北京十五中2016届九年级(上)期中数学试卷(解析版)
2015-2016学年度北师大版九年级上期中考试数学试题及答案

2015—2016学年度九年级第一学期期中考试数学试卷考试时间120分钟;试卷总分100分※ 考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效。
一、选择题(每小题2分,共16分) 1、下列方程,是一元二次方程的是( ) ①3x 2+x=20,②2x 2—3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2—3x+3=0 A .①② B .①④⑤ C .①③④ D .①②④⑤ 2、已知1=x 是方程022=++ax x 的一个根,则方程的另一个根为( ) A .2 B .2- C .3 D .3- 3、观察下列表格,一元二次方程21.1x x -=的一个近似解是( )x1.1 1。
2 1。
3 1.4 1。
5 1.6 1。
7 1.8 1.9 2x x -0。
110.240。
390。
560。
750。
961。
191。
441。
71A .0。
11B .1。
6C .1。
7D .1。
19 4、如图,已知菱形ABCD 的边长为2,∠DAB =60°,则对角线BD 的长是 ( ) A .1B .3C .2D .234题图5题图a b cA B C DEF mn6题图5、如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF 等于( ) A . 7 B . 7。
5C . 8D . 8。
56、某小组做“用频率估计概率"的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是( ) A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀"B .一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是47、如图,矩形ABCG (AB<BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点在线段BD 上移动,使∠APE 为直角的点P 的个数是( ) A .0 B .1 C .2 D .38、如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P,连接NQ ,下列结论:①AM=MN;②MP=BD ;③BN+DQ=NQ ;④为定值.其中一定成立的是( )A .①②③B .①②④C .②③④D .①②③④7题图11题图8题图二、填空题(每小题2分,共16分)9、()x x 6542=+-化成一般形式是____________,其中一次项系数是___________10、抽屉里有2只黑色和1只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是 ___________11、如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点。
北京市xx初中2016-2017学年度初三上数学期中试卷含答案

2016-2017学年度九年级数学期中测试 2016年11月一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个。
1.下列图形中,既是轴对称图形,又是中心对称图形的是( ).2.在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ).A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =-+D .2(2)2y x =+-3.如果45a b =(ab ≠0),那么下列比例式变形正确的是( ) A .54a b = B .45a b = C .45a b = D .45ba = 4.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,且 DE ∥BC ,如果 AD ∶DB=3∶2,那么AE ∶AC 等于( )A .3∶2B .3∶1C .2∶3D .3∶55.在平面直角坐标系xoy 中,如果⊙O 是以原点O (0,0)为圆心,以5为半径的圆,那么点A (-3,-4)与⊙O 的位置关系是( ) A. 在⊙O 内 B.在⊙O 上 C.在⊙O 外 D. 不能确定 6.如图,将△ABC 绕着点C 按顺时针方向旋转20°, B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥, 则BAC ∠的度数是( ).A .50° B.60° C. 70° D.40°A. B. C. D.D7.如右图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.120°B. 140° C.150° D. 160°8.二次函数223y x x=--的最小值为()A. 5B. 0C. -3D. -49.如图,AB是⊙O的切线,B为切点,AO的延长线交⊙O于C点,连接BC,如果30A∠=,AB=AC的长等于( ) .A. 6B. 4C.D.10.如图1,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针...匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为( ).A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O二、填空题(本题共18分,每小题3分)11.写出一个抛物线开口向下,与y轴交于(0,2)点的函数表达式 .12.把二次函数的表达式y = x2-6x+5化为()2y a x h k=-+的形式,那么h k+=_____. 13.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的面积是米2.14.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可以表述为:“如图,CD为⊙O的直径,弦AB CD⊥于E,如果CE = 1,AB = 10,那么直径CD的长为 .”15.弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数是____________.AB图2图116.阅读下面材料:在数学课上,老师提出如下问题: 小涵的主要作法如下:老师说:“小涵的作法正确.”请回答:小涵的作图依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28分7分,第9题8分)解答应写出文字说明、演算步骤或证明过程。
2015-2016学年北京XX中学九年级上期中数学试卷含答案

(2)以坐标原点 O 为位似中心,在第二象限内再画一个放大的△A2B2C2,使得它与△ABC 的位似比等于 2:1.
21.如图,在 Rt△ABC 中,∠C=90°,D、E 分别为 AB、AC 边上的点,且 = ,连结 DE.若 AC=3,AB=5.求证: (1)△ABC∽△AED; (2)DE⊥AB.
A.2:1 B.1:2 C.4:1 D.1:4
3.如图,D 是△ABC 的边 AC 上的一点,则下列条件中不能判定△ABC∽△ADE 的是 ()
A.∠ADE=∠B B. = C.∠AED=∠C D. =
4.如图,A,B 两地被池塘隔开,小明通过下列方法测出了 A、B 间的距离:先在 AB 外
选一点 C,然后测出 AC,BC 的中点 M,N,并测量出 MN 的长为 12m,由此他就知道了
x
…
0
1
2
3
4
y
…
4
1
0
1
4
点 A(x1,y1)、B(x2,y2)在函数的图象上,则当 1<x1<2,3<x2<4 时,y1 与 y2C.y1≥y2 D.y1 ≤y
2
10.如图,正方形 ABCD 中,AB=8cm,对角线 AC,BD 相交于点 O,点 E,F 分别从 B,C 两点同时出发,以 1cm/s 的速度沿 BC,CD 运动,到点 C,D 时停止运动,设运动 时间为 t(s),△OEF 的面积为 s(cm2),则 s(cm2)与 t(s)的函数关系可用图象表示为
A、B 间的距离.有关他这次探究活动的描述错误的是(
)
A.AB=24m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2
5.下列四个三角形中,与图中的三角形相似的是(
北京市教院附中2015-2016学年九年级数学上学期期中试题(含解析)

北京市教院附中2015-2016学年九年级数学上学期期中试题一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=﹣(x+1)2﹣2的最大值是()A.﹣2 B.﹣1 C.1 D.22.如果4x=5y(y≠0),那么下列比例式成立的是()A. =B. =C. =D. =3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.34.如图,在△ABC中,若DE∥BC,AD:BD=1:2,若△ADE的面积等于2,则△ABC的面积等于()A.6 B.8 C.12 D.185.如图,△ABC中,∠C=90°,AC=2,BC=1,则cosB的值是()A.B.C.D.6.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1 B.y=(x+3)2+3 C.y=(x﹣3)2﹣1 D.y=(x﹣3)2+37.已知二次函数y=ax2+bx+c的图象如图所示,则a、b、c满足()A.a<0,b<0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a>0,b<0,c>08.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C.4 D.89.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()A.a>0B.不等式ax2+bx+c>0的解集是﹣1<x<5C.a﹣b+c>0D.当x>2时,y随x的增大而增大10.如图,在等边△ABC中,AB=4,当直角三角板MPN的60°角的顶点P在BC上移动时,斜边MP 始终经过AB边的中点D,设直角三角板的另一直角边PN与AC相交于点E.设BP=x,CE=y,那么y 与x之间的函数图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.点P(﹣2,y1)和点Q(﹣1,y2)分别为抛物线y=x2﹣4x+3上的两点,则y1y2.(用“>”或“<”填空).12.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.13.在△ABC中,∠C=90°,tanA=,则sinB= .14.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.15.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为.16.如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= ,A n B n= .(n 为正整数)三、解答题(本题共30分,每小题5分)17.计算:tan60°﹣cos30°×tan45°+sin30°.18.若二次函数y=ax2+bx+3的图象经过A(1,0)、B(2,﹣1)两点,求此二次函数的解析式.19.已知:如图,在△ABC中,D是AC上一点,E是AB上一点,且∠AED=∠C.(1)求证:△AED∽△ACB;(2)若AB=6,AD=4,AC=5,求AE的长.20.如图,△ABC的顶点在格点上,且点A(﹣5,﹣1),点C(﹣1,﹣2).以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′并写出△A′B′C′各顶点坐标.21.已知二次函数的解析式是y=x2﹣2x﹣3.(1)与x轴的交点坐标是,顶点坐标是;y的取值范围是.22.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB为1.7米,求这棵树的高度.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.已知抛物线y=x2﹣(2m﹣1)x+m2﹣m.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=x﹣3m+3的一个交点在y轴上,求m的值.25.某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=﹣2x+80 (20≤x≤40),设销售这种产品每天的利润为W(元).(1)求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少元?26.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是;1﹣(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A 关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.28.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:【尝试】(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为;(2)判断点A是否在抛物线L上;(3)求n的值;【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为.【应用】二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.29.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N 在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.2015-2016学年北京市教院附中九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=﹣(x+1)2﹣2的最大值是()A.﹣2 B.﹣1 C.1 D.2【考点】二次函数的最值.【分析】所给形式是二次函数的顶点式,易知其顶点坐标是(﹣1,﹣2),也就是当x=﹣1,函数有最大值﹣2.【解答】解:∵y=﹣(x+1)2﹣2,∴此函数的顶点坐标是(﹣1,﹣2),即当x=﹣1函数有最大值﹣2故选:A.【点评】本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.2.如果4x=5y(y≠0),那么下列比例式成立的是()A. =B. =C. =D. =【考点】比例的性质.【分析】根据等式的性质:等式的两边都除以同一个不为零的数,结果不变,可得答案.【解答】解:4x=5y(y≠0),两边都除以20,得=,故B正确;故选:B.【点评】本题考查了比例的性质,利用了等式的性质:等式的两边都除以20是解题关键.3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.3【考点】射影定理.【分析】根据射影定理得到:AC2=AD•AB,把相关线段的长度代入即可求得线段AD的长度.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,又∵AC=3,AB=6,∴32=6AD,则AD=.故选:A.【点评】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.4.如图,在△ABC中,若DE∥BC,AD:BD=1:2,若△ADE的面积等于2,则△ABC的面积等于()A.6 B.8 C.12 D.18【考点】相似三角形的判定与性质.【分析】由条件可以求出AD:BD=2;3,再由条件可以得出△ADE∽△ABC,最后由相似三角形的性质就可以得出结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:BD=1:2,∴AD:AB=DE:BC=1:3,∴S△ADE:S△ABC=(AD)2:(AB)2=1:9,∵△ADE的面积等于2,∴△ABC的面积等于18,故选:D.【点评】本题考查了相似三角形的判定及相似三角形的面积之比等于相似比的平方运用.解答本题求出两三角形相似是关健.5.如图,△ABC中,∠C=90°,AC=2,BC=1,则cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案.【解答】解:在Rt,△ABC中,∠C=90°,AC=2,BC=1,由勾股定理,得AB==.cosB===,故选:C.【点评】本题考查了锐角三角函数,利用勾股定理求出斜边,再利用余弦等于邻边比斜边.6.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1 B.y=(x+3)2+3 C.y=(x﹣3)2﹣1 D.y=(x﹣3)2+3【考点】二次函数图象与几何变换.【分析】易得原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【解答】解:由题意得原抛物线的顶点为(0,1),∴平移后抛物线的顶点为(3,﹣1),∴新抛物线解析式为y=(x﹣3)2﹣1,故选:C.【点评】考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;得多新抛物线的顶点是解决本题的突破点.7.已知二次函数y=ax2+bx+c的图象如图所示,则a、b、c满足()A.a<0,b<0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a>0,b<0,c>0【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由于开口向下可以判断a<0,由与y轴交于正半轴得到c>0,又由于对称轴x=﹣<0,可以得到b<0,所以可以找到结果.【解答】解:根据二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴x=﹣<0,∴b<0,所以A正确.故选A.【点评】考查二次函数y=ax2+bx+c系数符号的确定.8.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C.4 D.8【考点】位似变换.【专题】计算题.【分析】根据位似变换的性质得到=,B1C1∥BC,再利用平行线分线段成比例定理得到=,所以=,然后把OC1=OC,AB=4代入计算即可.【解答】解:∵C1为OC的中点,∴OC1=OC,∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,∴=,B1C1∥BC,∴=,∴=,即=∴A1B1=2.故选B.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.9.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()A.a>0B.不等式ax2+bx+c>0的解集是﹣1<x<5C.a﹣b+c>0D.当x>2时,y随x的增大而增大【考点】二次函数图象与系数的关系;二次函数与不等式(组).【分析】根据图象开口方向向下得出a的符号,进而利用图象的对称轴得出图象与x轴的交点坐标,再利用图象得出不等式ax2+bx+c>0的解集.【解答】解:A、图象开口方向向下,则a<0,故此选项错误;B、∵图象对称轴为直线x=2,则图象与x轴另一交点坐标为:(﹣1,0),∴不等式ax2+bx+c>0的解集是﹣1<x<5,故此选项正确;C、当x=﹣1,a﹣b+c=0,故此选项错误;D、当x>2时,y随x的增大而减小,故此选项错误.故选:B.【点评】此题主要考查了二次函数图象与系数的关系以及二次函数与不等式的解集,利用数形结合得出是解题关键.10.如图,在等边△ABC中,AB=4,当直角三角板MPN的60°角的顶点P在BC上移动时,斜边MP 始终经过AB边的中点D,设直角三角板的另一直角边PN与AC相交于点E.设BP=x,CE=y,那么y 与x之间的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据等边三角形的性质得BD=2,PC=4﹣x,∠B=∠C=60°,由于∠MPN=60°,易得∠DPB=∠PEC,根据三角形相似的判定方法得到△BPD∽△CEP,利用相似比即可得到y=x(4﹣x),配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:∵等边△ABC中,AB=4,BP=x,∴BD=2,PC=4﹣x,∠B=∠C=60°,∵∠MPN=60°,∴∠DPB+∠EPC=120°,∵∠EPC+∠PEC=120°,∴∠DPB=∠PEC,∴△BPD∽△CEP,∴=,即=,∴y=x(4﹣x)=﹣(x﹣2)2+2,(0≤x≤4).故选B.【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等边三角形的性质.二、填空题(本题共18分,每小题3分)11.点P(﹣2,y1)和点Q(﹣1,y2)分别为抛物线y=x2﹣4x+3上的两点,则y1>y2.(用“>”或“<”填空).【考点】二次函数图象上点的坐标特征.【分析】先根据函数解析式确定出对称轴为直线x=2,再根据二次函数的增减性,x<2时,y随x 的增大而减小解答.【解答】解:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴二次函数图象的对称轴为直线x=2,∵2>﹣1>﹣2,∴y1>y2.故答案为:>.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出对称轴解析式是解题的关键.12.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为24 m.【考点】相似三角形的应用.【分析】根据同时同地的物高与影长成正比列式计算即可得解.【解答】解:设这栋建筑物的高度为xm,由题意得, =,解得x=24,即这栋建筑物的高度为24m.故答案为:24.【点评】本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.13.在△ABC中,∠C=90°,tanA=,则sinB= .【考点】互余两角三角函数的关系.【分析】根据题意画出图形,设BC=4x,则AC=3x,根据勾股定理求出AB的长,进而可得出结论.【解答】解:如图所示,∵在△ABC中,∠C=90°,tanA=,∴设BC=4x,则AC=3x,∴AB==5x,∴s inB===.故答案为:.【点评】本题考查的是互余两三角函数的关系,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.【考点】相似三角形的判定.【专题】计算题.【分析】根据对顶角相等得到∠AEC=∠BED,则根据两组对应边的比相等且夹角对应相等的两个三角形相似,当=时,△BDE∽△ACE,然后利用比例性质计算CE的长.【解答】解:∵∠AEC=∠BED,∴当=时,△BDE∽△ACE,即=,∴CE=.故答案为.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似,此判定方法要合理使用公共角或对顶角.15.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为 3 .【考点】抛物线与x轴的交点.【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0.﹣=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3,故答案为3.【点评】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.16.如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= 6 ,A n B n= n(n+1).(n为正整数)【考点】相似三角形的判定与性质.【专题】规律型.【分析】根据OA1=1,求出A1A2、A2A3、A3A4的值,推出A n A n﹣1的值,根据平行线分线段成比例定理得出=,代入求出A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),推出A n B n=n(n+1)即可.【解答】解:∵OA1=1,∴A1A2=2×1=2,A2A3=3×1=3,A3A4=4,…A n﹣2A n﹣1=n﹣1,A n﹣1A n=n,∵A1B1∥A2B2∥A3B3∥A4B4∥…,∴=,∴=,∴A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),…,∴A n B n=n(n+1),故答案为:6,n(n+1).【点评】本题考查了平行线分线段成比例定理的应用,解此题的关键是根据求出的结果得出规律,题型较好,但是有一定的难度.三、解答题(本题共30分,每小题5分)17.计算:tan60°﹣cos30°×tan45°+sin30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=﹣×1+=+.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.若二次函数y=ax2+bx+3的图象经过A(1,0)、B(2,﹣1)两点,求此二次函数的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】先把A点和B点坐标代入y=ax2+bx+3得到关于a和b的方程组,然后解方程组即可.【解答】解:根据题意得,解得.所以此二次函数的解析式为y=x2﹣4x+3.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.已知:如图,在△ABC中,D是AC上一点,E是AB上一点,且∠AED=∠C.(1)求证:△AED∽△ACB;(2)若AB=6,AD=4,AC=5,求AE的长.【考点】相似三角形的判定与性质.【分析】(1)根据有两对角相等的两个三角形相似证明即可.(2)由(1)中的相似三角形可得关于AE的比例式,代入已知数据计算即可求出AE的长.【解答】(1)证明:∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC;(2)∵△AED∽△ABC,∴,∵AB=6,AD=4,AC=5,∴,∴AE=.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.20.如图,△ABC的顶点在格点上,且点A(﹣5,﹣1),点C(﹣1,﹣2).以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出△ABC放大后的图形△A′B′C′并写出△A′B′C′各顶点坐标.【考点】作图-位似变换.【分析】直接利用位似图形的性质结合位似比得出对应点坐标,进而得出答案.【解答】解:如图所示:△A′B′C′即为所求,A′(10,2),B′(10,6),C′(2,4).【点评】此题主要考查了位似变换,根据题意得出对应点位置是解题关键.21.已知二次函数的解析式是y=x2﹣2x﹣3.(1)与x轴的交点坐标是(﹣1,0),(3,0),顶点坐标是(1,﹣4);y的取值范围是当﹣2<x<1时,﹣4<y<5;当1<x<2时,﹣4<y<﹣3 .【考点】二次函数的图象;二次函数的性质.【分析】(1)根据抛物线y=x2﹣2x﹣3,可以求得抛物线与x轴和y轴的交点;(2)根据第一问中的三个坐标和二次函数图象具有对称性,在表格中填入合适的数据,然后再描点作图即可;(3)根据第二问中的函数图象结合对称轴可以直接写出答案.【解答】解:(1)令y=0,则0=x2﹣2x﹣3.解得x1=﹣1,x2=3.抛物线y=x2﹣2x﹣3与x轴交点的坐标为(﹣1,0),(3,0).y=x2﹣2x﹣3=(x﹣1)x2﹣4,所以它的顶点坐标为(1,﹣4);图象如图所示:;(3)当﹣2<x<1时,﹣4<y<5;当1<x<2时,﹣4<y<﹣3.【点评】本题考查二次函数的图象与性质,二次函数与x轴、y轴的交点、求顶点坐标,画二次函数的图象,关键是可以根据图象得出所求问题的答案.22.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB为1.7米,求这棵树的高度.【考点】解直角三角形的应用.【分析】先根据题意得出AD的长,在Rt△ACD中利用锐角三角函数的定义求出CD的长,由CE=CD+DE 即可得出结论.【解答】解:由题意,易知∠CAD=30°,∠CDA=90°,AD=3,CE⊥BE,DE=AB=1.7米,∴,∴.∴CE=3+1.7=4.7.答:这棵树的高度为4.7米.【点评】本题考查的是解直角三角形在实际生活中的应用,熟知锐角三角函数的定义是解答此题的关键.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【考点】相似三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.24.已知抛物线y=x2﹣(2m﹣1)x+m2﹣m.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=x﹣3m+3的一个交点在y轴上,求m的值.【考点】抛物线与x轴的交点.【分析】(1)根据二次函数的交点与图象的关系,证明其方程有两个不同的根即△>0即可;(2)根据题意,令x=0,整理方程可得关于m的方程,解可得m的值.【解答】(1)证明:令y=0得:x2﹣(2m﹣1)x+m2﹣m=0,∵△=(2m﹣1)2﹣4(m2﹣m)×1>0,∴方程有两个不等的实数根,∴原抛物线与x轴有两个不同的交点;(2)解:令x=0,根据题意有:m2﹣m=﹣3m+3,解得m=﹣3或1.【点评】本题是二次函数的综合题,考查二次函数和一元二次方程的关系,二次函数的图象与解析式的关系,抛物线与x轴的交点等.25.某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=﹣2x+80 (20≤x≤40),设销售这种产品每天的利润为W(元).(1)求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润.【解答】解:(1)w=y(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600(2)w=2x2+120x﹣1600=﹣2(x﹣30)2+200,则当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元.【点评】此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值).26.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;1﹣(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.【考点】二次函数的图象;反比例函数的图象;反比例函数的性质;二次函数的性质.【分析】(1)由图表可知x≠0;(2)根据图表可知当x=3时的函数值为m,把x=3代入解析式即可求得;(3)根据坐标系中的点,用平滑的直线连接即可;(4)观察图象即可得出该函数的其他性质.【解答】解:(1)x≠0,(2)令x=3,∴y=×32+=+=;∴m=;(3)如图(4)该函数的其它性质:①该函数没有最大值;②该函数在x=0处断开;③该函数没有最小值;④该函数图象没有经过第四象限.故答案为该函数没有最大值.【点评】本题考查了二次函数的图象和性质,反比例函数的图象和性质,根据图表画出函数的图象是解题的关键.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A 关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.【考点】二次函数的性质;待定系数法求二次函数解析式.【分析】(1)当y=2时,则2=x﹣1,解得x=3,确定A(3,2),根据AB关于x=1对称,所以B(﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得,求出b,c的值,即可解答;(3)画出函数图象,把A,B代入y=ax2,求出a的值,即可解答.【解答】解:(1)当y=2时,则2=x﹣1,解得:x=3,∴A(3,2),∵点A关于直线x=1的对称点为B,∴B(﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得:解得:∴y=x2﹣2x﹣1.顶点坐标为(1,﹣2).(3)如图,当C2过A点,B点时为临界,代入A(3,2)则9a=2,解得:a=,代入B(﹣1,2),则a(﹣1)2=2,解得:a=2,∴.【点评】本题考查了二次函数的性质,解集本题的关键是求出二次函数的解析式,并结合图形解决问题.28.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:【尝试】(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为(1,﹣2);(2)判断点A是否在抛物线L上;(3)求n的值;【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为(2,0)、(﹣1,6)..【应用】二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.【考点】二次函数综合题.【分析】【尝试】(1)将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标;(2)将点A的坐标代入抛物线E上直接进行验证即可;(3)已知点B在抛物线E上,将该点坐标代入抛物线E的解析式中直接求解,即可得到n的值.【发现】将抛物线l展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标.【应用1】将【发现】中得到的两个定点坐标代入二次函数y=﹣3x2+5x+2中进行验证即可.【解答】解:【尝试】(1)∵将t=2代入抛物线l中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2).(2)∵将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得 y=0,∴点A(2,0)在抛物线l上.(3)将x=﹣1代入抛物线l的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.【发现】∵将抛物线E的解析式展开,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4∴抛物线l必过定点(2,0)、(﹣1,6).【应用1】将x=2代入y=﹣3x2+5x+2,y=0,即点A在抛物线上.将x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣6≠6,即可得抛物线y=﹣3x2+5x+2不经过点B,二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”.【点评】考查了二次函数的综合知识,该题通过新定义的形式考查了二次函数等综合知识,理解新名词的含义尤为关键.最后一题的综合性较强,通过几何知识找出C、D点的坐标是此题的难点所在.29.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N 在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.【考点】相似形综合题.【分析】(1)①先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;②根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB==4,最后代入EF=PB即可得出线段EF的长度不变.【解答】解:(1)①如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;②如图1,∵△OCP与△PDA的面积比为1:4,∴===,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,。
【人教版】2016届九年级上期中数学试卷及答案解析

九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。
在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。
北京一五九中2015-2016学年九年级上数学期中考试试题及答案

A.2:1 B.1:2C.1:4 D.4:1
C
D
2E
3.如图,∠1=∠2=∠3,则图中相似三角形共有() A.4 对 B.3 对
1
A
3B
C.2 对 D.1 对 4.如图,点 A、B、C 都在⊙O 上,若 AOB 72 ,则 ACB 的度数是
O
C
()
A.18° C.36°
B.30° D.72°
相交于点
F,若
AB CD
a,
BC BE
b(a
0,b
0)
,则
AF EF
的值
是(用含 a,b 的代数式表示).
一五九中九年级数学第 5 页共 6 页
A
B
5.如图,点 D 在△ABC 的边 AC 上,要判断△ADB 与△ABC 相似,添加一
个条件,不正确的是( ).
A.∠ABD=∠CB.∠ADB=∠ABC C.
D.
C
6.
如图,⊙O 的半径为 5, AB 为弦,OC AB ,垂足为 E ,如果 A
B E
CE 2 ,那么 AB 的长是( )
O
一五九中九年级数学第 4 页共 6 页
25. 类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案
例,请补充完整.
原题:如图 1,在□ABCD 中,点 E 是 BC 边上的中点,点 F 是线段
AE 上一点,BF 的延长线交射线 CD 于点 G,若
AF EF
3 ,求 CD 的值. CG
塔 CD 地势高低相同,求塔 CD共 13分) 24.如图,在△ABC 中,∠B=∠C=30°.请你设计两种不同的分法,将△ABC 分割成四个小三角
北京十五中九年级上册期中数学试卷 含解析

九年级(上)期中数学试卷一.选择题(共8小题)1.如图,以点P为圆心作圆,所得的圆与直线l相切的是( )A.以PA为半径的圆B.以PB为半径的圆C.以PC为半径的圆D.以PD为半径的圆2.抛物线y=(x﹣2)2+1的对称轴是( )A.x=2B.x=﹣2C.x=1D.x=﹣13.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是( )A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°4.利用圆内接正多边形,可以设计出非常有趣的图案,下列图案中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.5.在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是( )A.甲对乙错B.甲错乙对C.甲乙都对D.甲乙都错6.如图,A、B、C在⊙O上,∠ACB=40°,点D在上,M为半径OD上一点,则∠AMB 的度数不可能为( )A.45°B.60°C.75°D.85°7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A.16B.14C.12D.108.下表时二次函数y=ax2+bx+c的x,y的部分对应值:x…012…y…﹣1m﹣1n…则对于该函数的性质的判断:①该二次函数有最大值;②不等式y>﹣1的解集是x<0或x>2;③方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;④当x>0时,函数值y随x的增大而增大;其中正确的是( )A.②③B.②④C.①③D.③④二.填空题(共8小题)9.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d 4.10.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为 .11.请写出一个开口向上,且与y轴交于(0,﹣1)的二次函数的解析式 .12.若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为 .13.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1 y2.(填“>”,“<”或“=”)14.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是 .15.如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是 (选填区域名称)16.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE ﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图2所示.请回答:(1)线段BC的长为 cm;(2)当运动时间t=2.5秒时,P、Q之间的距离是 cm.三.解答题(共12小题)17.在平面直角坐标系中,已知抛物线y=x2+bx+c的对称轴为x=1,且其顶点在直线y=﹣2x﹣2上.(1)求抛物线的顶点坐标;(2)求抛物线的解析式;(3)在给定的平面直角坐标系中画出这个二次函数的图象;(4)当﹣1<x<4时,直接写出y的取值范围.18.如图,AB是⊙O的直径,点C在⊙O上,D是中点,若∠BAC=70°,求∠C.下面是小雯的解法,请帮他补充完整.解:在⊙O中,∵D是的中点∴=,∴∠l=∠2( )(填推理的依据)∵∠BAC=70°∴∠2=35°∵AB是⊙O的直径,∴∠ADB=90°( )(填推理的依据)∴∠B=90°﹣∠2=55°∵A、B、C、D四个点都在⊙O上,∴∠C+∠B=180°( )(填推理的依据)∴∠C=l80°﹣∠B= (填计算结果)19.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A,B两点的距离为12米,求这种装置能够喷的草坪面积.20.如图,在等边△ABC中,AB=6,点D是线段BC上的一点,CD=4,将△ABD绕点A旋转后得到△ACE,连接CE.求CE的长.21.如图,园林小组的同学用一段长16米的篱笆围成一个一边基墙的矩形菜园ABCD,墙的长度为9米,设AB的长为x米,BC的长为y米.(1)①写出y与x的函数关系是: ;②自变量x的取值范围是 ;(2)园林小组的同学计划使矩形菜园的面积为30平方米,试求此时边AB的长.22.如图,AB是⊙O的直径,点C、E在⊙O上,AC平分∠BAE,CM⊥AE于点D.求证:CM是⊙O的切线.23.如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A 在点B左侧),与y轴交于点C.(1)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(2)在(1)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为 .24.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,连接CD,点O是CD的中点,到点O的距离等于OC的所有点组成图形M,图形M分别交AC,BC于点E,F两点,过点F 作FG⊥AB于点G.(1)试判断FG与图形M的位置关系,并说明理由;(2)若AC=3,∠B=30°,求FG的长.25.在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:已知y是x的函数,下表是y与x的几组对应值.x…﹣5﹣4﹣3﹣2012345…y… 1.969 1.938 1.875 1.7510﹣2﹣1.50 2.5…小孙同学根据学习函数的经验,利用上述表格反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小孙同学的探究过程,请补充完整;(1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:(2)根据画出的函数图象回答:①x=﹣1时,对应的函数值y的为 ;②若函数值y>0,则x的取值范围是 ;③写出该函数的一条性质(不能与前面已有的重复): .26.已知关于x的二次函数y=ax2﹣(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=﹣2x的一个交点为(2,m),求它的解析式:(3)在(2)的条件下,直线y=﹣2x﹣4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.27.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD 于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.28.在平面直角坐标系xOy中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆盖有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖,如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.(1)对于半径为2的⊙O,它的紧覆盖的边长为 .(2)如图1,点P为直线y=﹣2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P 的坐标.(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,①以O为圆心,r为半径的⊙O与线段AB有公共点,且由⊙O与线段AB组成的图形G的紧覆益的边长小于4,直接写出r的取值范围;②若在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3,直接写出a的取值范围.参考答案与试题解析一.选择题(共8小题)1.如图,以点P为圆心作圆,所得的圆与直线l相切的是( )A.以PA为半径的圆B.以PB为半径的圆C.以PC为半径的圆D.以PD为半径的圆【分析】根据直线与圆的位置关系的判定方法进行判断.【解答】解:∵PB⊥l于B,∴以点P为圆心,PB为半径的圆与直线l相切.故选:B.2.抛物线y=(x﹣2)2+1的对称轴是( )A.x=2B.x=﹣2C.x=1D.x=﹣1【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣2)2+1,对称轴是x=2.故选:A.3.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是( )A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°【分析】根据旋转的定义得到即可.【解答】解:因为点A(4,3)经过某种图形变化后得到点B(﹣3,4),所以点A绕原点逆时针旋转90°得到点B,故选:C.4.利用圆内接正多边形,可以设计出非常有趣的图案,下列图案中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误,故选:B.5.在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是( )A.甲对乙错B.甲错乙对C.甲乙都对D.甲乙都错【分析】根据圆心角、弦、弧的关系和垂径定理判断.【解答】解:在同圆或等圆中,相等的弦所对的圆心角相等,甲错,平分弦(不是直径)的直径垂直于这条弦,乙错,故选:D.6.如图,A、B、C在⊙O上,∠ACB=40°,点D在上,M为半径OD上一点,则∠AMB 的度数不可能为( )A.45°B.60°C.75°D.85°【分析】连接OA,OB,AD,BD.根据∠ADB<∠AMB<∠AOB,可得40°<∠AMB<80°,由此即可判断;【解答】解:连接OA,OB,AD,BD.∵∠AOB=2∠ACB=80°,∠ADB=∠ACB=40°,又∵∠ADB<∠AMB<∠AOB,∴40°<∠AMB<80°,故选:D.7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A.16B.14C.12D.10【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC 的周长=2+2+5+5=14,【解答】解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.8.下表时二次函数y=ax2+bx+c的x,y的部分对应值:x…012…y…﹣1m﹣1n…则对于该函数的性质的判断:①该二次函数有最大值;②不等式y>﹣1的解集是x<0或x>2;③方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;④当x>0时,函数值y随x的增大而增大;其中正确的是( )A.②③B.②④C.①③D.③④【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a>0,即可判断①④不正确,由图表可直接判断②③正确.【解答】解:∵当x=0时,y=﹣1;当x=2时,y=﹣1;当x=,y=﹣;当x=,y=﹣;∴二次函数y=ax2+bx+c的对称轴为直线x=1,x>1时,y随x的增大而增大,x<1时,y随x的增大而减小.∴a>0即二次函数有最小值则①④错误由图表可得:不等式y>﹣1的解集是x<0或x>2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;故选:A.二.填空题(共8小题)9.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d < 4.【分析】根据点与圆的位置关系判断得出即可.【解答】解:∵点P在圆内,且⊙O的半径为4,∴d<4,故答案为<.10.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为 5 .【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【解答】解:连接OD,∵CD⊥AB于点E,直径AB过O,∴DE=CE=CD=×8=4,∠OED=90°,由勾股定理得:OD===5,即⊙O的半径为5.故答案为:5.11.请写出一个开口向上,且与y轴交于(0,﹣1)的二次函数的解析式 y=x2+2x﹣1 .【分析】根据题意写出满足题意二次函数解析式即可.【解答】解:根据题意得:y=x2+2x﹣1,故答案为:y=x2+2x﹣112.若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为 6 .【分析】由x=1是方程2ax2+bx=3的根,得到2a+b=3,由x=2时,得到函数y=ax2+bx =4a+2b=2(2a+b),代入即可.【解答】解:∵x=1是方程2ax2+bx=3的根,∴2a+b=3,∴当x=2时,函数y=ax2+bx=4a+2b=2(2a+b)=6,故答案为6.13.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1 > y2.(填“>”,“<”或“=”)【分析】分别计算自变量为﹣3、2时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=x2﹣5x=24;当x=2时,y2=x2﹣5x=﹣6;∵24>﹣6,∴y1>y2.故答案为:>.14.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是 3cm .【分析】连接OA,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的直径.【解答】解:作OB⊥AB,连接OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故答案为:3cm.15.如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是 4区 (选填区域名称)【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故答案为:4区.16.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE ﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图2所示.请回答:(1)线段BC的长为 5 cm;(2)当运动时间t=2.5秒时,P、Q之间的距离是 cm.【分析】(1)根据图2可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC的长度;(2)如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,由矩形的性质和锐角三角函数的定义求得PF的长度,然后在直角△PBF中,由勾股定理求得BF=1.5,再在直角△PFQ中,由勾股定理求得PQ的长度.【解答】解:(1)根据图2可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm.故答案是:5;(2)如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PB•sin∠PBF=2.5×=2,∴在直角△PBF中,由勾股定理得到:BF===1.5,∴FQ=2.5﹣1.5=1.∴在直角△PFQ中,由勾股定理得到:PQ==.故答案是:.三.解答题(共12小题)17.在平面直角坐标系中,已知抛物线y=x2+bx+c的对称轴为x=1,且其顶点在直线y=﹣2x﹣2上.(1)求抛物线的顶点坐标;(2)求抛物线的解析式;(3)在给定的平面直角坐标系中画出这个二次函数的图象;(4)当﹣1<x<4时,直接写出y的取值范围.【分析】(1)把x=1代入y=﹣2x﹣2即可得到结论;(2)把抛物线的顶点坐标为(1,﹣4)代入抛物线的解析式即可得到结论.(3)利用五点法画出图象即可;(4)根据图象求得即可.【解答】解:(1)把x=1代入y=﹣2x﹣2得,y=﹣4,∴抛物线的顶点坐标为(1,﹣4);(2)∵抛物线的顶点坐标为(1,﹣4);∴抛物线的解析式为:y=(x﹣1)2﹣4,即抛物线的解析式为:y=x2﹣2x﹣3.(3)画出图象如图:(4)当﹣1<x<4时,y的取值范围是﹣4≤y<5.18.如图,AB是⊙O的直径,点C在⊙O上,D是中点,若∠BAC=70°,求∠C.下面是小雯的解法,请帮他补充完整.解:在⊙O中,∵D是的中点∴=,∴∠l=∠2( 等弧所对的圆周角相等 )(填推理的依据)∵∠BAC=70°∴∠2=35°∵AB是⊙O的直径,∴∠ADB=90°( 直径所对的圆周角是直角 )(填推理的依据)∴∠B=90°﹣∠2=55°∵A、B、C、D四个点都在⊙O上,∴∠C+∠B=180°( 圆内接四边形的对角互补 )(填推理的依据)∴∠C=l80°﹣∠B= 125° (填计算结果)【分析】根据圆周角定理,圆内接四边形的性质,求出∠B即可解决问题;【解答】解:在⊙O中,∵D是的中点∴=,∴∠l=∠2(等弧所对的圆周角相等)∵∠BAC=70°∴∠2=35°∵AB是⊙O的直径,∴∠ADB=90°(直径所对的圆周角是直角)∴∠B=90°﹣∠2=55°∵A、B、C、D四个点都在⊙O上,∴∠C+∠B=180°(圆内接四边形的对角互补)∴∠C=l80°﹣∠B=125°故答案为:等弧所对的圆周角相等,直径所对的圆周角是直角,圆内接四边形的对角互补,125°.19.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A,B两点的距离为12米,求这种装置能够喷的草坪面积.【分析】过O作OC⊥AB于C,求出∠AOB度数,求出∠OAB,解直角三角形求出OA,根据扇形的面积公式求出即可.【解答】解:过O作OC⊥AB于C,则∠ACO=90°,∵OC过O,OC⊥AB,AB=12米,∴AC=BC=6米,∵旋转喷水装置的旋转角度为240°,∴∠AOB=120°,∵OA=OB,∴∠OAC=∠OBC=(180°﹣120°)=30°,∴OA===4(米),∴这种装置能够喷的草坪面积是=32π(平方米).20.如图,在等边△ABC中,AB=6,点D是线段BC上的一点,CD=4,将△ABD绕点A旋转后得到△ACE,连接CE.求CE的长.【分析】根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,据此可得CE=BD=BC﹣CD=2.【解答】解:∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴CE=BD,∵BC=6,CD=4,∴CE=BD=BC﹣CD=2.21.如图,园林小组的同学用一段长16米的篱笆围成一个一边基墙的矩形菜园ABCD,墙的长度为9米,设AB的长为x米,BC的长为y米.(1)①写出y与x的函数关系是: y=16﹣2x ;②自变量x的取值范围是 3.5≤x<8 ;(2)园林小组的同学计划使矩形菜园的面积为30平方米,试求此时边AB的长.【分析】(1)①根据篱笆的长度是16米列出函数关系式;②根据x、y都是正数写出自变量的取值范围;(2)由矩形的面积公式列出方程并解答.【解答】解:(1)①写出y与x的函数关系是:y=16﹣2x.故答案是:y=16﹣2x.②因为x>0,9≥y>0,∴3.5≤x<8.故答案是:3.5≤x<8;(2)依题意得:x(16﹣2x)=30,解得x1=5,x2=3,答:园林小组的同学计划使矩形菜园的面积为30平方米,此时边AB的长为5米或3米.22.如图,AB是⊙O的直径,点C、E在⊙O上,AC平分∠BAE,CM⊥AE于点D.求证:CM是⊙O的切线.【分析】通过角平分线和有两半径为边的三角形是等腰三角形可得到OC∥AD,再证明OC ⊥CD.【解答】证明:连OC,BC,如图1,∵AC平分∠BAE,∴∠1=∠2,∵OA=OC,∴∠2=3,∴∠1=∠3,∴AD∥OC.又∵CD⊥AE,∴OC⊥CD.又∵OC是圆O的半径,∴CM是⊙O的切线.23.如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A 在点B左侧),与y轴交于点C.(1)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(2)在(1)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为 3 .【分析】(1)先根据等腰直角三角形的腰长求出OB=OC=3,进而求出点B,C坐标,最后用待定系数法即可得出结论;(2)先确定出抛物线的对称轴,进而求出点C'的坐标,找出PA+PC的最小值为AC',再求出点A坐标,即可得出结论.【解答】解:(1)如图1,连接BC,∵△OBC是等腰直角三角形,∠BOC=90°,∴OB=OC,∵腰长为3,∴OB=OC=3,∴B(3,0),C(0,3),将点B(3,0),C(0,3)代入抛物线解析式y=x2+mx+n中,得,,∴,∴抛物线的解析式为y=x2﹣4x+3;(2)如图2,由(1)知,抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴直线为x=2,∵点C(0,3),∴点C关于抛物线的对称轴x=2的对称点C'(4,3),连接AC'交抛物线的对称轴于P,此时,PA+PC的值最小,最小值为AC',针对于抛物线的解析式为y=x2﹣4x+3,令y=0,则x2﹣4x+3=0,解得,x=1或x=3,∴A(1,0),∵C'(4,3),∴AC'==3,即:PA+PC的最小值为3,故答案为:3.24.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,连接CD,点O是CD的中点,到点O的距离等于OC的所有点组成图形M,图形M分别交AC,BC于点E,F两点,过点F 作FG⊥AB于点G.(1)试判断FG与图形M的位置关系,并说明理由;(2)若AC=3,∠B=30°,求FG的长.【分析】(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OCF,得到∠OFC=∠DBC,推出∠OFG=90°,于是得到结论;(2)连接DF,解直角三角形即可得到结论.【解答】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵∠ACB=90°,AC=3,∠B=30°,∴AB=2AC=6,∴BC=AB=3,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=,∵sin∠ABC==,即=,∴FG=.25.在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:已知y是x的函数,下表是y与x的几组对应值.x…﹣5﹣4﹣3﹣2012345…y… 1.969 1.938 1.875 1.7510﹣2﹣1.50 2.5…小孙同学根据学习函数的经验,利用上述表格反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小孙同学的探究过程,请补充完整;(1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:(2)根据画出的函数图象回答:①x=﹣1时,对应的函数值y的为 1.35(答案不唯一) ;②若函数值y>0,则x的取值范围是 x<0.96或x>4 ;③写出该函数的一条性质(不能与前面已有的重复): 当x≥﹣2时,函数值y随x的增大而增大(答案不唯一) .【分析】(1)通过描点借口画出函数图象;(2)直接从图象读取相关数值即可.【解答】解:(1)通过描点画出如下函数图象:(2)答案为近似值,不唯一,①当x=﹣1时,从图象可以看出:y=1.35;②函数值y>0,则x<0.96或x>4;③当x≥﹣2时,函数值y随x的增大而增大;26.已知关于x的二次函数y=ax2﹣(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=﹣2x的一个交点为(2,m),求它的解析式:(3)在(2)的条件下,直线y=﹣2x﹣4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.【分析】(1)把x=0和x=6代入二次函数的解析式得出关于a的方程,求出a即可;(2)先求交点坐标为(2,﹣4),代入二次函数的解析式中可得b的值,从而得结论;(3)根据图象和解析式分别计算B、C、A、F四个点的坐标,再计算上下两个端点相交时,点n的值即可.【解答】解:(1)∵y=ax2﹣(2a+2)x+b(a≠0)在x=0和x=6时函数值相等,∴代入得:b=36a﹣6(2a+2)+b,解得:a=;(2)当x=2时,m=﹣4,∴二次函数的图象与直线y=﹣2x的一个交点为(2,﹣4),把(2,﹣4)代入y=ax2﹣(2a+2)x+b得:﹣3×2+b=﹣4,b=0,∴二次函数的解析式是:y=x2﹣3x;(3)当x=2时,y=﹣3×2=﹣4,当y=0时,=0,解得:x=0或6,当y=﹣4时,=﹣4,解得:x=2或4,﹣2x﹣4=0,x=﹣2,∴F(6,0),A(﹣2,0),C(2,﹣4),B(0,﹣4),B'(4,﹣4),∴BC=2,AF=6﹣(﹣2)=8,BB'=4,∵图象G为二次函数在2≤x≤7的部分,∴从下端看最早相交的点为B与C相交,即n==1时,从上端看,A与F相交,即n ==4时;∴由图象得:当图象G与平移后的线段有公共点时,n的取值范围是2≤n≤4或n=1.27.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD 于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.【分析】(1)①根据圆周角为90°所对的弦为直径,可得圆心的位置;②根据直角三角形斜边上的中线等于斜边的一半,可证点E一定在⊙O上;(2)①根据题意画图;②在AE上截取AM=BE,由题意可证△ACM≌△BCE,可得CM=CE,即ME=CE,可得AE=BE+CE,由旋转可得∠AFE=∠EAF=45°,可求EF=AE,即可得AF=AE═(BE+CE)=BE+2CE.【解答】解:(1)①∵在△ABC中,AC=BC,∠ACB=90°,∴△ABC的外接圆⊙O的圆心O的位置在是斜边AB的中点;②如图:设斜边AB的中点为O,连接OE,OC,则OA=OC=OB,∵AE⊥BD于点E,∴∠AEB=90°,∴OE=AB=OA,∴点E一定在⊙O上;(2)AF=BE+2CE在AE上截取AM=BE∵∠ACB=∠AEB=90°∴点A,点C,点E,点B四点共圆∴∠CAE=∠CBE,且AC=BC,AM=BE∴△ACM≌△BCE(SAS)∴CM=CE,∠ACM=∠BCE∵∠ACM+∠MCB=90°∴∠BCE+∠MCB=90°∴∠MCE=90°,∴ME==CE∴AE=AM+ME=BE+CE∵旋转∴∠EAF=45°,且∠AEF=90°∴∠AFE=∠EAF=45°∴EF=AE∴AF==AE=(BE+CE)=BE+2CE28.在平面直角坐标系xOy中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆盖有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖,如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.(1)对于半径为2的⊙O,它的紧覆盖的边长为 4 .(2)如图1,点P为直线y=﹣2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P 的坐标.(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,①以O为圆心,r为半径的⊙O与线段AB有公共点,且由⊙O与线段AB组成的图形G的紧覆益的边长小于4,直接写出r的取值范围;②若在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3,直接写出a的取值范围.【分析】(1)由题意半径为2的⊙O的外切正方形是半径为2的⊙O紧覆盖,由此即可解决问题;(2)由题意当点P到坐标轴的距离等于2时,线段OP的紧覆盖的正方形的边长为2.分两种情形分别求解即可;(3)①如图2中,作OH⊥AB于H.利用两种特殊位置解决问题即可;②如图2﹣1中,由题意当抛物线与图中矩形EFGH区域有交点时,在抛物线y=ax2+2ax ﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3;【解答】解:(1)由题意半径为2的⊙O的外切正方形是半径为2的⊙O紧覆盖,∴紧覆盖的边长为4,故答案为4.(2)由题意当点P到坐标轴的距离等于2时,线段OP的紧覆盖的边长为2.①当点P在第一象限时,作PH⊥x轴于H则PH=2,y=2时,2=﹣2x+3,x=,∴P(,2).②当点P′在第三象限时,作P′H′⊥y轴,则P′H′=2,当x=2时,y=﹣1,∴P′(2,﹣1).综上所述,满足条件的点P坐标为(,2)或(2,﹣1).(3)①如图2中,作OH⊥AB于H.由题意A(﹣1,0),B(0,3),∴OA=1,OB=3,AB=,∵•OA•OB=•AB•OH,∴OH=,当⊙O经过点A时,r=1,此时由⊙O与线段AB组成的图形G的紧覆益的边长为4,观察图象可知满足条件的r的范围为:≤r<1.②如图2﹣1中,如图由题意当抛物线与图中矩形EFGH区域有交点时,在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3.由题意E(﹣3,3),F(﹣3,0),G(2,0),H(2,3).当抛物线经过点G时,4a+4a﹣2=0,∴a=,∵抛物线的对称轴x=﹣1,经过(0,﹣2),观察图象可知,当a≥时,在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC 的紧覆益的边长为3.当a<0时,抛物线经过点A时,解析式为y=﹣2(x+1)2,观察图象可知,当a≤﹣2时,在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC 的紧覆益的边长为3.综上所述,满足条件的a的值为a≥或a≤﹣2.。
北京一五九中-九年级上数学期中考试试题及答案.doc

北京市一五九中学2015-2016学年度第一学期九年级期中数学试题班姓名 学号得分一、选择题(每小题4分,共40分)1.已知1sin 2A =,则锐角A 的度数是()A .30︒B .45︒C .60︒D .75︒2.已知△ABC ∽△DEF ,且AB :DE =1:2,则△ABC 的周长与△DEF 的周长之比为( ) A .2:1 B .1:2C .1:4 D .4:13.如图,∠1=∠2=∠3,则图中相似三角形共有()A .4对B .3对C .2对D .1对4.如图,点A 、B 、C 都在⊙O 上,若72AOB ∠=︒,则ACB ∠的度数是( ) A .18° B .30° C .36° D .72°5.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一 个条件,不正确...的是( ). A .∠ABD=∠CB.∠ADB=∠ABC C.AD AB AB AC = D .AB CBBD CD=6. 如图,⊙O 的半径为5,AB 为弦,AB OC ⊥,垂足为E ,如果2=CE ,那么AB 的长是( ) A .4B. 6 C. 8 D. 107.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于D , 如果:4:3AC BC =,AB=10cm,那么BD 的长为( ) A .3cmB .32cm C .6cm D.12cm8. △ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .12B .312C .324D .348321EDCBA9.下列说法错误的是( )A .直径是圆中最长的弦B .圆内接平行四边形是矩形C .90°的圆周角所对的弦是直径D .相等的圆周角所对的弧相等10.如图,在边长为1的小正方形组成的网格中,点A 、B 、C 、D 、E 都在小正方形的顶点上. 则tan ∠ADC 的值等于().A .33B .21C .31 D .1010二、填空题(每小题4分,共24分) 11. 若3x =4y ,则y-x yx 的值为 . 12.在□ABCD 中,E 为BC 延长线上一点,AE 交CD 于点F ,若AB =7,CF =3,则CEAD= . 13.△ABC 是半径为2的圆的内接三角形,若BC =,则∠A 的度数为 .14.圆内接四边形ABCD 中,∠A:∠B:∠C=2:3:4,则∠A=,∠B=,∠C=,∠D=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市第十三中学2016-2017学年度九年级数学期中测试 2016年11月第1-10题均有四个选项,符合题意的选项只有一个。
1.下列图形中,既是轴对称图形,又是中心对称图形的是( ).2.在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ).A .2(2)2y x =++ B .2(2)2y x =-- C .2(2)2y x =-+ D .2(2)2y x =+- 3.如果45a b =(ab ≠0),那么下列比例式变形正确的是( ) A .54a b = B .45a b = C .45a b = D .45ba = 4.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,且 DE ∥BC ,如果 AD ∶DB=3∶2,那么AE ∶AC 等于( )A .3∶2B .3∶1C .2∶3D .3∶55.在平面直角坐标系xoy 中,如果⊙O 是以原点O (0,0)为圆心,以5为半径的圆,那么点A (-3,-4)与⊙O 的位置关系是( ) A. 在⊙O 内B.在⊙O 上C. 在⊙O 外D. 不能确定 6.如图,将△ABC 绕着点C 按顺时针方向旋转20°, B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥, 则BAC ∠的度数是( ).A. B. C. D.A .50° B.60° C. 70° D.40°7.如右图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB=20°,则∠AOD 等于( )A .120°B . 140°C .150°D . 160°8.二次函数223y x x =--的最小值为( ) A. 5 B. 0 C. -3 D. -49.如图,AB 是⊙O 的切线,B 为切点,AO 的延长线交⊙O 于C 点, 连接BC ,如果30A ∠=,AB =AC 的长等于( ) .A. 6B. 4C.D.10.如图1,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发沿图中某一个扇形顺时针...匀速运动,设∠APB=y (单位:度),如果y 与点P 运动的时间x (单位:秒)的函数关系的图象大致如图2所示,那么点P 的运动路线可能为( ).A .O →B →A →O B .O →A →C →O C .O →C →D →O D .O →B →D →O二、填空题(本题共18分,每小题3分)11.写出一个抛物线开口向下,与y 轴交于(0,2)点的函数表达式 .12. 把二次函数的表达式y = x 2-6x+5化为()2y a x h k =-+的形式,那么h k +=_____.13.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的面积是 米2. 14.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”AB图2图1yx90BA O CO 4515.弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数是____________. 16.阅读下面材料:在数学课上,老师提出如下问题: 小涵的主要作法如下:老师说:“小涵的作法正确.”请回答:小涵的作图依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28分7分,第9题8分)解答应写出文字说明、演算步骤或证明过程。
17.解方程:2610x x --=.18.如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于G ,判断弧EF 和弧FG 是否相等,并说明理由.19.已知抛物线y = (m -2)x 2 + 2mx + m +3与x 轴有两个交点. (1) 求m 的取值范围;(2) 当m 取满足条件的最大整数时,求抛物线与x 轴两个交点的坐标.20.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上.将△ABC 绕点A 顺时针旋转90°得到△AB 1C 1. (1) 在网格中画出△AB 1C 1;(2) 计算点B 旋转到B 1的过程中所经过的路径长.(结果保留π21.下表是二次函数2(a 0)y ax bx c =++≠图象上部分点的横坐标(x )和纵坐标(y ).(1(2)其中A (1,1)、B (2,2)在函数的图象上,且-1< x 1 <0, 2< x 2 <3,则1y _____2y (用“>”或“<”填空); (3)求这个二次函数的表达式.第20题图22. “母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进了一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.在义卖的过程中发现,这种文化衫每天的销售件数y (件)与销售单价x (元)满足一次函数关系:()31082036y x x =-+<<.如果义卖这种文化衫每天的利润为p (元),那么销售单价定为多少元时,每天获得的利润最大?最大利润是多少?23.如图,⊙O 为△ABC 的外接圆,直线l 与⊙O 相切与点P ,且l ∥BC .(1) 请仅用无刻度的直尺........,在⊙O 中画出一条弦.,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法);(2) 请写出证明△ABC 被所作弦分成的两部分面积相等.24. 密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知△ABC 是等边三角形,以AB 为直径作⊙O ,交BC 边于点D ,交AC 边于点F ,作DE ⊥AC 于点E . lOBC(1)求证:DE 是⊙O 的切线;(2)若△ABC 的边长为4,求EF 的长度.26.阅读下面解题过程,解答相关问题.求一元二次不等式224x x -->0的解集的过程.① 构造函数,画出图象:根据不等式特征构造二次函数x x y 422--=;并在坐 标系中画出二次函数x x y 422--=的图象(如图1). ② 求得界点,标示所需:当y=0时,求得方程0422=--x x 的解为12x =-,20x =;并用锯齿线标示出函数x x y 422--=图象中y >0的部分(如图2). ③ 助图象,写出解集:由所标示图象,可得不等式224x x -->0的解集为2-<请你利用上面求一元二次不等式解集的过程,求不等式221x x -+≥4的解集.27.在平面直角坐标系xOy 中,抛物线1222+-+-=m mx x y 的对称轴是直线1=x . (1)求抛物线的表达式;(2)点()1,y n D ,()2,3y E 在抛物线上,若21y y <,请直接写出n 的取值范围;(3)设点()q p M ,为抛物线上的一个动点,当12p -<<点M 关于y 轴的对称点都在直线4-=kx y 的上方,求k28. 已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,(1) 如图1,已知∠AOB=150°,∠BOC=120°,将△BOC ADC.①∠DAO 的度数是 ;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明; (2) 设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC 的边长为1,直接写出OA+OB+OC 的最小值.ABCDABCO 图1图229.在平面直角坐标系xOy 中,定义点P (x,y )的变换点为P ′(x+y, x-y) . (1) 如图1,如果⊙O 的半径为①请你判断 M (2,0),N (-2,-1)两个点的变换点与⊙O 的位置关系;②若点P 在直线y=x+2上,点P 的变换点P ′在⊙O 的内,求点P 横坐标的取值范围.(2)如图2,如果⊙O的半径为1,且P的变换点P’在直线y=-2x+6上,求点P与⊙O上任意一点距离的最小值.草稿纸北京市第十三中学2016-2017学年度九年级数学期中测试评分标准2016年11月一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每题3分)6;14.26; 15.30°和150°; 16.直11.不唯一; 12.-1; 13.3径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28分7分,第9题8分)解答应写出文字说明、演算步骤或证明过程。
17.解方程:x2-6x-1=0.解:x2-6x=1. …………1分x 2-6x +9=1+9 . …………2分 (x -3)2=10 . …………3分x =3±∴x 1=3x 2=3分18. 如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA的延长线于G ,判断»EF和»FG 是否相等,并说明理由. 结论:»»EFFG =. ………………… 1分; 证法一:连接AE . ∴AB AE =,∴B AEB ∠=∠,………………… 2分; ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴B GAF ∠=∠,FAE AEB ∠=∠,………………… 3分; ∴GAF FAE ∠=∠, ………………… 4分;在⊙A 中,∴»»EFFG =. ………………… 5分. 结论:»»EFFG =. ………………… 1分; 证法二:连接GE . ∵BG 是⊙A 的直径,∴90BEG ∠=o. ∴GE BE ⊥.∵四边形ABCD 是平行四边形,∴AD ∥BC , ………………… 3分; ∴AD GE ⊥ ………………… 4分;G FE ADBC∴»»EFFG =. ………………… 5分. 证法三:参考上面给分19.(1)解:在 y = (m -2)x 2+ 2mx + m +3 中,令y =0由题意得2(2)4(2)(3)020m m m m ⎧∆=--+>⎨-≠⎩------------------------------------------2分 整理,得 42402m m -+>⎧⎨≠⎩解得 62m m <≠且-----------------------------------3分(2)满足条件的m 的最大整数为5.-------------------------4分∴y =3x 2+10x +8令y =0,3x 2+10x +8=0,解得423x x =-=-或∴抛物线与x 轴有两个交点的坐标分别为(-2,0)、(43-,0)-------5分 20.解:(1)画出△AB 1C 1,如图. ………………………………2分(2)由图可知△ABC 是直角三角形,AC =4,BC =3,所以AB =5. ………………3分 点B 旋转到B 1的过程中所经过的路径是一段弧, 且它的圆心角为90°,半径为5. …………4分∴=πππ25521241=⨯=⨯⨯AB . …………5分所以点B 旋转到B 1的过程中所经过的路径长为π25. 21.解(1)3; --------------------------------------------------1分 (2)>; -----------------------------2分(3)观察表格可知抛物线顶点坐标为(2,-1)且过(0,3)点,设抛物线表达式为2(2)1y a x =----------------3分把(0,3)点代入,4a -1=3,解得a =1--------------------------------------------------4分 ∴2(2)1y x =--243y x x =-+∴-----------------------------------5分22.解:每天获得的利润为:(3108)(20)p x x =-+- …… ……………………… 1分231682160x x =-+-23(28)192x =--+ ……………………………… 3分∵202836<<∴当销售价定为28元时,每天获得的利润最大,…… 4分 最大利润是192元. . ……5分23. (1)解:如图所示.-----2分(2)思路:a .由切线性质可得PO ⊥l ;b .由l ∥BC 可得PD ⊥BC ;c .由垂径定理知,点E 是BC 的中点;d .由三角形面积公式可证S △ABE = S △AEC . -----5分24. 解法一:如图所示建立平面直角坐标系.--------------------------- 1分 此时,抛物线与x 轴的交点为C(-100,0), D(100,0).l设这条抛物线的解析式为)100x )(100x (a y +-=.-------------------- 2分∵抛物线经过点B (50,150),可得 )10050)(10050(a 150+-= .解得501a -=. ------------------------- 3分 ∴200x 501)100x )(100x (501y 2+-=+--=.-------4分 顶点坐标是(0,200)∴ 拱门的最大高度为200米.-------------------------------------- 5分 解法二:如图所示建立平面直角坐标系.-------------------------------- 1分 设这条抛物线的解析式为2ax y =.--------------------------------- 2分 设拱门的最大高度为h 米,则抛物线经过点B(50,-h+150), D(100,-h) 可得解得. ----------------------- 4分∴ 拱门的最大高度为200米.--------------------- 5分25.(1)证明:连接OD ,∵ABC ∆是等边三角形, ∴︒=∠=∠60C B . ∵OD OB =,∴︒=∠=∠60B ODB .…………………………………………………………1分∵AC DE ⊥, ∴︒=∠90DEC . ∴︒=∠30EDC . ∴︒=∠90ODE . ∴OD DE ⊥于点D .∵点D 在⊙O 上,∴DE 是⊙O 的切线. 2分 (2)连接AD ,BF , ∵AB 为⊙O 直径,∴︒=∠=∠90ADB AFB . ∴BF AF ⊥,BD AD ⊥. ∵ABC ∆是等边三角形,∴221==BC DC ,221==AC FC . …………………………………………3分 ∵︒=∠30EDC ,∴121==DC EC .……………………………………………………………4分∴1=-=EC FC FE . ………………………………………………5分26. 解:①构造函数,画出图象:根据不等式特征构造二次函数221y x x =-+或223y x x =--;并在坐标系中画出二次函数221y x x =-+或223y x x =--;的图象(如图). ………………… 2分;②求得界点,标示所需:当y =4时,求得方程2214x x -+=的解为11x =-,23x =;并用锯齿线标示出函数221y x x =-+图象中y ≥4的部分(如图).或当y =0时,求得方程2230x x --=的解为11x =-,23x =;并用锯齿线标示出函数223y x x =--图象中y ≥0的部分(如图). …………… 4分;③借助图象,写出解集:∴不等式221x x -+≥4的解集为x ≤-1或x ≥3. ………………… 5分; 27. 解:(1)∵抛物线的对称轴是1=x∴1222=--=-m a b ∴1=m …………. ………...1分∴x x y22+-=. ………. ………...2分 (2)3>n 或1-<n . ………. ………...4分 (3) 由题意得抛物线22(12)y x x x =-+-<<关于y 轴对称的抛物线为22(2y x x =---<当13x y ==-时,;当直线4-=kx y 经过点()3,1-时,可得1=k ………5分 当20x y =-=时,;当直线4-=kx y 经过点()0,2-时,可得2-=k ……6分 综上所述,k 的取值范围是12≤≤-k . ………7分 28.解:(1)①90°. …………………………………………… 1分②线段OA ,OB ,OC 之间的数量关系是222OA OB OC +=.如图1,连接OD .∵△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴△ADC ≌△BOC ,∠OCD=60°.∴CD = OC ,∠ADC =∠BOC =120°, AD= OB . ∴△OCD 是等边三角形.∴OC =OD =CD ,∠COD =∠CDO =60°.DA∵∠AOB =150°,∠BOC =120°, ∴∠AOC =90°.∴∠AOD =30°,∠ADO =60°. ∴∠DAO =90°.在Rt △ADO 中,∠DAO =90°, ∴222OA AD OD +=.∴222OA OB OC +=. ………………… 3分(2)①如图2,当α=β=120°时,OA +OB +OC 有最小值. 作图如图2的实线部分. …………………… 4分如图2,将△AOC 绕点C 按顺时针方向旋转60°得△A’O’C ,连接OO’. ∴△A’O’C ≌△AOC ,∠OCO’=∠ACA’=60°. ∴O’C = OC , O’A’ = OA ,A’C = BC, ∠A’O’C =∠AOC . ∴△OC O’是等边三角形.∴OC = O’C = OO’,∠COO’=∠CO’O =60°. ∵∠AOB =∠BOC =120°, ∴∠AOC =∠A’O’C =120°. ∴∠BOO’=∠OO’A’=180°. ∴四点B ,O ,O ’,A ’共线.∴OA +OB +OC = O’A’ +OB +OO’ =BA’ 时值最小. …………… 6分②当等边△ABC 的边长为1时,OA +OB +OC 的最小值A ’B … 7分 29.解:(1)①由题意得,'(2,2),'(3,1).M N -- ∴''OM ON =>∴'M 在⊙O 上,'N 在⊙O 外. ----2 ②设点(,2)P x x +,则'(22,2)P x +-. ∵点'P 在⊙O 内,∴2<2+2<2-x ,解得0<<2-x .∴点P 横坐标的取值范围是0<<2-x O O /A /4321ABC图2-----5分(2)设点(,)P a b ,则'(,)P a b a b +-. 由题意,得2()6.a b a b -++=- 整理,得3 6.b a =-+ ∴36P y x =-+点在直线上. ∴点O 到直线y = -3x +6的距离是1053∴点P 1-. -----8分。