和STA(shafttorqueamplification)等术语定义[11]。 在发现串补电容导致SSR的同时,加拿大Lambton电厂发现电力系统稳定器(powersystemstabilizer,PPS)会恶化低阶扭振模态的阻尼,进而导致扭振[10]。1977年10月,在美国SquareButteHVDC系统调试中发现直流换流站与相邻汽轮发电机组的低阶扭振模态相互作用,导致HVDC-TI现象[12]。针对这些新情况,IEEE委员在1985年第2次文献补充[6]和新版定义[13]中增加了“装置型次同步振荡(devicedependentSSO)”的分类,将直流换流器、静止无功补偿器(staticvarcompensator,SVC)[14]、PSS、变速驱动以及其他宽频电力控制设备与邻近的汽轮机组之间相互作用引发的次同步振荡(SSO)归为这一类别,并针对HVDC、PSS这一类控制参与的次同步振荡问题首次提出了控制相互作用(controlinteraction,CI)的概念;而SSR 仍然限于汽轮机组与串补输电系统的相互作用。 1991年第3次文献补充[7]中提到极长、高并联电容补偿线路也可能引发低阶TI,并针对HVDC 引发的TI提出了次同步扭振互作用(subsynonoustorsionalinteraction,SSTI)的概念。1992年,IEEESSR工作组对SSR/SSO进行了概括性分类[15]:将SSR限定为串补电容与汽轮发电机

电力系统低频振荡

电力系统低频振荡综述 1 研究背景和意义: 随着互联的电力系统规模不断扩大,电力系统的稳定性问题也越来越突出。20世纪60年代美国的西北联合系统与西南联合系统进行互联运行时,发生了功率的增幅振荡,最终破坏了大系统间的并联运行。自此之后,低频振荡一直是电力系统稳定运行中备受关注的重要问题之一。除此之外,日本、欧洲等也先后发生过低频振荡。在我国,随着快速励磁装置使用的增加,也出现了低频振荡现象[1],如:1983 年湖南电网的凤常线、湖北电网的葛凤线;1994 年南方的互联系统;1998 年、2000年川渝电网的二滩电站的电力送出系统;2003 年2、3 月南方--香港的交直流输电系统;2005 年10 月华中电网等。以上电网都曾发生全网性功率振荡。电力系统低频振荡一旦发生,将严重威胁电网的安全稳定运行,甚至可能诱发连锁反应事故,造成严重的后果[2]。因此,对低频振荡进行深入研究并分析其控制策略具有十分重要的意义。 我国的超大规模交流同步电网的互联以及交直交混合互联电网已经初具规模,并且发展迅速。2011年12月,由我国自主研发、设计、制造和建设的,目前世界上运行电压最高、输电能力最强、技术水平最先进的交流输电工程——1000千伏晋东南—南阳—荆门特高压交流试验示范工程扩建工程正式投入运行;2012年3月,锦屏-苏南±800千伏特高压直流输电线路工程全线贯通。仿真分析和现场试验结果表[3-4]:跨区交流联网特别是弱联系交流联网将带来大扰动的暂态稳定问题和小扰动的动态稳定问题,其中,大扰动后暂态功率的大范围传播和0.1Hz左右的超低频振荡对互联电网的安全构成威胁,应采取有效

三点式振荡电路能否振荡的判别方法

三点式振荡电路能否振荡的判别方法 引言 在模拟电子技术课程中,判别振荡电路能否产生振荡的步骤的是:先看直流通路,看放大器件是否工作在放大区;再看交流通路,看是台满足振荡条件。RC振荡也好,LC振荡电路也好,振荡条件为: AF=1 此条件可分解为振幅条件和相位条件,即: 1 三点式振荡器的特点 所谓三点式振荡器,是指LC振荡器中选频网络有两个电容、一个电感或者两个电感、一个电容组成的振荡器。一般LC振荡电路在直流通路正常情况下判别能否振荡时由于振幅条件不便于判别,只看相位条件即可,只要相位条件满足,我们就说它能够振荡。振荡电路中的放大器可以是运放,也可以是由晶体管或者场效应管组成。对于由运放组成的电路,相位条件相对来说比较好判别;由晶体管或者场效应管组成的放大电路,要判别相位条件对学生来说有一定的难度。要正确判别相位条件需要先分析放大电路的组态,再看反馈信号与输出信号之间的相位差,两者判断错一个也得不到正确的结果。对此,根据多年来对模拟电子技术的讲解和对大量的振荡电路的分析,先把自己的一点总结供大家讨论。 我们知道,三点式选频网络中应该有两个电容、一个电感或者两个电感、一个电容组成,如图1所示,为方更叙述,现把选频网络中每两个电抗器件的结点给出一编号。 在分析由晶体管或者场效应管组成的三点式振荡电路时,先看直流通路,在直流通路正常的情况下,交流通路只需要观察是否满足射同基反(或者源同栅反)。下面结合具体的电路进行说明。 2 电容三点式振荡电路 如图2和图3所示,是两个电容三点式的振荡电路。我们应用射同基反判断相位条件是否满足。

先看图2,图2中晶体管的发射极接的是三点式选频网络的2端,集电极接的是1端,基极在交流通路中接地,所以基极相当于接的是3端。发射极与基极问接的单个选频器件是电容C2,发射极与集电极之间接的是电容Cl,发射极与其他两个电极之间接的是电抗性质相同的电容,所以射同已经满足;基极与发射极接的电容C2,基极与集电极之间接的单个选频器件是电感L,电感与电容是两个电抗性质相反的器件,所以基反也是满足的,图2电路支流通路正常,又满足射同基反的条件,所以是可以振荡的。 再看图3。放大器的组态虽然与图2不同,按射同基反分析仍然满足射同基反,直流通路正常,该电路也可以振荡。如果用相位条件判别也是满足的。 如果用相位条件来判断图2和图3中两个电路,可以得到: 注意观察图2和图3,电容二点式电路中选频网络的2端是电容与电容的结点,1和3端是电容与电感的结点,所以分析电容三点式振荡电路的相位条件时只需要看选频网络的2端是否直接或者通过一电阻与发射极(或者场效应管的源极)相连,l和3端是否直接或者通过一电阻与基极和集电极相连。图2中符去掉基极电容Cb相位条件仍然满足,电路只要振幅条件满足仍可振荡。 3 电感三点式振荡电路 图4所示是一个电感三点式的振荡电路。用同样的方法观察图中的电路发现晶体管的发射极与其他两个电极之间接的是电感,而基极与发射极之间接的是电感,与集电极之间接的是电容,满足射同基反,也就是满足相位条件,直流通路正常,在幅度条件满足的情况下可以进行正弦波振荡。用相位条件来判别可得到:

相关文档
最新文档