高中数学必修1基本初等函数拔高训练

合集下载

人教版高中数学必修一习题基础综合拔高摘录汇集

人教版高中数学必修一习题基础综合拔高摘录汇集

1.函数210)2()5(--+-=x x y ( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 2.设函数y=lg(x2-5x)的定义域为M ,函数y=lg(x -5)+lgx 的定义域为N ,则( ) A .M ∪N=R B .M=N C .M ⊇N D .M ⊆N 3.函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数4.已知函数)(1)()(x f x f x g -=,其中log2f(x)=2x ,x ∈R ,则g(x)( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数D .是偶函数又是减函数5( )6.函数2422-+=x x y 的单调递减区间是 ( )A .]6,(--∞B .),6[+∞-C .]1,(--∞D .),1[+∞-7.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数的(参考数据:1.14=1.46,1.15=1.61) ( )A .10%B .16.4%C .16.8%D .20%8.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R9.如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<10.已知2)(xx e e x f --=,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 一、 DCCDA ABADA11.幂函数f(x)的图象过点,则f(x)的解析式是.12.计算⎪⎪⎭⎫ ⎝⎛-÷++-33433233421428a b a ab a ab a = . 1α3α4α2α13.将函数xy 2=的图象向左平移一个单位,得到图象C1,再将C1向上平移一个单位得到图象C2,作出C2关于直线y=x 对称的图象C3,则C3的解析式为 . 11、)0()(34≥=x x x f 12、32a 13、1)1(log 2--=x y15.(12分)求函数23log (253)y x x =--的单调区间。

高一数学基本初等函数提高训练及答案

高一数学基本初等函数提高训练及答案

数学1(必修)第二章 基本初等函数(1)一、选择题1 函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为( ) A41 B 21 C2 D 4 2 已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A (0,1) B (1,2) C (0,2)D ∞[2,+) 3 对于10<<a ,给出下列四个不等式①)11(log )1(log a a a a +<+ ②)11(log )1(log a a a a +>+ ③a a a a 111++< ④a a a a 111++>其中成立的是( )A ①与③B ①与④C ②与③D ②与④4 设函数1()()lg 1f x f x x =+,则(10)f 的值为( )A 1B 1-C 10D 101 5 定义在R 上的任意函数()f x 都可以表示成一个奇函数()g x 与一个 偶函数()h x 之和,如果()lg(101),x f x x R =+∈,那么( )A ()g x x =,()lg(10101)x x h x -=++B lg(101)()2x x g x ++=,x lg(101)()2x h x +-= C ()2x g x =,()lg(101)2x x h x =+- D ()2x g x =-, lg(101)()2x x h x ++= 6 若ln 2ln 3ln 5,,235a b c ===,则( ) A a b c << B c b a <<C c a b <<D b a c <<二、填空题1 若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________2 若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________3 函数y =______;值域是______4 若函数()11x m f x a =+-是奇函数,则m 为__________5 求值:22log 3321272log 8-⨯+=__________ 三、解答题1 解方程:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++(2)2(lg )lg 1020x x x +=2 求函数11()()142x x y =-+在[]3,2x ∈-上的值域 3 已知()1log 3x f x =+,()2log 2x g x =,试比较()f x 与()g x 的大小 4 已知()()110212x f x x x ⎛⎫=+≠ ⎪-⎝⎭, ⑴判断()f x 的奇偶性; ⑵证明()0f x >(数学1必修)第二章 基本初等函数(1)参考答案一、选择题1 B 当1a >时1log 21,log 21,,2a a a a a ++==-=与1a >矛盾; 当01a <<时11log 2,log 21,2a a a a a ++==-=; 2 B 令[]2,0,0,1u ax a =->是的递减区间,∴1a >而0u >须恒成立,∴min 20u a =->,即2a <,∴12a <<;3 D 由10<<a 得111,11,a a a a<<+<+②和④都是对的; 4 A 11(10)()1,()(10)1,(10)(10)111010f f f f f f =+=-+=-++ 5 C ()()(),()()()()(),f x g x h x f x g x h x g x h x =+-=-+-=-+6 C a b c =====二、填空题1 (1,)+∞ 2210ax x ++>恒成立,则0440a a >⎧⎨∆=-<⎩,得1a > 2 []0,1 221ax x ++须取遍所有的正实数,当0a =时,21x +符合条件;当0a ≠时,则0440a a >⎧⎨∆=-≥⎩,得01a <≤,即01a ≤≤3 [)[)0,,0,1+∞ 111()0,()1,022x x x -≥≤≥;11()0,01()1,22x x >≤-<4 2 ()()11011x x m m f x f x a a --+=+++=--5 19 293(3)18lg1019-⨯-+=+=三、解答题1 解:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++ 33121x x x x -+=-+,得7x =或0x =,经检验0x =为所求 (2)2(lg )lg lg lg lg 1020,(10)20x x x x x x x +=+= 10,x =1或10,经检验10,x =1或10为所求 2 解:21111()()1[()]()14222x x x x y =-+=-+ 而[]3,2x ∈-,则11()842x ≤≤ 当11()22x =时,min 34y =;当1()82x =时,max 57y = ∴值域为3[,57]43 解:3()()1log 32log 21log 4x x x f x g x -=+-=+, 当31log 04x +>,即01x <<或43x >时,()()f x g x >; 当31log 04x +=,即43x =时,()()f x g x =; 当31log 04x +<,即413x <<时,()()f x g x < 4 解:(1)1121()()212221x x x x f x x +=+=⋅-- 2121()()221221x x x x x x f x f x --++-=-⋅=⋅=--,为偶函数 (2)21()221x x x f x +=⋅-,当0x >,则210x ->,即()0f x >; 当0x <,则210x -<,即()0f x >,∴()0f x >。

高中数学必修一拔高试题(试题复习)

高中数学必修一拔高试题(试题复习)

目录第一讲集合概念及其基本运算第二讲函数的概念及解析式第三讲函数的定义域及值域第四讲函数的值域第五讲函数的单调性第六讲函数的奇偶性与周期性第七讲函数的最值第八讲指数运算及指数函数第九讲对数运算及对数函数第十讲幂函数及函数性质综合运用第一讲 集合的概念及其基本运算知识点一 元素与集合的关系1.已知A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则实数a 构成的集合B 的元素个数是( ) A .0 B .1 C .2 D .3知识点二 集合与集合的关系1.已知集合A ={x|x 2-3x +2=0,x∈R },B ={x|0<x<5,x∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4【变式探究】 (1)数集X ={x|x =(2n +1)π,n∈Z }与Y ={y|y =(4k±1)π,k∈Z }之间的关系是( )A .X ⊂YB .Y ⊂XC .X =YD .X≠Y(2)设U ={1,2,3,4},M ={x∈U|x 2-5x +p =0},若∁U M ={2,3},则实数p 的值是( ) A .-4 B .4 C .-6 D .6 知识点三 集合的运算1.若全集U ={x∈R |x 2≤4},则集合A ={x∈R ||x +1|≤1}的补集A C U 为( )A .{x∈R |0<x<2}B .{x∈R |0≤x<2}C.{x∈R |0<x≤2} D.{x∈R |0≤x≤2} 2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(AC U )∩(B C U )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}【变式探究1】若全集U ={a ,b ,c ,d ,e ,f},A ={b ,d},B ={a ,c},则集合{e ,f}=( ) A .A∪B B.A∩B C.(A C U )∩(B C U ) D .(A C U )∪(B C U ) 典型例题:例1:满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1 ,a 2, a 3}={a 1,a 2}的集合M 的个数是 ( )A.1B.2C.3D.4例2:设A={x|1<x<2},B={x|x >a},若A B ,则a 的取值范围是______变式练习:1.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ∩N ≠,则k 的取值范围是 2.已知全集}{R x x I∈=,集合}31{≥≤=x x x A 或,集合}1{+<<=k x k x B ,且=B AC I I )(,则实数k 的取值范围是3.若集合},012{2R x x ax x M ∈=++=只有一个元素,则实数的范围是4.集合A = {x | –1<x <1},B = {x | x <a }, (1)若A ∩B =∅,求a 的取值范围; (2)若A ∪B = {x | x <1},求a 的取值范围.例3:设A = {x | x 2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若B A ⊆,求实数a 组成的集合,并写出它的所有非空真子集.例4:定义集合A B 、的一种运算:121*{|A B x x x x x A ==+∈,, 2}x B ∈,若{123}A =,,,{12}B =,,则B A *中所有元素的和为 .例5:设A 为实数集,满足a A ∈⇒11A a∈-,1A ∉, (1)若2A ∈,求A;(2)A 能否为单元素集?若能把它求出来,若不能,说明理由;(3)求证:若a A ∈,则11Aa -∈基础练习:1. 由实数x,-x,|x |,332,x x -所组成的集合,最多含( ) (A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素2. 下列结论中,不正确的是( )A.若a ∈N ,则-a ∉NB.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R ,则R a ∈33. 已知A ,B 均为集合U={1,3,5,7,9}子集,且A∩B={3},C U B∩A={9},则A=( ) (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}4. 设集合A={1, 3, a}, B={1, a 2-a+1},若B ⊆A, 则A ∪B=__________5. 满足{}0,1,2{0,1,2,3,4,5}A ⊆的集合A 的个数是_____个。

高中数学必修一第二章 基本初等函数 2-1 指数函数课时提升作业及解析

高中数学必修一第二章 基本初等函数 2-1 指数函数课时提升作业及解析

a>0 且 a≠1.
(1)求 a 的值.
(2)求函数 y=f (x≥0)的值域.
【解析】(1)函数图象经过点
,所以 a2-1= ,则 a= .
,其中
(2)由(1)知函数为 f(x)=
(x≥0),由 x≥0,得 x-1≥-1.于是 0<

=2,所以函数的值域为(0,2].
(20 分钟 40 分) 一、选择题(每小题 5 分,共 10 分) 1.(2015·南昌高一检测)函数 f(x)=ax-b 的图象如图所示,其中 a,b 均为常数,则 下列结论正确的是 ( )
【解题指南】从直线位置得出 b 与 1 的大小及 a 的正负,从而判断 y=bax 的增减性. 【解析】选 A.选项 A 中,由直线位置可知 a>0,0<b<1,所以 y=bax 为减函数,故 A 正确.选项 B 中 a>0,b>1,所以 y=bax 为增函数,故 B 项不正确.选项 C 中,a<0,b>1,
2.(2015·昆明高一检测)化简[
的结果为 ( )
A.5
B.
C.-
D.-5
【解析】选 B.[
=(
= == .
【补偿训练】计算[(- )2 的结果是 ( )
A.
B.-
C.
D.-
【解析】选 C.[(- )2 =(
=( )-1= = ,故选 C.
3.
+(-1)-1÷0.75-2+
=( )
A.
B.
C.-
D.-
所以
= =.
的值.
课时提升作业(2)
指数幂及运算
(15 分钟 30 分) 一、选择题(每小题 4 分,共 12 分)

(word完整版)高中数学必修1基本初等函数拔高训练

(word完整版)高中数学必修1基本初等函数拔高训练

数学1(必修)第二章 基本初等函数(1)
[提高训练C 组]
一、选择题
1. 函数 上的最大值和最小值之和为 , 则 的值为( )
2. A. B. C. D.
已知 在 上是 的减函数, 则 的取值范围是( )
. A....B... C.... D..
3.对于 , 给出下列四个不等式
①)11(log )1(log a a a a +<+ ②)11(log )1(log a a a a +>+ ③a a a a 111++< ④a a a a 1
11++> 其中成立的是( )
A. ①与③
B. ①与④
C. ②与③
D. ②与④
4.设函数 , 则 的值为( )
A. B. C. D.
5. 定义在 上的任意函数 都可以表示成一个奇函数 与一个偶函数 之和, 如果 , 那么( )
A. ,
B. ,
C . ,
D . ,
6. 若 ,则( )
A. B. C. D.
二、填空题
1. 若函数 的定义域为 , 则 的范围为__________。

2.若函数 的值域为 , 则 的范围为__________。

3. 函数 的定义域是______;值域是______.
4.若函数 是奇函数, 则 为__________。

5. 求值: __________。

三、解答题
1. 解方程: (1)
(2)2(lg )lg 10
20x x x +=
2. 求函数在上的值域。

3. 已知, ,试比较与的大小。

4. 已知,
⑴判断的奇偶性;⑵证明.。

高一数学必修一第二章基本初等函数练习题难题带答案

高一数学必修一第二章基本初等函数练习题难题带答案

高一数学必修一基本初等函数一.选择题(共30小题)1.设a=log43,b=log54,c=2﹣0.01,则a,b,c的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a2.已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a3.函数f(x)=(|x|﹣7)e|x|则()A.B.f(0.76)<f(60.5)<f(log0.76)C.D.4.已知P(x,y)为函数f(x)=图象上一动点,则的最大值为()A.B.C.2D.5.设a=3,b=3log3π,c=πlogπ3,则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a6.若a=0.220.33,b=0.330.22,c=log0.330.22,则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a7.已知a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>a>b B.a>c>b C.c>b>a D.b>a>c8.已知2a=log2|a|,,c=sin c+1,则实数a,b,c的大小关系是()A.b<a<c B.a<b<c C.c<b<a D.a<c<b9.已知实数a,b,c分别满足2a=﹣a,log0.5b=b,log2c=,那么()A.a<b<c B.a<c<b C.b<c<a D.c<b<a10.已知a=log1213,b=(),c=log1314,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>c>a D.a>c>b11.已知a>b>0,ab=1,设,则log x2x,log y2y,log z2z的大小关系为()A.log x2x>log y2y>log z2z B.log y2y>log z2z>log x2xC.log x2x>log z2z>log y2y D.log y2y>log x2x>log z2z12.已知,,c=log23,则a,b,c的大小关系为()A.b>a>c B.a>c>b C.a>b>c D.b>c>a13.下列命题为真命题的个数是()①②③A.0B.1C.2D.314.设,实数c满足e﹣c=lnc,(其中e为自然常数),则()A.a>b>c B.b>c>a C.b>a>c D.c>b>a15.若实数x,y,z满足,则x,y,z的大小关系是()A.x<y<z B.x<z<y C.z<x<y D.z<y<x16.已知x1=ln,x2=e,x3满足e=lnx3,则下列各选项正确的是()A.x1<x3<x2B.x1<x2<x3C.x2<x1<x3D.x3<x1<x217.已知t>1,x=log2t,y=log3t,z=log5t,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z18.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|恰有6个不同零点,则a的取值范围是()A.(,]∪(5,7] B.(,]∪(5,7]C.(,]∪(3,5] D.(,]∪(3,5]19.已知函数f(x)=,g(x)=x2﹣2x,设a为实数,若存在实数m,使f(m)﹣2g(a)=0,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1]∪[3,+∞)C.[﹣1,3] D.(﹣∞,3]20.已知函数y=f(x)(x∈R)满足f(x+2)=2f(x),且x∈[﹣1,1]时,f(x)=﹣|x|+1,则当x∈[﹣10,10]时,y=f(x)与g(x)=log4|x|的图象的交点个数为()A.13B.12C.11D.1021.设a=log46,,,则()A.a>b>c B.b>c>a C.a>c>b D.c>b>a22.已知实数a>0,b>0,a≠1,且满足lnb=,则下列判断正确的是()A.a>b B.a<b C.log a b>1D.log a b<123.设a=π﹣e,b=lnπ﹣1,c=eπ﹣e e,则()A.a<b<c B.b<c<a C.c<b<a D.b<a<c24.若函数f(x)=在区间[2019,2020]上的最大值是M,最小值是m,则M﹣m()A.与a无关,但与b有关B.与a无关,且与b无关C.与a有关,但与b无关D.与a有关,且与b有关25.正数a,b满足1+log2a=2+log3b=3+log6(a+b),则的值是()A.B.C.D.26.已知实数a,b,c,d满足,则(a﹣c)2+(b﹣d)2的最小值为()A.8B.4C.2D.27.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+2=0上(其中m,n>0),则的最小值等于()A.10B.8C.6D.428.若m,n,p∈(0,1),且log3m=log5n=lgp,则()A.B.C.D.29.已知a=log2e,b=ln3,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.b>c>a30.若函数f(x)=ln(ax2﹣2x+3)的值域为R,则实数a的取值范围是()A.[0,]B.(,+∞)C.(﹣∞,]D.(0,]二.填空题(共6小题)31.已知函数f(x)在R上连续,对任意x∈R都有f(﹣3﹣x)=f(1+x);在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;若f(2a﹣1)<f(3a﹣2),则实数a的取值范围是.32.若存在正数x,y,使得(y﹣2ex)(lny﹣lnx)z+x=0(其中e为自然对数的底数),则实数z的取值范围是33.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.34.已知函数f(x)的图象与函数g(x)=2x关于直线y=x对称,令h(x)=f(1﹣|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0,0)对称;(2)h(x)的图象关于y轴对称;(3)h(x)的最小值为0;(4)h(x)在区间(﹣1,0)上单调递增.中正确的是.35.设a,b为非零实数,x∈R,若,则=.36.函数f(x)=log2x在区间[a,2a](a>0)上的最大值与最小值之差为.三.解答题(共4小题)37.已知函数f(x)=的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=(x+k)在[2,3]上有解,求k的取值范围.38.已知函数f(x)=log a(2﹣x)﹣log a(2+x)(a>0且a≠1),且1是函数y=f(x)+x的零点.(1)求实数a的值;(2)求使f(x)>0的实数x的取值范围.39.已知函数f(x)=(a2﹣3a+3)a x是指数函数.(1)求f(x)的解析式;(2)判断函数F(x)=f(x)﹣f(﹣x)的奇偶性,并证明;(3)解不等式log a(1﹣x)>log a(x+2).40.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=(﹣x+1)(1)求f(3)+f(﹣1);(2)求函数f(x)的解析式;(3)若f(a﹣1)<﹣1,求实数a的取值范围.参考答案与试题解析一.选择题(共30小题)1.【解答】解:因为0=log41<a=log43<log44=1,0<b=log54<log55=1,c=2﹣0.01>2≈0.92,log54=≈0.86,==log43×log45<()2=()2<1,∴a,b,c的大小关系为a<b<c.故选:B.2.【解答】解:,,=,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x)=,则f′(x)=,当x=e时,f′(x)=0,当x>e时,f′(x)<0,当0<x<e时,f′(x)>0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.3.【解答】解,60.5>1>0.76>0>log0.76,函数f(x)为偶函数,则,当x>0时,f(x)=(x﹣7)e x,则f′(x)=(x﹣6)e x,易知函数f(x)在(0,6)上单调递减,又,故,即﹣log0.76<6,又,故,即﹣log0.76>3,则0<0.76<1<60.5<﹣log0.76<6,所以f(0.76)>f(60.5)>f(﹣log0.76)=f(log0.76),故选:D.4.【解答】解:设Q(,1),原点O,则=(,1),=(x,y),∴即.∴当OP与f(x)在y轴右侧相切时取最大值,设直线y=kx(k>0)与函数f(x)相切于点P0(x0,y0),y′=k,f′(x)=2x,则,解得.即切点P0(,),∴,即的最大值为.故选:D.5.【解答】解:构造函数f(x)=(x>1),则f′(x)=,当x∈(1,e2)时,f′(x)>0,则f(x)在(1,e2)上为增函数,∴f(π)>f(3),即>,∴>,即3log3π>πlogπ3,则b>c;设g(x)=,则g′(x)=,当x>3时,g′(x)>30ln3﹣1>0,∴g(x)在(3,+∞)上为增函数,则g(π)>g(3)=0,即>π,则3π>π3.又πlogπ3=>.∴a<c<b.故选:B.6.【解答】解:由1>a=0.220.33>0,1>b=0.330.22>0,c=log0.330.22>log0.330.33=1,所以c>a,且c>b;又ln0.220.33=0.33ln0.22,ln0.330.22=0.22ln0.33;不妨设0.33ln0.22<0.22ln0.33,则有<;构造函数f(x)=,x>0,所以f′(x)=,令f′(x)=0,解得x=e;所以x∈(0,e)时,f′(x)>0,f(x)是单调增函数;所以f(0.22)<f(0.33),即<,所以b>a;综上知,c>b>a.故选:D.7.【解答】解:已知a,b,c∈R,令==﹣=﹣1,则:,所以c>1.由于3b>0,且,故lnb<0,解得0<b<1,同理2a>0,且,故lna<0,解得0<a<1.由于0<a<1,0<b<1,==﹣<0,所以2a<3b,故lnb<lna,整理得b<a,所以c>1>a>b>0.故选:A.8.【解答】解:作出函数y=2x和y=log2|x|的图象,由图1可知,交点A的横坐标a<0;作出函数y=和y=的图象,由图2可知,交点B的横坐标0<b<1;作出函数y=x和y=sin x+1的图象,由图3可知,交点C的横坐标c>1所以,a<b<c.故选:B.9.【解答】解:∵log0.5b=﹣log2b=b,∴log2b=﹣b,在同一坐标系内画出函数y=2x,y=﹣x,y=log2x,y=的图象.可知a<0<b<1<c.故选:A.10.【解答】解:=,∵=<1,∴log1314<log1213,且log1314>1,,∴a>c>b.故选:D.11.【解答】解:,=,,∵a>b>0,ab=1,∴a>1>b>0,∴,log2(a+b)<2,∴,∴,∴,又0<,∴,∴log y2y>log z2z>log x2x.故选:B.12.【解答】解:根据指数运算与对数运算的性质,>3,1<<2,1<c=log23<2,设b=,c=log23,由于函数m=log2t为增函数,由于的值接近于4,所以a>b>c.故选:C.13.【解答】解:构造函数f(x)=,x∈(0,+∞),∴,令f'(x)=0得:x=e,∵当x∈(0,e)时,f'(x)>0,f(x)单调递增;当x∈(e,+∞)时,f'(x)<0,f(x)单调递减,∴f(e)>f(3)>f(π),即,故①正确,②错误,构造函数g(x)=,x∈(0,+∞),∵,令g'(x)=0得:x=e,∵当x∈(0,e)时,g'(x)<0,g(x)单调递减;当x∈(e,+∞)时,g'(x)>0,g(x)单调递增,∴g(e)<g(3),即0<,∴ln3<,∴,故③正确,∴真命题的个数是2个,故选:C.14.【解答】解:∵e﹣c>0,∴lnc>0,∴c>1,∴,∴,∴1<c<2,又,∴b>c>a.故选:B.15.【解答】解:设=p,∴p>0,设y1=log2x,y2=log3y,y3=2z,作出3个函数的图象,如图所示:由图可知:z<x<y,故选:C.16.【解答】解:依题意,因为y=lnx为(0,+∞)上的增函数,所以x1=ln<ln1=0;因为y=e x为R上的增函数,且e x>0,所以0<x2=e<e0=1;x3满足e=lnx3,所以x3>0,所以>0,所以lnx3>0=ln1,又因为y=lnx为(0,+∞)的增函数,所以x3>1,综上:x1<x2<x3.故选:B.17.【解答】解:∵t>1,∴lgt>0.又0<lg2<lg3<lg5,∴2x=2>0,3y=3>0,5z=>0,∴=>1,可得5z>2x.=>1.可得2x>3y.综上可得:3y<2x<5z.故选:D.18.【解答】解:首先将函数g(x)=f(x)﹣log a|x|恰有6个零点,这个问题转化成f(x)=log a|x|的交点来解决.数形结合:如图,f(x+2)=f(x),知道周期为2,当﹣1<x≤1时,f(x)=x3图象可以画出来,同理左右平移各2个单位,得到在(﹣7,7)上面的图象,以下分两种情况:(1)当a>1时,log a|x|如图所示,左侧有4个交点,右侧2个,此时应满足log a5≤1<log a7,即log a5≤log a a<log a7,所以5≤a<7.(2)当0<a<1时,log a|x|与f(x)交点,左侧有2个交点,右侧4个,此时应满足log a5>﹣1,log a7≤﹣1,即log a5<﹣log a a≤log a7,所以5<a﹣1≤7.故≤a<综上所述,a的取值范围是:5≤a<7或≤a<,故选:A.19.【解答】解:∵g(x)=x2﹣2x,设a为实数,∴2g(a)=2a2﹣4a,a∈R,∵y=2a2﹣4a,a∈R,∴当a=1时,y最小值=﹣2,∵函数f(x)=,f(﹣7)=6,f(e﹣2)=﹣2,∴值域为[﹣2,6]∵存在实数m,使f(m)﹣2g(a)=0,∴﹣2≤2a2﹣4a≤6,即﹣1≤a≤3,故选:C.20.【解答】解:由题意,函数f(x)满足:定义域为R,且f(x+2)=2f(x),当x∈[﹣1,1]时,f(x)=﹣|x|+1;在同一坐标系中画出满足条件的函数f(x)与函数y=log4|x|的图象,如图:由图象知,两个函数的图象在区间[﹣10,10]内共有11个交点;故选:C.21.【解答】解:,,,∵0<log34<log35<log36,∴,∴a>b>c.故选:A.22.【解答】解:∵lnb=,∴lnb﹣lna=,构造函数∴f(x)=;∴==;∴≥0;∴f(x)在(0,+∞)单调递增.且f(1)=0;当x∈(0,1)时,f(x)<0,当x∈(1.+∞)时f(x)>0;∵a≠1∴当0<a<1时,f(a)<0⇒0即lnb﹣lna<0⇒b<a,∴lnb<lna<0⇒⇒log a b>1,当a>1时,f(a)>0⇒即lnb﹣lna>0⇒b>a,∴lnb>lna>0⇒⇒log a b>1,故选:C.23.【解答】解:∵a=π﹣e>0,b=lnπ﹣1=lnπ﹣lne>0,c=eπ﹣e e>0;设y=lnx,则=,表示了连接两点(π,lnπ),(e,lne)的割线的斜率,而y'=,当x>1时,曲线切线的斜率0<k<1;故0<=<1,故b<a;设y=e x,则=,表示了连接两点(π,eπ),(e,e e)的割线的斜率,而y'=e x,当x>1时,曲线切线的斜率k>1;故=>1,故c>a;故b<a<c;故选:D.24.【解答】解:,令,则y=2019t2+bt+a的最大值是M,最小值是m,而a是影响图象的上下平移,此时最大和最小值同步变大或变小,故M﹣m与a无关,而b是影响图象的左右平移,故M﹣m与b有关,故选:A.25.【解答】解,依题意,设1+log2a=2+log3b=3+log6(a+b)=k,则a=2k﹣1,b=3k﹣2,a+b=6k﹣3,所以=====,故选:A.26.【解答】解:∵实数a,b,c,d满足,∴b=lna,d=c+1.考查函数y=lnx,与y=x+1.∴(a﹣c)2+(b﹣d)2就是曲线y=lnx与直线y=x+1之间的距离的平方值,对曲线y=lnx求导:y′=,与直线y=x+1平行的切线斜率k=1=,解得:x=1,将x=1代入y=lnx得:y=0,即切点坐标为(1,0),∴切点(1,0)到直线y=x+1的距离d==,即d2=2,则(a﹣c)2+(b﹣d)2的最小值为2.故选:C.27.【解答】解:令x+3=1,求得x=﹣2,可得函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A(﹣2,﹣1),若点A在直线mx+ny+2=0上(其中m,n>0),则﹣2m﹣n+2=0,即2m+n=2.由基本不等式可得2≥2,即mn≤,即≥2,当且仅当2m=n=1时,取等号.则==≥4,故选:D.28.【解答】解:∵m,n,p∈(0,1),且log3m=log5n=lgp=k,∴lgm,lgn,lgp<0,m=3k,n=5k,p=10k,∴==,==,==,因为,=53=125,所以,同理=5×5=25,=10,所以,所以>0,又因为y=x k(k<0)在(0,+∞)上单调递减,∴即<<.故选:A.29.【解答】解:根据题意,c=log=ln2<lne=1,则c<1,ln3>ln2,∴c<b,a=log2e>log22=1,即a>c,ln3﹣log2e=ln3﹣=,∵2=lne2>ln6=ln2+ln3>2,∴<1,即ln2ln3<1,则ln3﹣log2e=ln3﹣=<0,即ln3<log2e,即a>b,综上a>b>c,故选:A.30.【解答】解:若函数f(x)=ln(ax2﹣2x+3)的值域为R,即有t=ax2﹣2x+3取得一切的正数,当a=0时,t=3﹣2x取得一切的正数,成立;当a<0不成立;当a>0,△≥0即4﹣12a≥0,解得0<a≤,综上可得0≤a≤.故选:A.二.填空题(共6小题)31.【解答】解:由f(﹣3﹣x)=f(1+x)可知函数f(x)关于直线x=﹣1对称;在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;可知函数f(x)在区间(﹣∞,﹣1)上单调递减,由对称性可知函数f(x)在区间(﹣1,+∞)上单调递增,不妨设f(x)=(x+1)2,则由f(2a﹣1)<f(3a﹣2)可得4a2<(3a﹣1)2,整理得5a2﹣6a+1>0,即(a﹣1)(5a﹣1)>0,解得或a>1,所以实数a的取值范围是.故答案为:.32.【解答】解:则(y﹣2ex)(lny﹣lnx)z+x=0可化为:,令t=,得(t﹣2e)lnt=﹣.令f(t)=(t﹣2e)lnt,(t>0),则f′(t)=g(t)=lnt+1﹣,则g′(t)=,故g(t)为(0,+∞)上的增函数,又因为f′(e)=g(e)=1+1﹣2=0,故当t∈(0,e)时,f′(t)<0,当t>e时,f′(t)>0,所以f(t)在(0,e)上单调递减,在(e,+∞)上单调递增,所以f(t)在(0,+∞)存在最小值f(e)=﹣e,即f(t)的值域为(﹣e,+∞),∴﹣∈(﹣e,+∞),所以z∈(﹣∞,0)∪[,+∞),故填:(﹣∞,0)∪[,+∞),33.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].34.【解答】解:由于函数f(x)的图象与函数g(x)=2x关于直线y=x对称,故函数f(x)与函数g(x)=2x互为反函数.故函数f(x)=log2x.∴h(x)=f(1﹣|x|)=log2(1﹣|x|),故函数h(x)是偶函数,图象关于y对称,故(2)正确而(1)不正确.函数h(x)的定义域为(﹣1,1),在(﹣1,0)上是增函数,在(0,1)上是减函数,故(4)正确.故当x=0时,函数h(x)取得最大值为0,故(3)不正确.故答案为②④.35.【解答】解:由成立,得=(sin2x+cos2x)2,化简得:,即,∴,又sin2x+cos2x=1,得,.∴.则==•(sin2x+cos2x)=.故答案为:.36.【解答】解:∵f(x)=log2x在区间[a,2a]上是增函数,∴f(x)max﹣f(x)min=f(2a)﹣f(a)=log22a﹣log2a=1.故答案为:1.三.解答题(共4小题)37.【解答】解:(1)函数f(x)=的图象关于原点对称,∴f(x)+f(﹣x)=0,即+=0,∴()=0,∴=1恒成立,即1﹣a2x2=1﹣x2,即(a2﹣1)x2=0恒成立,所以a2﹣1=0,解得a=±1,又a=1时,f(x)=无意义,故a=﹣1;(2)x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,即+(x﹣1)<m,∴(x+1)<m在(1,+∞)恒成立,由于y=(x+1)是减函数,故当x=1,函数取到最大值﹣1,∴m≥﹣1,即实数m的取值范围是m≥﹣1;(3)f(x)=在[2,3]上是增函数,g(x)=(x+k)在[2,3]上是减函数,∴只需要即可保证关于x的方程f(x)=(x+k)在[2,3]上有解,下解此不等式组.代入函数解析式得,解得﹣1≤k≤1,即当﹣1≤k≤1时关于x的方程f(x)=(x+k)在[2,3]上有解.38.【解答】解:(1)∵1是函数y=f(x)+x的零点,∴f(1)=﹣1,即log a(2﹣1)﹣log a(2+1)+1=0,即log a3=1,解得a=3.(2)由(1)可知函数f(x)是递增函数,f(x)>0得log3(2﹣x)>log3(2+x),所以:有解得﹣2<x<0,所使f(x)>0的实数x的取值集合为{x|﹣2<x<0}.39.【解答】解:(1)a2﹣3a+3=1,可得a=2或a=1(舍去),∴f(x)=2x;(2)F(x)=2x﹣2﹣x,∴F(﹣x)=﹣F(x),∴F(x)是奇函数;(3)不等式:log2(1﹣x)>log2(x+2),即1﹣x>x+2>0,∴﹣2<x<﹣,解集为{x|﹣2<x<﹣}.40.【解答】解:(I)∵f(x)是定义在R上的偶函数,x≤0时,f(x)=(﹣x+1),∴f(3)+f(﹣1)=f(﹣3)+f(﹣1)=4+2=﹣2﹣1=﹣3;(II)令x>0,则﹣x<0,f(﹣x)=(x+1)=f(x)∴x>0时,f(x)=(x+1),则f(x)=.(Ⅲ)∵f(x)=(﹣x+1)在(﹣∞,0]上为增函数,∴f(x)在(0,+∞)上为减函数∵f(a﹣1)<﹣1=f(1)∴|a﹣1|>1,∴a>2或a<0。

2022版数学人教A版必修1基础训练:第二章+基本初等函数(Ⅰ)综合拔高练含解析

2022版数学人教A版必修1基础训练:第二章+基本初等函数(Ⅰ)综合拔高练含解析

第二章基本初等函数(Ⅰ)2.1~2.3综合拔高练五年高考练考点1指数式与对数式的恒等变形1.(2020课标全国Ⅲ,4,5分,)logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的,其中K为最大确诊病例数.当单位:天)的logistic模型:I(t)=K1+e-0.23(t-53)I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3)()A.60B.63C.66D.692.(2020新高考Ⅰ,6,5分,)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天考点2指数函数、对数函数和幂函数的综合运用3.(2019课标全国Ⅰ,3,5分,)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<cB.a<c<bC.c<a<bD.b<c<a)-0.8,c=log0.70.8,则a,b,c的大小关系为4.(2020天津,6,5分,)设a=30.7,b=(13()A.a<b<cB.b<a<cC.b<c<aD.c<a<b5.(2020课标全国Ⅰ,12,5分,)若2a+log2a=4b+2log4b,则()A.a >2bB.a <2bC.a >b 2D.a <b 26.(2020课标全国Ⅱ,9,5分,)设函数f (x )=ln|2x +1|-ln|2x -1|,则f (x ) ( )A.是偶函数,且在12,+∞单调递增 B.是奇函数,且在-12,12单调递减 C.是偶函数,且在-∞,-12单调递增 D.是奇函数,且在-∞,-12单调递减 7.(2019浙江,6,4分,)在同一直角坐标系中,函数y =1a x ,y =log a (x+12)(a >0,且a ≠1)的图象可能是( )8.(2018课标全国Ⅲ,7,5分,)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A.y =ln (1-x ) B.y =ln (2-x ) C.y =ln (1+x )D.y =ln (2+x )9.(2020课标全国Ⅱ,11,5分,)若2x -2y <3-x -3-y ,则( )A.ln (y -x +1)>0B.ln (y -x +1)<0C.ln|x -y |>0D.ln|x -y |<010.(2020课标全国Ⅲ,12,5分,)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b考点3含参数的指数函数、对数函数问题的解法11.(2019课标全国Ⅱ,14,5分,)已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln 2)=8,则a=.12.(2018课标全国Ⅰ,13,5分,)已知函数f(x)=log2(x2+a),若f(3)=1,则a=.强基计划13.(2018复旦大学自主招生试题,16,)设方程log3x3+log273x=-43的两个根为a和b,求a+b的值.三年模拟练1.(2020宁夏大学附属中学高二期中,)函数f(x)=ln x-√x+1的图象大致为()2.(2020山东潍坊高一上期中,)已知a=log32,b=314,c=ln23,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b3.(2020安徽舒城中学高二开学考试,)设函数f (x )={31-x ,x ≤1,1-log 3x ,x >1,则满足f (x )≤3的x 的取值范围是 ( ) A.[0,+∞) B.[-1,3] C.[0,3]D.[1,+∞)4.(2019湖南长郡中学高一上第一次模块检测,)设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如:[-3.5]=-4,[2.1]=2.已知函数f (x )=e x 1+e x -12,则函数y =[f (x )]的值域是 ( )A.{0,1}B.{1}C.{-1,0,1}D.{-1,0}5.(2019山东师大附中高一上第一次学分认定考试,)设0<a <1,函数f (x )=log a (a 2x -2a x -2),使f (x )<0的x 的取值范围是 ( ) A.(-∞,0) B.(log a 3,+∞) C.(-∞,log a 3) D.(0,+∞)6.(2020四川成都外国语学校高一期中,)已知函数f (x )=|log 2x |(x ≤2),若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是( ) A.(1,52]B.(2,52] C.(2,+∞)D.[1,2]7.()下列判断正确的是 (填序号).①若f (x )=x 2-2ax 在[1,+∞)上为增函数,则a =1; ②函数y =ln (x 2+1)的值域是R ; ③函数y =2|x |的最小值为1;④在同一平面直角坐标系中,函数y =2x与y =(12)x的图象关于y 轴对称.8.(2020江西九江高一期末,)已知函数f (x )=(12)x,函数g (x )=log 2x.(1)若g (mx 2+2x +m )的定义域为R ,求实数m 的取值范围;(2)当x ∈[-1,1]时,函数y =[f (x )]2-2af (x )+3的最小值为1,求实数a 的值.9.(2020山东菏泽一中高一月考,)2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间T (单位:年)的衰变规律满足N =N 0·2-T 5730(N 0表示碳14原有的质量),则经过5 730年后,碳14的质量变为原来的 ;经过测定,良渚古城遗址文物样本中碳14的质量是原来的37至12,据此推测良渚古城存在的时期距今约在5 730年到 年之间.(参考数据:lg 2≈0.3,lg 7≈0.84,lg 3≈0.48)答案全解全析第二章 基本初等函数(Ⅰ)2.1~2.3综合拔高练五年高考练1.C2.B3.B4.D5.B6.D7.D8.B9.A 10.A1.答案 C信息提取 ①I (t )=K 1+e -0.23(t -53); ②I (t *)=0.95K ,求t *.数学建模 以新冠肺炎疫情为情境,构建logistic 模型,通过解方程I (t *)=K 1+e -0.23(t *-53)=0.95K 求值. 解析 因为I (t )=K 1+e -0.23(t -53),所以I (t *)=K 1+e -0.23(t *-53)=0.95K ,整理得e 0.23(t *-53)=19, 所以0.23(t *-53)=ln 19≈3, 解得t *≈66.故选C . 2.答案 B信息提取 ①累计感染病例数I (t )与时间t (单位:天)满足:I (t )=e rt ;②指数增长率r 与R 0,T 近似满足R 0=1+rT ;③R 0=3.28,T =6;④累计感染病例数增加1倍所需的时间. 数学建模 以基本再生数与新冠疫情感染的变化规律为情境,构建指数函数模型:I (t )=e rt ,根据R 0=3.28,T =6,R 0=1+rT 求出r ,将参数代入给定的函数模型,写出表达式I (t )=e rt =e 0.38t ,设累计感染病例数增加1倍需要的时间为t 1天,列出方程I (t 1)=2I (0)进行求解.解析 因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28-16=0.38,所以I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天,则I (t 1)=2I (0),即e 0.38t 1=2,所以0.38t 1=ln 2,所以t 1=ln20.38≈0.690.38≈1.8.故选B . 3.B ∵a =log 20.2<log 21=0,b =20.2>20=1,c =0.20.3∈(0,1),∴a <c <b ,故选B . 4.D 因为a =30.7>1,b =(13)-0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1,所以c <1<a <b.故选D .5.B 2a +log 2a =22b +log 2b <22b +log 2(2b ), 令f (x )=2x +log 2x ,则f (a )<f (2b ), 又易知f (x )在(0,+∞)上单调递增, 所以a <2b ,故选B .6.D{|2x +1|>0,|2x -1|>0⇒x ∈x x ≠±12,x ∈R ,∴函数f (x )的定义域关于原点对称, 又∵f (-x )=ln|-2x +1|-ln|-2x -1|=ln|2x -1|-ln|2x +1|=-f (x ),∴f (x )是奇函数,排除A 、C ;当x ∈(-12,12)时,f (x )=ln (2x +1)-ln (1-2x ),易知y =ln (2x +1)在-12,12上单调递增,y =ln (1-2x )在-12,12上单调递减,∴函数f (x )在-12,12上单调递增,排除B .故选D . 7.D 对于函数y =log a (x +12),当y =0时,有x +12=1,得x =12,即y =log a (x +12)的图象恒过定点(12,0),排除选项A 、C ;函数y =1a x 与y =log a(x +12)在各自定义域上单调性相反,排除选项B ,故选D .8.B y =ln x 的图象过点(1,0),点(1,0)关于直线x =1的对称点还是(1,0),结合选项可知,只有y =ln (2-x )的图象过点(1,0).故选B . 9.A 因为2x -2y <3-x -3-y , 所以2x -3-x <2y -3-y . 设f (x )=2x -3-x ,易知y =2x 在R 上是增函数,y =3-x 在R 上是减函数, 所以f (x )在R 上为增函数. 由2x -3-x <2y -3-y 得x <y ,所以y -x +1>1,所以ln (y -x +1)>0,故选A .10.A 因为(845)5=84>55,所以845>5,所以45=log 8845>log 85=b ,即b <45.因为(1345)5=134<85,所以1345<8,所以45=log 131345<log 138=c ,即c >45.又2 187=37<55=3 125,所以lg 37<lg 55,所以7lg 3<5lg 5,所以lg3lg5<57,所以a =lg3lg5<57<45,而85<57,所以5lg 8<7lg 5,所以lg5lg8>57,所以b =lg5lg8>57,所以c >b >a. 11.答案 -3解析 由x >0可得-x <0,由f (x )是奇函数可知f (-x )=-f (x ), ∴x >0时, f (x )=-f (-x )=-[-e a (-x )]=e -ax ,则f (ln 2)=e -a ln 2=8, ∴-a ln 2=ln 8=3ln 2,∴a =-3. 12.答案 -7解析 由f (3)=log 2(9+a )=1,得9+a =2,即a =-7.13.解析 利用对数的换底公式把方程log 3x 3+log 273x =-43化为11+log 3x+1+log 3x3=-43, 化简得(1+log 3x )2+4(1+log 3x )+3=0, 解得1+log 3x =-1或1+log 3x =-3, 即log 3x =-2或log 3x =-4,因此x =19或x =181,从而a +b =19+181=1081.三年模拟练1.A2.B3.A4.D5.C6.B1.A 当x ∈(0,e -1)时,ln x <-1,ln x +1<0,所以f (x )=ln x -√x +1<0,故排除B 、C ;由f (e )=ln e-√e +1=2-√e >0,可排除D .故选A .2.B 因为a =log 32∈(0,1),b =314>1,c =ln 23<0,所以a ,b ,c 的大小关系为b >a >c.故选B . 3.A 由函数f (x )={31-x ,x ≤1,1-log 3x ,x >1满足f (x )≤3,可得当x ≤1时,31-x ≤3,即1-x ≤1,解得x ≥0,此时0≤x ≤1;当x >1时,1-log 3x ≤3,即log 3x ≥-2=log 33-2,解得x ≥19,此时x >1. 综上,x 的取值范围是[0,+∞).故选A .4.D 由题知f (x )=e x1+e x -12=e x+1-1e x +1-12=12-1e x +1. ∵e x >0,∴e x +1>1,∴-12<12-1e x +1<12. 当-12<12-1e x +1<0时,[f (x )]=-1; 当0≤12-1e x +1<12时,[f (x )]=0. 因此y =[f (x )]的值域是{-1,0},故选D . 5.C 由f (x )<0,得log a (a 2x -2a x -2)<log a 1. ∵0<a <1,∴a 2x -2a x -2>1, 即(a x )2-2a x -3>0, 即(a x -3)(a x +1)>0,又a x +1>0,∴a x -3>0,∴a x >3=a log a 3,由0<a <1,得x <log a 3,故选C .6.B 作出函数f (x )=|log 2x |(x ≤2)的图象,如图.因为f (a )=f (b )且a ≠b ,所以不妨设a <b , 当f (x )=|log 2x |=1时,解得x =2或x =12, 所以12≤a <1<b ≤2, 由f (a )=f (b ),得|log 2a |=|log 2b |,去绝对值可得-log 2a =log 2b , 所以log 2a +log 2b =0, 所以log 2(ab )=0, 即ab =1,所以a +b =a +1a, 设g (a )=a +1a ,a ∈[12,1). 易知函数g (a )=a +1a 在12,1上单调递减,所以a +b ∈(2,52],故选B . 7.答案 ③④解析 由f (x )=x 2-2ax 在[1,+∞)上为增函数,知a ≤1,①错误;由y =ln (x 2+1)≥ln 1=0,知其值域为[0,+∞),②错误;借助图象知③④正确. 8.解析 (1)g (mx 2+2x +m )=log 2(mx 2+2x +m ), ∵g (mx 2+2x +m )的定义域为R , ∴mx 2+2x +m >0恒成立, 当m =0时,不符合,当m ≠0时,需满足{m >0,4-4m 2<0,解得m >1, ∴实数m 的取值范围为(1,+∞). (2)令t =f (x )=(12)x,当x ∈[-1,1]时,t ∈[12,2], 则函数y =[f (x )]2-2af (x )+3化为y =t 2-2at +3=(t -a )2+3-a 2,t ∈[12,2]. ①当a >2时,可得当t =2时,y 取最小值,且y min =7-4a =1,解得a =32(舍去); ②当12≤a ≤2时, 可得当t =a 时,y 取最小值,且y min =3-a 2=1,解得a =-√2(舍)或a =√2; ③当a <12时, 可得当t =12时,y 取最小值,且y min =134-a =1,解得a =94(舍去). 综上,a =√2. 9.答案12;6 876信息提取 ①样本中碳14的质量N 随时间T (单位:年)的衰变规律满足N =N 0·2-T5730(N 0表示碳14原有的质量);②碳14的质量是原来的37至12.数学建模 以良渚古城遗址考古测定的放射性物质衰变规律为情境,构建指数函数模型N =N 0·2-T5730,把T =5 730代入N =N 0·2-T5730,求出碳14的质量与原来的关系;令2-T5730>37,两边同时取以2为底的对数,结合给定的对数值求出T 的范围.解析 ∵N =N 0·2-T5730,∴当T =5 730时,N =N 0·2-1=12N 0, ∴经过5 730年后,碳14的质量变为原来的12. 由题意可知2-T5730>37, 两边同时取以2为底的对数, 得log 22-T5730>log 237, ∴-T 5730>lg 37lg2=lg3-lg7lg2≈-1.2,∴T <6 876,∴推测良渚古城存在的时期距今约在5 730年到6 876年之间.。

2021新教材人教版高中数学A版必修第一册模块练习题--3.1~3.2综合拔高练

2021新教材人教版高中数学A版必修第一册模块练习题--3.1~3.2综合拔高练

3.1~3.2综合拔高练五年高考练考点1 函数的概念与表示 1.(2019江苏,4,5分,)函数y=√7+6x -x 2的定义域是 . 2.(2016浙江,12,6分,)设函数f(x)=x 3+3x 2+1.已知a ≠0,且f(x)-f(a)=(x-b)(x-a)2,x ∈R,则实数a= ,b= . 考点2 分段函数的应用 3.(2019课标全国Ⅱ,12,5分,)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x ∈(0,1]时, f(x)=x(x-1).若对任意x ∈(-∞,m],都有f(x)≥-89,则m 的取值范围是( )A.(-∞,94]B.(-∞,73]C.(-∞,52] D.(-∞,83] 4.(2018天津,14,5分,)已知a ∈R,函数f(x)={x 2+2x +a -2,x ≤0,-x 2+2x -2a,x >0.若对任意x ∈[-3,+∞), f(x)≤|x|恒成立,则a 的取值范围是 .考点3 函数基本性质的综合运用 5.(2018课标全国Ⅱ,11,5分,)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( ) A.-50 B.0 C .2 D .50 6.(2019浙江,16,5分,)已知a ∈R,函数f(x)=ax 3-x.若存在t ∈R,使得|f(t+2)-f(t)|≤23,则实数a 的最大值是 .强基计划7.(2018中国科技大学自主招生试题,6改编,)已知定义在(0,+∞)上的函数f(x)是单射(即如果x,y ∈(0,+∞),且x ≠y,都有f(x)≠f(y)),对任意的x>0,有xf(x)>1, f(xf(x)-1)=2,则f(2)= .三年模拟练应用实践1.(2020黑龙江大庆实验中学高一上月考,)设f(x)={√x,0<x <1,2(x -1),x ≥1,若f(a)=f(a+1),则f (1a-1)=( ) A.8 B .6 C.4 D .22.(2020山东德州高一上期中,)已知函数f(x)是定义在R 上的单调函数,A(0,1),B(2,-1)是其图象上的两点,则不等式|f(x-1)|>1的解集为( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(1,3)D.(-∞,1)∪(3,+∞)3.(2020黑龙江哈三中高一上第一次阶段性验收,)已知函数f(x)={(x +1)2,x ≤-1,2x +2,-1<x <1,1x,x ≥1,若f(a)>1,则实数a 的取值范围是( )A.(-∞,-2)∪(-12,+∞)B.(-12,12)C.(-∞,-2)∪(-12,1) D.(-2,12)∪(1,+∞)4.(多选)(2020山东菏泽高一上期末联考,)下列关于函数f(x)=√x 2-x 4|x -1|-1的性质描述正确的是( 易错 ) A. f(x)的定义域为[-1,0)∪(0,1] B. f(x)的值域为(-1,1) C. f(x)在定义域上是增函数 D. f(x)的图象关于原点对称 5.(多选)(2020山东日照高一上期中,)下列结论正确的有( )A.函数f(x)=(x-1)0+√x +1的定义域为(-1,1)∪(1,+∞)B.函数y=f(x)(x ∈[-1,1])的图象与y 轴有且只有一个交点C.“k>1”是“函数f(x)=(k-1)x+k(k ∈R)为增函数”的充要条件D.若奇函数y=f(x)在x=0处有定义,则f(0)=0 6.(多选)(2020山东淄博高一上期中,)我们把定义域为[0,+∞)且同时满足以下两个条件的函数f(x)称为“Ω函数”: (1)对任意的x ∈[0,+∞),总有f(x)≥0;(2)若x ≥0,y ≥0,则有f(x+y)≥f(x)+f(y)成立,下列判断正确的是( ) A.若f(x)为“Ω函数”,则f(0)=0B.若f(x)为“Ω函数”,则f(x)在[0,+∞)上为增函数C.函数g(x)={0,x ∈Q,1,x ∉Q 在[0,+∞)上是“Ω函数”D.函数g(x)=x 2+x 在[0,+∞)上是“Ω函数”7.(2020河北石家庄二中高一上月考,)已知函数f(x)={-x 24,0<x ≤4,4-2x,x >4,函数h(x)(x ≠0)为偶函数,且当x>0时,h(x)=f(x).若h(t)>h(2),则实数t 的取值范围为 . 8.(2020天津六校高一上期中联考,)已知函数f(x)=x 2-4x+10(x ∈[m,n])的值域为[3m,3n],则2m+n= . 9.(2020黑龙江哈师大附中高一上期中,)下列说法正确的是 .(填序号)(1)函数f(x)=-2x在(0,+∞)上单调递减; (2)函数y=2x(x ∈N)的图象是一条直线;(3)已知函数f(x)={x 2+1(x ≤0),-2x(x >0),若f(x)=10,则x 的值为-3或-5;(4)若函数y=x 2+(2a-1)x+1的减区间是(-∞,2],则a=-32;(5)若函数f(x)满足R 上的任意实数x 1,x 2(x 1≠x 2),(x 1-x 2)[f(x 1)-f(x 2)]<0恒成立,则f(x)在R 上单调递减. 10.(2020河北承德一中高一上月考,)已知函数f(√x +2)=3x+1x+2,函数g(x)=1-2x+√x +2.(1)求函数f(x)的解析式,并写出其定义域; (2)求函数g(x)的值域.11.(2020湖南衡阳一中高一上期中,)已知函数f(x)对任意的实数a,b 都有f(a+b)=f(a)+f(b),且当x>0时,有f(x)>0.(1)求证:f(x)在R上为增函数;(2)求证:f(x)是R上的奇函数;(3)若f(1)=1,解不等式f(x2)-f(x+2)>4.迁移创新12.(2020山东烟台高一上期中,)经过函数性质的学习,我们知道“函数y=f(x)的图象关于y轴成轴对称图形”的充要条件是“y=f(x)为偶函数”.(1)若f(x)为偶函数,且当x≤0时,f(x)=2x-1,求f(x)的解析式,并求不等式f(x)>f(2x-1)的解集;(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数y=f(x)的图象关于直线x=a成轴对称图形”的充要条件是“y=f(x+a)为偶函数”.若函数g(x)的图象关于直线x=1对称,且当x≥1时,g(x)=x2-1.x①求g(x)的解析式;②求不等式g(x)>g(3x-1)的解集.答案全解全析 五年高考练1.答案 [-1,7]解析 由题意可得7+6x-x 2≥0,即x 2-6x-7≤0,解得-1≤x ≤7,故该函数的定义域是[-1,7]. 2.答案 -2;1 解析f(x)-f(a)=x 3-a 3+3(x 2-a 2)=(x-a)[x 2+ax+a 2+3(x+a)]=(x-a)[x 2+(a+3)·x+a 2+3a]=(x-a)(x-a)(x-b),则x 2+(a+3)x+a 2+3a=x 2-(a+b)x+ab,即{a +3=-(a +b),a 2+3a =ab,解得{a =-2,b =1. 3.B 由题可知,当x ∈(0,1]时, f(x)=x(x-1)=x 2-x,则当x=12时, f(x)min =-14,且当x=13时, f(x)=-29.当x ∈(1,2]时,x-1∈(0,1],则f(x)=2f(x-1).当x ∈(-1,0]时,x+1∈(0,1],则 f(x)=12f(x+1).∴若x ∈(1,2],则当x=32时, f(x)min =-12,且x=43时, f(x)=-49.同理,若x ∈(2,3],则当x=52时, f(x)min =-1,且x=73时, f(x)=-89.∴函数f(x)的大致图象如图所示.∵f(x)≥-89对任意x ∈(-∞,m]恒成立,∴当x ∈(-∞,m]时, f(x)min ≥-89,由图可知m ≤73.故选B.4.答案 [18,2]解析 当x>0时, f(x)=-x 2+2x-2a,此时只需-x 2+2x-2a ≤x 恒成立, 即2a ≥-x 2+x 恒成立,因为x>0时,y=-x 2+x 的最大值为14,所以a ≥18;当-3≤x ≤0时, f(x)=x 2+2x+a-2, 此时只需x 2+2x+a-2≤-x 恒成立, 即a ≤-x 2-3x+2恒成立,因为-3≤x ≤0时,y=-x 2-3x+2的最小值为2, 所以a ≤2.故a 的取值范围为[18,2].5.C 因为f(x)是定义在(-∞,+∞)上的奇函数, 所以f(-x)=-f(x)①,且f(0)=0. 又因为f(1-x)=f(1+x), 所以f(-x)=f(2+x)②. 由①②可得f(x+2)=-f(x), 则有f(x+4)=f(x). 由f(1)=2,得f(-1)=-2,于是有f(2)=f(0)=0, f(3)=f(-1)=-2,f(4)=f(0)=0, f(5)=f(1)=2, f(6)=f(2)=0,……,所以f(1)+f(2)+f(3)+…+f(50)=12×[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=12×0+f(1)+f(2)=2+0=2. 6.答案 43解析 |f(t+2)-f(t)|=|a(t+2)3-(t+2)-(at 3-t)|=|a(6t 2+12t+8)-2|.令m=6t 2+12t+8=6(t+1)2+2,则m ∈[2,+∞),设g(m)=f(t+2)-f(t)=am-2, |am-2|≤23,当a=0时,g(m)=-2,不符合题意;当a>0时,g(m)∈[2a-2,+∞),∵|g(m)|≤23有解,∴2a-2≤23,得0<a ≤43;当a<0时,g(m)∈(-∞,2a -2],∵|g(m)|≤23有解,∴2a-2≥-23,得a ≥23,与a<0矛盾.综上可知,0<a ≤43,即a 的最大值为43.7.答案 1解析 由函数f(x)是单射,且f(xf(x)-1)=2,得xf(x)-1是常数,令xf(x)-1=t(x>0),则f(x)=t+1x ,且f(t)=2①,因此tf(t)-1=t,所以f(tf(t)-1)=2,由f(t)=2,得f(2t-1)=2②,由①②及函数f(x)是单射得t=2t-1,解得t=1,所以f(x)=2x (x>0),所以f(2)=1.三年模拟练应用实践1.C 由题意知,当a ∈(0,1)时,若f(a)=f(a+1),则√a =2a,解得a=14,则f (1a-1)=f(3)=2×(3-1)=4;当a ∈[1,+∞)时,若f(a)=f(a+1),则2(a-1)=2a,显然无解. 综上可得f (1a -1)=4,故选C.2.D 由题意可知f(0)=1,f(2)=-1, 又知f(x)是定义在R 上的单调函数, 所以f(x)在R 上单调递减.由|f(x-1)|>1得f(x-1)>1或f(x-1)<-1, 即f(x-1)>f(0)或f(x-1)<f(2), 所以x-1<0或x-1>2, 解得x<1或x>3,故选D.3.C 当a ≤-1时,由f(a)=(a+1)2>1,解得a>0或a<-2,故a<-2; 当-1<a<1时,由f(a)=2a+2>1,解得a>-12,故-12<a<1;当a ≥1时,由f(a)=1a>1,解得0<a<1,故无解.综上所述,a 的取值范围是(-∞,-2)∪(-12,1),故选C.4.ABD 由{x 2-x 4≥0,|x -1|-1≠0,得-1≤x ≤1且x ≠0,此时f(x)=√x 2-x 4-(x -1)-1=√x 2-x 4-x=|x|√1-x 2-x,因此A 正确;当0<x ≤1时, f(x)=-√1-x 2∈(-1,0],当-1≤x<0时, f(x)=√1-x 2∈[0,1),故f(x)的值域为(-1,1),B 正确;易知f(x)在定义域上不是增函数,选项C 错误;又f(-x)=|-x|√1-(-x)2-(-x)=|x|√1-x 2x=-f(x),则f(x)是奇函数,其图象关于原点对称,D 正确.故选ABD.易错警示 研究函数的性质时,应先求定义域,再化简解析式.不求定义域就化简解析式可能会导致定义域发生变化,从而导致解题错误;化简解析式有一定的必要性,若不化简解析式,可能会反映不出函数的本质,从而导致问题不能解决.5.BCD 选项A 中,由{x -1≠0,x +1≥0,得x ≥-1且x ≠1,A 错误;选项B 中,由y=f(x)在x=0处有意义,因此f(x)的图象与y 轴有且只有一个公共点,B 正确;选项C 中,若k>1,则k-1>0,f(x)=(k-1)x+k 是增函数,反过来也成立,C 正确;选项D 中,由f(x)是奇函数知f(-x)=-f(x),又x=0处有定义,因此f(-0)=-f(0),即2f(0)=0,f(0)=0,D 正确,故选BCD.6.AD 对于选项A,由条件(1)知,f(x)≥0,则f(0)≥0,由条件(2)知, f(0+0)≥f(0)+f(0),即f(0)≤0,所以f(0)=0,A 正确; 对于选项B,当f(x)=0(x ∈[0,+∞))时,符合条件(1),(2), f(x)是“Ω函数”,但f(x)在[0,+∞)上不是增函数,B 错误; 对于选项C,取x=2-√2,y=2+√2,则g(2-√2)=1,g(2+√2)=1,g((2-√2)+(2+√2))=g(4)=0,不满足g(x+y)≥g(x)+g(y),所以g(x)不是“Ω函数”,C 错误;对于选项D,g(x)=x 2+x 在[0,+∞)上单调递增,所以g(x)≥g(0)=0,满足条件(1),又g(x+y)-g(x)-g(y)=[(x+y)2+(x+y)]-(x 2+x)-(y 2+y)=2xy,当x ≥0,y ≥0时,2xy ≥0,此时g(x+y)≥g(x)+g(y),满足条件(2),D 正确.故选AD.7.答案 (-2,0)∪(0,2)解析 因为当x>0时,h(x)=f(x),所以当x>0时,h(x)={-x 24,0<x ≤4,4-2x,x >4,易知函数h(x)在(0,+∞)上单调递减,又函数h(x)(x ≠0)为偶函数,且h(t)>h(2),所以h(|t|)>h(2),所以0<|t|<2,所以{t ≠0,|t|<2,即{t ≠0,-2<t <2,解得-2<t<0或0<t<2.8.答案 9解析 ∵f(x)=x 2-4x+10=(x-2)2+6≥6,∴3m ≥6,∴m ≥2,又函数f(x)图象的对称轴为x=2,∴函数f(x)在[m,n]上单调递增. ∴f(m)=3m,f(n)=3n,即m 2-4m+10=3m,n 2-4n+10=3n,解得m=2或m=5,n=2或n=5,又m<n,∴m=2,n=5,∴2m+n=4+5=9,故答案为9.9.答案 (4)(5)解析 函数f(x)=-2x 在(0,+∞)上单调递增,故(1)错误;函数y=2x(x ∈N)的图象是间断的点,故(2)错误;函数f(x)={x 2+1(x ≤0),-2x(x >0),若f(x)=10,则x 的值为-3,故(3)错误;若函数y=x 2+(2a-1)x+1的减区间是(-∞,2],则-2a -12=2,即a=-32,故(4)正确;若函数f(x)满足R 上的任意实数x 1,x 2(x 1≠x 2),(x 1-x 2)[f(x 1)-f(x 2)]<0恒成立,则当x 1>x 2时, f(x 1)<f(x 2),当x 1<x 2时,f(x 1)>f(x 2),所以f(x)在R 上单调递减,故(5)正确.故答案为(4)(5).10.解析 (1)令t=√x +2,t>2,则x=(t-2)2,∴f(t)=3(t-2)2+1(t -2)2+2, ∴f(x)=3(x-2)2+1(x -2)2+2,其定义域为(2,+∞). (2)令t=√x +2,t ≥0,则x=t 2-2,∴y=1-2(t 2-2)+t=-2t 2+t+5,t ≥0,当t=14时,y 取得最大值,最大值为418,所以原函数的值域为(-∞,418]. 11.解析 (1)证明:任取x 1,x 2∈R,且x 1<x 2,则f(x 2)-f(x 1)=f(x 2-x 1+x 1)-f(x 1), ∵对任意的实数a,b 都有f(a+b)=f(a)+f(b),∴f(x2-x1+x1)=f(x2-x1)+f(x1),∴f(x2)-f(x1)=f(x2-x1),∵当x>0时,f(x)>0,且x2-x1>0,∴f(x2-x1)>0,∴f(x2)>f(x1),即y=f(x)在R上为增函数.(2)证明:∵对任意的实数a,b都有f(a+b)=f(a)+f(b),∴令a=b=0,则f(0)=f(0)+f(0)=2f(0),∴f(0)=0,令a=x,b=-x,则f(x-x)=f(x)+f(-x)=f(0)=0,∴f(-x)=-f(x),即函数y=f(x)为R上的奇函数.(3)若f(1)=1,则f(2)=2f(1)=2,f(4)=2f(2)=4,∴不等式f(x2)-f(x+2)>4等价于f(x2)-f(x+2)>f(4),由(2)知f(x)为奇函数,∴-f(x+2)=f(-x-2),∴f(x2)-f(x+2)=f(x2)+f(-x-2),∴f(x2-x-2)>f(4),又由(1)知,f(x)在R上为增函数,∴x2-x-2>4,即x2-x-6>0,∴x>3或x<-2.∴原不等式的解集为(-∞,-2)∪(3,+∞).迁移创新12.解析(1)设x>0,则-x<0,则f(-x)=2·(-x)-1=-2x-1,又f(x)为偶函数,所以f(x)=f(-x)=-2x-1.所以f(x)={2x-1,x≤0, -2x-1,x>0.因为f(x)为偶函数,且f(x)在[0,+∞)上是减函数,所以f(x)>f(2x-1)等价于|x|<|2x-1|,即x2<(2x-1)2,解得x<13或x>1.所以不等式的解集是{x|x<13或x>1}.(2)①因为g(x)的图象关于直线x=1对称,所以y=g(x+1)为偶函数,所以g(1+x)=g(1-x),即g(x)=g(2-x)对任意x∈R恒成立.又当x<1时,2-x>1,所以g(x)=(2-x)2-12-x =x 2-4x+4+1x -2. 所以g(x)={x 2-1x,x ≥1,x 2-4x +4+1x -2,x <1.②任取x 1,x 2∈[1,+∞),且x 1<x 2,则g(x 1)-g(x 2)=x 12-1x 1-(x 22-1x 2)=(x 1-x 2)(x 1+x 2+1x 1x 2), 因为x 1<x 2,所以x 1-x 2<0,又x 1+x 2>0,1x 1x 2>0,所以(x 1-x 2)(x 1+x 2+1x 1x 2)<0,即g(x 1)<g(x 2).所以函数y=g(x)在[1,+∞)上是增函数,又因为函数g(x)的图象关于直线x=1对称, 所以g(x)>g(3x-1)等价于|x-1|>|3x-2|, 即(x-1)2>(3x-2)2,解得12<x<34. 所以不等式的解集为{x |12<x <34}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学1(必修)第二章 基本初等函数(1)
[提高训练C 组]
一、选择题
1.函数]1,0[)1(log )(在++=x a x f a x
上的最大值和最小值之和为a ,则a 的值为( ) A .
41 B .2
1 C .
2 D .4 2.已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A . (0,1) B . (1,2) C . (0,2)
D . ∞[2,+) 3.对于10<<a ,给出下列四个不等式
①)11(log )1(log a a a a +<+ ②)11(l o g )1(l o g a a a a +>+ ③a a a a 111++< ④a a a a 1
11++> 其中成立的是( )
A .①与③
B .①与④
C .②与③
D .②与④
4.设函数1()()lg 1f x f x x =+,则(10)f 的值为( )
A .1
B .1-
C .10
D .10
1 5.定义在R 上的任意函数()f x 都可以表示成一个奇函数()g x 与一个偶函数()h x 之和,如果()lg(101),x f x x R =+∈,那么( )
A .()g x x =,()lg(10101)x x
h x -=++ B .lg(101)()2x x g x ++=,x lg(101)()2x h x +-= C .()2x g x =,()lg(101)2x x h x =+- D .()2
x g x =-, lg(101)()2x x h x ++= 6.若ln 2ln 3ln 5,,235
a b c =
==,则( ) A .a b c << B .c b a << C .c a b << D .b a c << 二、填空题
1.若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。

2.若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________。

3.函数11()2x y =-的定义域是______;值域是______.
4.若函数()11
x m f x a =+-是奇函数,则m 为__________。

5.求值:22
log 3321272log 2lg(3535)8
-⨯+++-=__________。

三、解答题
1.解方程:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++
(2)2(lg )lg 10
20x x x +=
2.求函数1
1()()142
x x y =-+在[]3,2x ∈-上的值域。

3.已知()1log 3x f x =+,()2log 2x g x =,试比较()f x 与()g x 的大小。

4.已知()()110212x f x x x ⎛⎫=+≠
⎪-⎝⎭
, ⑴判断()f x 的奇偶性; ⑵证明()0f x >.。

相关文档
最新文档