2荧光探针设计原理Word版

2荧光探针设计原理Word版
2荧光探针设计原理Word版

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。

图1.1 荧光探针的结构

1.1.1 荧光探针的一般设计原理

(1) 结合型荧光探针[21]

+

Analyte Signalling subunit Space Binding subunit Output

signal

图1.2 共价连接型荧光探针

结合型荧光探针是利用化学共价键将识别基团和荧光基团连接

起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组

装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光基团之间能通过连接基进行信号传递,

对识别对象的识别信息(如荧光的增强或减弱、光谱的移动、荧光寿命的变化等)可以及时传递出去。

图1.3 共价连接型锌离子荧光探针

De Silva 在1997年报道的化合物1[22]是一个典型的共价连接法设计的荧光探针。它分别以有优良光学性质的蒽作为荧光基团,以对Zn2+有特异性识别的基团双( 2-吡啶甲基)氨 (DPA)为识别基团,通过亚甲基将识别基团和荧光报告基团连接在一起。通过对比加锌前后荧光强度的不同实现了对锌离子的检测。

(2) 置换型荧光探针

图1.4 置换型荧光探针

利用该方法设计的荧光探针是通过识别基团分别与荧光指示剂和被分析物结合能力的强弱来实现对被分析物的检测。该类传感器对识别基团和荧光指示剂的要求都比较高,既要选择能和识别基团结合但结合能力又不是特别强的荧光指示剂,又要设计对被分析物能特异识别的识别基团。该类设计方法多用于阴离子传感器的设计。

2002 年,Kim小组[23]设计了邻苯二酚紫作为荧光指示剂,双锌配合物为HPO42-识别基团,并将二者自组装成化合物2,用于中性条件下水溶液中HPO42-的检测。加入识别客体 HPO42-后,由于 HPO42-与双锌配位能力强于邻苯二酚紫,从而把邻苯二酚紫挤开,使之进入溶液,表现为其原来颜色。在识别过程中,溶液颜色从蓝色变为黄色,常见的 Ac-、CO32-、NO3-、N3-、ClO4-、S2-、F-、Cl-、Br-都不影响HPO42-的检测,表现出较好的选择性。

图1.5 置换型HPO42-化学传感器

(3) 化学计量型荧光探针(chemodosimeter)

化学计量型荧光探针分子是利用探针分子与识别客体之间特异不可逆的化学反应前后产生荧光信号的不同而对分析对象进行检测的一类探针[24]。主要包括两种类型:一类是目标离子和探针分子发生化学反应后仍旧通过共价键相连接:另一类是目标离子催化了一个化学反应(图1.6)。

图1.6 化学计量法的两种类型

一般而言,化学计量型荧光探针分子都具有专一性和不可逆性。尽管这类探针已有不少报道,但由于设计较为困难和反应不够灵敏等

缺陷而进展较为缓慢。

34

图1.7 氨基酸荧光分子探针

Kim和Hong等[25]设计的识别半胱氨酸及高半胱氨酸的荧光分子探针3,属于第一种类型。他们利用半胱氨酸及高半胱氨酸与醛生成五元噻唑环或六元噻嗪环的特异反应以及反应前后化合物3和4荧光性质的显著差异实现了对半胱氨酸及高半胱氨酸的高选择性检测。

化合物5[26] 是较早应用化学反应原理实现检测客体的荧光探针,属于第二种类型。化合物5的乙腈溶液中加入汞离子后荧光显著增强(34倍)并红移,进一步用质谱检测发现生成了脱硫产物6。

56

图1.8 基于汞脱硫原理的汞离子荧光探针

1.1.2 荧光分子探针的响应机理

目前,荧光分子探针的响应机理主要有以下几种:光致电子转移(PET, photo-induced electron transfer)、分子内电荷转移(ICT, intramolecular charge transfer)、荧光共振能量转移(FRET, fluorescence resonance energy transfer)等。

(1) 光诱导电子转移原理(PET)

光致电子转移是指电子给体或电子受体受光激发后,激发态的电子给体与电子受体之间发生电子转移的过程。典型的光致电子转移荧光探针体系是由具有电子给予能力的识别基团R通过连接基团S和荧光基团相连组成的功能分子。

一般情况下,荧光分子探针的识别基团是电子给体,荧光基团是电子受体,并且通常情况下多采用含有氨基的基团作为识别基团。具体PET工作过程如下:在识别基团与待测物种结合之前,当荧光基团受激发,具有给电子能力的识别基团能够使其处于最高占据轨道的电子转入激发态荧光团因电子激发而空出的电子轨道,使被光激发的电子无法直接跃迁到原基态轨道发射荧光,导致荧光基团的荧光猝灭。而识别基团与待测物种结合之后,由于降低了识别基团的给电子能力,光致电子转移过程被减弱或者不再发生,荧光基团的荧光发射得到恢复(如图1.9)。

h

h

图1.9 荧光分子光致电子转移的“开”“光”过程示意图。

由于与待测物种结合前后的荧光强度差别很大,呈现明显的

“关”、“开”状态,因此这类荧光分子探针又被称为荧光分子开关。PET荧光分子探针的作用机制可由前线轨道理论[2]来进一步说明(见图1.10)。从图可以看出,识别基团处于自由态时,其HOMO轨道上的电子可以向荧光基团的HOMO轨道上转移,致使荧光基团被激发到LUMO上的激发态电子不能返回基态而难以产生荧光,此过程对应于发生PET现象。在识别基团与待测物种结合后,识别基团上的HOMO 电子已无法转移到荧光基团的HOMO轨道上,使PET过程无法进行,这时荧光基团的激发态电子可以返回基态,产生荧光。由此可见,利用识别基团对PET过程的控制可以实现对体系荧光发射状态的调控。

荧光团结合受体前荧光团结合受体后

图1.10 光致电子转移机制机制的前线轨道理论解释。

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

混凝土结构设计原理课后答案

绪论 0-1:钢筋和混凝土是两种物理、力学性能很不相同的材料,它们为什么能结合在一起工作? 答:其主要原因是:①混凝土结硬后,能与钢筋牢固的粘结在一起,相互传递内力。粘结力是两种性质不同的材料能共同工作的基础。②钢筋的线膨胀系数为1.2×10-5C-1,混凝土的线膨胀系数为1.0×10-5~1.5×10-5C-1,二者的数值相近。因此,当温度变化时,钢筋与混凝土之间不会存在较大的相对变形和温度应力而发生粘结破坏。 习题0-2:影响混凝土的抗压强度的因素有哪些? 答: 实验方法、实验尺寸、混凝土抗压实验室,加载速度对立方体抗压强度也有影响。 第一章 1-1 混凝土结构对钢筋性能有什么要求?各项要求指标能达到什么目的? 答:1强度高,强度系指钢筋的屈服强度和极限强度。采用较高强度的钢筋可以节省钢筋,获得较好的经济效益。2塑性好,钢筋混凝土结构要求钢筋在断裂前有足够的的变形,能给人以破坏的预兆。因此,钢筋的塑性应保证钢筋的伸长率和冷弯性能合格。3可焊性好,在很多情况下,钢筋的接长和钢筋的钢筋之间的链接需通过焊接,因此,要求在一定的工艺条件下钢筋焊接后不产生裂纹及过大的变形,保证焊接后的接头性能良好。4与混凝土的粘结锚固性能好,为了使钢筋的强度能够充分的被利用和保证钢筋与混凝土共同作用,二者之间应有足够的粘结力。 1-2 钢筋冷拉和冷拔的抗压、抗拉强度都能提高吗?为什么? 答:冷拉能提高抗拉强度却不能提高抗压强度,冷拉是使热轧钢筋的冷拉应力值先超过屈服强度,然后卸载,在卸载的过程中钢筋产生残余变形,停留一段时间再进行张拉,屈服点会有所提高,从而提高抗拉强度,在冷拉过程中有塑性变化,所以不能提高抗压强度。冷拨可以同时提高钢筋的抗拉和抗压强度,冷拨是将钢筋用强力拔过比其径小的硬质合金拔丝模,钢筋受到纵向拉力和横向压力作用,内部结构发生变化,截面变小,而长度增加,因此抗拉抗压增强。

结构设计原理 第一章 材料的力学性能 习题及答案

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋与无明显屈服点的钢筋,通常分别称它们为____________ 与。 2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。 3、碳素钢可分为、与。随着含碳量的增加,钢筋的强度、塑性。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。 4、钢筋混凝土结构对钢筋性能的要求主要就是、、 、。 5、钢筋与混凝土就是不同的材料,两者能够共同工作就是因为 、、 6、光面钢筋的粘结力由、、三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括与两部分。 部分越大,表明变形能力越, 越好。 9、混凝土的延性随强度等级的提高而。同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。 二、判断题 1、混凝土强度等级就是由一组立方体试块抗压后的平均强度确定的。 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数就是0、95。 3、混凝土双向受压时强度比其单向受压时强度降低。 4、线性徐变就是指徐变与荷载持续时间之间为线性关系。 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据就是条件屈服强度。 6、强度与应力的概念完全一样。 7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。 8、钢筋应力应变曲线下降段的应力就是此阶段拉力除以实际颈缩的断面积。 9、有明显流幅钢筋的屈服强度就是以屈服下限为依据的。 10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。 11、钢筋的弹性模量与钢筋级别、品种无关。 12、钢筋的弹性模量指的就是应力应变曲线上任何一点切线倾角的正切。

(完整word版)《结构设计原理》复习资料.docx

《结构设计原理》复习资料 第一篇钢筋混凝土结构 第一章钢筋混凝土结构的基本概念及材料的物理力学性能 三、复 (一)填空 1、在筋混凝土构件中筋的作用是替混凝土受拉或助混凝土受。 2、混凝土的度指有混凝土的立方体度、混凝土心抗度和混凝土抗拉度。 3、混凝土的形可分两:受力形和体形。 4、筋混凝土构使用的筋,不要度高,而且要具有良好的塑性、可性,同要求与混凝土有好的粘性能。 5、影响筋与混凝土之粘度的因素很多,其中主要混凝土度、筑位置、保厚度及筋距。 6、筋和混凝土两种力学性能不同的材料能有效地合在一起共同工作,其主要原 因是:筋和混凝土之具有良好的粘力、筋和混凝土的温度膨系数接近和混凝土筋起保作用。 7、混凝土的形可分混凝土的受力形和混凝土的体形。其中混凝土的徐 属于混凝土的受力形,混凝土的收和膨属于混凝土的体形。 (二)判断 1、素混凝土的承能力是由混凝土的抗度控制的。????????????【×】 2、混凝土度愈高,力曲下降愈烈,延性就愈好。?????????【×】 3、性徐在加荷初期增很快,一般在两年左右以定,三年左右徐即告基本 止。????????????????????????????????????【√】 4、水泥的用量愈多,水灰比大,收就越小。???????????????【×】 5、筋中含碳量愈高,筋的度愈高,但筋的塑性和可性就愈差。????【√】 (三)名解 1、混凝土的立方体度────我国《公路》定以每150mm的立方体件,在 20℃± 2℃的温度和相湿度在90%以上的潮湿空气中养28 天,依照准制作方法 和方法得的抗极限度(以MPa)作混凝土的立方体抗度,用符号f cu表示。 2、混凝土的徐────在荷的期作用下,混凝土的形将随而增加,亦即在力不的情况 下,混凝土的随增,种象被称混凝土的徐。 3、混凝土的收────混凝土在空气中硬体减小的象称混凝土的收。 第二章结构按极限状态法设计计算的原则 。

结构设计原理 第二章 混凝土 习题及答案

第二章混凝土结构的设计方法 一、填空题 1、结构的、、、统称为结构的可靠性。 2、当结构出现或或或状态时即认为其超过了承载力极限状态。 3、当结构出现或或或 状态时即认为其超过了正常使用极限状态。 4、结构的可靠度是结构在、、完成的概率。 5、可靠指标 = ,安全等级为二级的构件延性破坏和脆性破坏时的目标可靠指标分别是和。 6、结构功能的极限状态分为和两类。 7、我国规定的设计基准期是年。 8、结构完成预定功能的规定条件是、、。 9、可变荷载的准永久值是指。 10、工程设计时,一般先按极限状态设计结构构件,再按 极限状态验算。 二、判断题 1、结构的可靠度是指:结构在规定的时间内,在规定的条件下,完成预定功能的概率值。 2、偶然作用发生的概率很小,持续的时间很短,但一旦发生,其量值可能很大。 3、钢筋强度标准值的保证率为%。HPB235级钢筋设计强度210N/mm2,意味着尚有%的钢筋强度低于210N/mm2。 4、可变荷载准永久值:是正常使用极限状态按长期效应组合设计时采用的

可变荷载代表值。 5、结构设计的基准期一般为50年。即在50年内,结构是可靠的,超过50年结构就失效。 6、构件只要在正常使用中变形及裂缝不超过《规范》规定的允许值,承载力计算就没问题。 7、某结构构件因过度的塑性变形而不适于继续承载,属于正常使用极限状态的问题。 8、请判别以下两种说法的正误:(1)永久作用是一种固定作用;(2)固定作用是一种永久作用。 9、计算构件承载力时,荷载应取设计值。 10、结构使用年限超过设计基准期后,其可靠性减小。 11、正常使用极限状态与承载力极限状态相比,失效概率要小一些。 12、没有绝对安全的结构,因为抗力和荷载效应都是随机的。 13、实用设计表达式中的结构重要性系数,在安全等级为二级时,取 00.9 γ=。 14、在进行正常使用极限状态的验算中,荷载采用标准值。 15、钢筋强度标准值应具有不少于95%的保证率。 16、结构设计的目的不仅要保证结构的可靠性,也要保证结构的经济性。 17、我国结构设计的基准期是50年,结构设计的条件:正常设计、正常施工、正常使用。 18、结构设计中承载力极限状态和正常使用极限状态是同等重要的,在任何情况下都应计算。 19、结构的可靠指标β愈大,失效概率就愈大;β愈小,失效概率就愈小。 20、(结构的抗力)R

结构设计原理-第一章-材料的力学性能-习题及答案

结构设计原理-第一章-材料的力学性能-习题及答案

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________ 和。 2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。 3、碳素钢可分为、和。随着含碳量的增加,钢筋的强度、塑性。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。 4、钢筋混凝土结构对钢筋性能的要求主要是、、 、。 5、钢筋和混凝土是不同的材料,两者能够共同工作是因为 、、 6、光面钢筋的粘结力由、、三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括和两部分。 部分越大,表明变形能力越,越好。 9、混凝土的延性随强度等级的提高而。同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。 二、判断题 1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。 3、混凝土双向受压时强度比其单向受压时强度降低。 4、线性徐变是指徐变与荷载持续时间之间为线性关系。 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。 6、强度与应力的概念完全一样。 7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。 8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。 9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。 10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。 11、钢筋的弹性模量与钢筋级别、品种无关。 12、钢筋的弹性模量指的是应力应变曲线上任何一点切线倾角的正切。 13、硬钢在应力达到假定屈服点时,塑性应变为0.002。

混凝土结构设计原理作业(附答案)

CHENG 混凝土结构设计原理 第一章钢筋混凝土的力学性能 1、钢和硬钢的应力—应变曲线有什么不同,其抗拉设计值fy各取曲线上何处的应力值作为依据? 答:软钢即有明显屈服点的钢筋,其应力—应变曲线上有明显的屈服点,应取屈服强度作为钢筋抗拉设计值fy的依据。 硬钢即没有明显屈服点的钢筋,其应力—应变曲线上无明显的屈服点,应取残余应变为0.2%时所对应的应力σ0.2作为钢筋抗拉设计值fy的依据。 2、钢筋冷加工的目的是什么?冷加工的方法有哪几种?各种方法对强度有何影响? 答:冷加工的目的是提高钢筋的强度,减少钢筋用量。 冷加工的方法有冷拉、冷拔、冷弯、冷轧、冷轧扭加工等。 这几种方法对钢筋的强度都有一定的提高, 4、试述钢筋混凝土结构对钢筋的性能有哪些要求? 答:钢筋混凝土结构中钢筋应具备:(1)有适当的强度;(2)与混凝土黏结良好;(3)可焊性好;(4)有足够的塑性。 5、我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?用什么符号表示? 答:我国用于钢筋混凝土结构的钢筋有4种:热轧钢筋、钢铰丝、消除预应力钢丝、热处理钢筋。 我国的热轧钢筋分为HPB235、HRB335、HRB400和RRB400三个等级,即I、II、III 三个等级,符号分别为 ( R ) 。 6、除凝土立方体抗压强度外,为什么还有轴心抗压强度? 答:立方体抗压强度采用立方体受压试件,而混凝土构件的实际长度一般远大于截面尺寸,因此采用棱柱体试件的轴心抗压强度能更好地反映实际状态。所以除立方体抗压强度外,还有轴心抗压强度。 7、混凝土的抗拉强度是如何测试的? 答:混凝土的抗拉强度一般是通过轴心抗拉试验、劈裂试验和弯折试验来测定的。由于轴心拉伸试验和弯折试验与实际情况存在较大偏差,目前国内外多采用立方体或圆柱体的劈裂试验来测定。 8、什么是混凝土的弹性模量、割线模量和切线模量?弹性模量与割线模量有什么关系? 答:混凝土棱柱体受压时,过应力—应变曲线原点O作一切线,其斜率称为混凝土的弹性模量,以E C表示。 连接O点与曲线上任一点应力为σC 处割线的斜率称为混凝土的割线模量或变形摸量,以E C‘表示。 在混凝土的应力—应变曲线上某一应力σC 处作一切线,其应力增量与应变增量的比值称为相应于应力为σC 时混凝土的切线模量C E'' 。 弹性模量与割线模量关系: ε ν ε '== ela C c C c E E E (随应力的增加,弹性系数ν值减小)。 9、什么叫混凝土徐变?线形徐变和非线形徐变?混凝土的收缩和徐变有什么本质区别? 答:混凝土在长期荷载作用下,应力不变,变形也会随时间增长,这种现象称为混凝土的徐变。 当持续应力σC ≤0.5f C 时,徐变大小与持续应力大小呈线性关系,这种徐变称为线性徐变。当持续应力σC >0.5f C 时,徐变与持续应力不再呈线性关系,这种徐变称为非线性徐变。 混凝土的收缩是一种非受力变形,它与徐变的本质区别是收缩时混凝土不受力,而徐变是受力变形。 10、如何避免混凝土构件产生收缩裂缝? 答:可以通过限制水灰比和水泥浆用量,加强捣振和养护,配置适量的构造钢筋和设置变形缝等来避免混凝土构件产生收缩裂缝。对于细长构件和薄壁构件,要尤其注意其收缩。 第二章混凝土结构基本计算原则 1.什么是结构可靠性?什么是结构可靠度? 答:结构在规定的设计基准使用期内和规定的条件下(正常设计、正常施工、正常使用和维修),完成预定功能的能力,称为结构可靠性。 结构在规定时间内与规定条件下完成预定功能的概率,称为结构可靠度。 2.结构构件的极限状态是指什么? 答:整个结构或构件超过某一特定状态时(如达极限承载能力、失稳、变形过大、裂缝过宽等)就不能满足设计规定的某一功能要求,这种特定状态就称为该功能的极限状态。 按功能要求,结构极限状态可分为:承载能力极限状态和正常使用极限状态。 3.承载能力极限状态与正常使用极限状态要求有何不同? 答:(1)承载能力极限状态标志结构已达到最大承载能力或达到不能继续承载的变形。若超过这一极限状态后,结构或构件就不能满足预定的安全功能要求。承载能力极限状态时每一个结构或构件必须进行设计和计算,必要时还应作倾覆和滑移验算。

结构设计原理了解的问题

第一章绪论 1.1 学习要点 1.了解工程结构的过去、现在和未来发展趋势,明确结构材料、理论方法、施工技术是决定工程结构发展的关键因素。 2.了解现有常规结构体系及在各工程领域的具体应用,明确钢结构、钢筋混凝土结构、砌体结构的主要特点。 3.了解结构与构件的关系,明确结构设计就是从整体结构到局部构件,再从局部构件到整体结构的设计过程。 4.了解结构计算简图的工程意义,学会建立实际结构合理的可计算的力学模型的方法。 5.熟悉结构荷载的种类和划分依据,掌握“永久荷载”、“可变荷载”、“偶然荷载”、“荷载代表值”、“荷载标准值”、“可变荷载准永久值”及“可变荷载组合值”等基本术语的定义,为第二章结构设计方法及后述各章的学习作好准备。 1.2 思考题 1.什么叫工程结构?何为结构设计原理? 2.古代、近代、现代土木工程有哪些重要区别? 3.结构工程的发展与哪些因素直接相关? 4.试述框架结构、剪力墙结构、框架-剪力墙结构的特点。 5.桥梁结构有哪些可选类型?其通常适宜的跨度为多少? 6.一般将哪些结构称为特种结构? 7.钢结构、混凝土结构、砌体结构各有哪些优缺点? 8.组成结构的“基本元素”有哪些? 9.何为刚域?它与刚节点有何不同? 10.永久作用,可变作用和偶然作用各有什么特征? 11.何为荷载代表值、荷载标准值、可变荷载准永久值、可变荷载频遇值及可变荷载组合值? 12.为什么把荷载标准值作为荷载基本代表值看待 第二章结构设计方法 2.1 学习要点 本章主要介绍结构设计中存在的共性问题,是学习本课程和进行结构设计的理论基础。由于是宏观地、抽象地介绍近似概率的极限状态方法,涉及到的名词术语较多,初次接触,会觉得生涩和难于理解,这需要在后续各章的学习中逐渐克服。 结合后续各章的设计内容,要求深入理解和掌握结构的功能要求,结构的安全等级,设计使用年限和设计基准期的概念,极限状态及其分类,荷载的分类及其取值,荷载效应组合,结构的可靠性和可靠度,实用设计表达式等内容。对有关数理统计方面的内容,要求了解。 2.2 思考题 1.建筑结构应满足哪些功能要求?结构的设计使用年限如何确定?结构超过其设计使用年限是否意味着不能再使用?为什么? 2.结构可靠性的含义是什么?它包括哪些方面的功能要求?建筑结构安全等级是按什么原则划分的? 3.“作用”和“荷载”有什么区别?结构上的作用按时间的变异、按空间的变异、以及按结构的反应各分为哪几类? 4.影响结构可靠性的因素有哪些?结构构件的抗力与哪些因素有关?为什么说构件的抗力是一个随机变量? 5.什么是结构的极限状态?结构的极限状态分为几类,其含义各是什么?或者说结构超过极限状态会产生什么后果? 6.什么是结构的可靠度和可靠指标?《统一标准》对可靠指标是如何定义的? 7.什么是失效概率?可靠指标和失效概率有何定性关系?为什么说我国“规范”采用的极限状态设计法是近似概率的极限状态设计法?分析其主要特点。 8.结构构件设计时采用的可靠指标值与结构构件的破坏类型是否有关? 9.深入理解承载能力极限状态实用设计表达式,能说明式中各符号的物理意义。结构可靠性的要求在式中是如何体现的? 10.荷载的代表值有哪些?其基本代表值是什么? 11.什么是荷载标准值?什么是活荷载的频遇值和准永久值?什么是荷载的组合值?对正常使用极限状态验算,为什么要区分荷载的标准组合和准永久组合?如何考虑荷载的标准组合和荷载的准永久组合?对于承载能力极限状态,如何确定其荷载效应组合?永久荷载和可变荷载的分项系数一般情况下如何取值? 12.各种材料强度的标准值根据什么原则确定?材料性能分项系数和强度设计值是如何确定的? 13.混凝土结构的耐久性设计是如何考虑的?来源: 考第三章结构材料 3.1 学习要点 本章介绍工程结构常用之钢材、混凝土、砖石、砌块等材料的力学性能和强度取值,是后续构件承载能力、变形等设计计算的基础。

第二章 混凝土结构设计原理

第2章混凝土结构材料的物理力学性能 2.1 混凝土的物理力学性能 2.1.1 单轴向应力状态下的混凝土强度 虽然实际工程中的混凝土结构和构件一般处于复合应力状态,但是单轴向受力状态下混凝土的强度是复合应力状态下强度的基础和重要参数。 混凝土试件的大小和形状、试验方法和加载速率都影响混凝土强度的试验结果,因此各国对各种单轴向受力下的混凝土强度都规定了统一的标准试验方法。 1 混凝土的抗压强度 (1) 混凝土的立方体抗压强度f cu,k和强度等级 我国《混凝土结构设计规范》规定以边长为150mm的立方体为标准试件,标准立方体试件在(20±3)℃的温度和相对湿度90%以上的潮湿空气中养护28d,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为“N/mm2”。 用上述标准试验方法测得的具有95%保证率的立方体抗压强度作为混凝土的强度等级。《混凝土结构设计规范》规定的混凝土强度等级有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。例如,C30表示立方体抗压强度标准值为30N/mm2。其中,C50~C80属高强度混凝土范畴。 图2-1 混凝土立方体试块的破坏情况 (a)不涂润滑剂;(b) 涂润滑剂 (2) 混凝土的轴心抗压强度 混凝土的抗压强度与试件的形状有关,采用棱柱体比立方体能更好地反映混凝土结构的实际抗压能力。用混凝土棱柱体试件测得的抗压强度称为轴心抗压强度。 图2-2 混凝土棱柱体抗压试验和破坏情况

我国《普通混凝土力学性能试验方法标准》(GB/T 50081—2002)规定以 150mm×150mm×300mm 的棱柱体作为混凝土轴心抗压强度试验的标准试件。 《混凝土结构设计规范》规定以上述棱柱体试件试验测得的具有95%保证率的抗压强度为混凝土轴心抗压强度标准值,用符号f ck 表示,下标c 表示受压,k 表示标准值。 图2-3 混凝土轴心抗压强度与立方体抗压强度的关系 考虑到实际结构构件制作、养护和受力情况等方面与试件的差别,实际构件强度与试件强度之间将存在差异,《混凝土结构设计规范》基于安全取偏低值,轴心抗压强度标准值与立方体抗压强度标准值的关系按下式确定: k cu c c ck f f ,2188.0αα= 1c α为棱柱体抗压强度与立方体抗压强度之比,对混凝土强度等级为C50及以下的取0.76,对C80取0.82,两者之间按直线规律变化取值。 2c α为高强度混凝土的脆性折减系数,对C40及以下取1.00,对C80取0.87,中间按直线规律变化取值。 0.88为考虑实际构件与试件混凝土强度之间的差异而取用的折减系数。 国外常采用混凝土圆柱体试件来确定混凝土轴心抗压强度。例如美国、日本和欧洲混凝土协会(CEB)都采用直径6英寸(152mm)、高12英寸(305mm)的圆柱体标准试件的抗压强度作为轴心抗压强度的指标,记作f′c 。 对C60以下的混凝土,圆柱体抗压强度f′c 和立方体抗压强度标准值fcu,k 之间的关系可按下式计算。当f cu,k 超过60N/mm 2后随着抗压强度的提高,f′c 与f cu,k 的比值(即公式中的系数)也提高。CEB-FIP 和MC-90给出:对C60的混凝土,比值为0.833;对C70的混凝土,比值为0.857;对C80的混凝土,比值为0.875。 k cu c f f ,,79.0= 2 混凝土的轴心抗拉强度

PCR和定量PCR的引物和探针设计

引物和探针设计 – PCR 和定量PCR 基本原理 引物设计的重要因素 针对特殊应用的其他提示 引物的质量和纯度目录 1247

基本原理 引物是短的寡核苷酸,充当DNA复制的起始点。因为几乎所有DNA聚合酶都不能从头合成,所以它们需要一个3'-羟基作为DNA合成的起始点。这个3'-羟基由相配的引物提供。引物在体内由RNA聚合酶(称为引物酶)生成。这些引物(在此为小RNA)由DNA聚合酶用作延长的起始点。在延长过程中,RNA引物降解并由DNA取代。 体外扩增反应,如聚合酶链反应(PCR)或逆转录(RT),需要引物。通过选择特异的引物序列,DNA 片段的所需区域可得到扩增。 对于大多数PCR反应,决定整个反应成功与否的最重要因素是引物的序列和质量。 在开始引物设计之前,必须弄清以下几点: PCR的目的(例如定量检测、克隆、基因分型) PCR类型(定量PCR、RT-PCR、长片段PCR) 样品材料(基因组DNA、RNA、微小RNA) 可能的问题(例如假基因、SNP) 1

引物设计的重要因素 2 有一些不同的软件工具可用于引物设计和序列分析。它们能简化相配引物对的搜索,一般考虑以下标准。 最流行的软件为Primer 3(https://www.360docs.net/doc/0016340098.html,),它是大多数基于网络引物设计应用的基础。典型的引物长度为18-30个碱基。 短的引物(15个核苷酸以下)能非常高效地结合---但是它们的专一性不够。 非常长的引物能提高专一性,但是退火效率低,从而导致PCR 产物量低下。 应避免编码单一序列和重复序列的引物。 引物长度和专一性 引物的GC 含量应介于40%和60%之间。应避免聚-(dC )-或聚(dG )-区域,因为它们会降低退火反应的专一性。聚-(dA )-和聚(dT )-也应避免,因为这会生成不稳定的引物-模板复合物,从而降低扩增效率。 平衡GC含量,避免GC-和AT-富集区域 退火温度是基于引物的解链温度(Tm )计算。最常用的解链温度计算公式显示如下。“2+4”法则,亦称华莱士法则,对于极短的寡核苷酸(最多14个碱基)有效,该法则提出每个AT 对能将双链DNA 的解链温度提高2°C ,每个GC 对则能提高4°C 。 GC 法则(适用于长于13个碱基的序列)也是一种简单但同时相当不准确的方法。 两种法则都假设退火发生于以下标准条件下: 50 nM 引物、50 mM Na + 和pH 7.0。 “盐调整”法稍微准确一些,考虑到了反应缓冲液中的Na+离子浓度。 最复杂的方法称为“碱基堆积”法。这里的计算中包括了杂交期间的焓(H )和熵(S )。 计算出的解链温度可用于估算最佳退火温度。 但是,经常需要经验性地估算最佳温度。 所选引物的解链温度应允许退火温度介于55°C 和65°C 之间。一个引物对的两条引物都应具有相同或极相近的解链温度。 退火温度 Tm = 2 °C ? (A + T) + 4 °C ? (G + C) Tm = 64.9 °C + 41 °C ? (G + C -16.4)(A + T + G + C) Tm = 100.5 °C + 41 °C ? ? 16.6 ? log 10([Na + ]) C + G A + C + G + T 820A + C + G + T 提示

结构设计原理 第二章 混凝土 习题及答案

第二章混凝土结构得设计方法 一、填空题 1、结构得、、、统称为结构得可靠性。 2、当结构出现或或或状态时即认为其超过了承载力极限状态。 3、当结构出现或或或 状态时即认为其超过了正常使用极限状态。 4、结构得可靠度就是结构在、、完成得概率。 5、可靠指标 = ,安全等级为二级得构件延性破坏与脆性破坏时得目标可靠指标分别就是与。 6、结构功能得极限状态分为与两类。 7、我国规定得设计基准期就是年。 8、结构完成预定功能得规定条件就是、、。 9、可变荷载得准永久值就是指。 10、工程设计时,一般先按极限状态设计结构构件,再按 极限状态验算。 二、判断题 1、结构得可靠度就是指:结构在规定得时间内,在规定得条件下,完成预定功能得概率值。 2、偶然作用发生得概率很小,持续得时间很短,但一旦发生,其量值可能很大。 3、钢筋强度标准值得保证率为97、73%。HPB235级钢筋设计强度210N/mm2,意味着尚有2、27%得钢筋强度低于210N/mm2。 4、可变荷载准永久值:就是正常使用极限状态按长期效应组合设计时采用得可变荷载代表值。 5、结构设计得基准期一般为50年。即在50年内,结构就是可靠得,超过50年结构就失效。 6、构件只要在正常使用中变形及裂缝不超过《规范》规定得允许值,承载力计算就没问题。 7、某结构构件因过度得塑性变形而不适于继续承载,属于正常使用极限状态得问题。 8、请判别以下两种说法得正误:(1)永久作用就是一种固定作用;(2)固定作

用就是一种永久作用。 9、计算构件承载力时,荷载应取设计值。 10、结构使用年限超过设计基准期后,其可靠性减小。 11、正常使用极限状态与承载力极限状态相比,失效概率要小一些。 12、没有绝对安全得结构,因为抗力与荷载效应都就是随机得。 13、实用设计表达式中得结构重要性系数,在安全等级为二级时,取00.9γ=。 14、在进行正常使用极限状态得验算中,荷载采用标准值。 15、钢筋强度标准值应具有不少于95%得保证率。 16、结构设计得目得不仅要保证结构得可靠性,也要保证结构得经济性。 17、我国结构设计得基准期就是50年,结构设计得条件:正常设计、正常施工、正常使用。 18、结构设计中承载力极限状态与正常使用极限状态就是同等重要得,在任何情况下都应计算。 19、结构得可靠指标β愈大,失效概率就愈大;β愈小,失效概率就愈小。 20、(结构得抗力)R

混凝土结构设计原理部分课后习题答案

第一章 1.1 钢筋混凝土梁破坏时有哪些特点?钢筋和混凝土是如何共同工作的? 钢筋混凝土梁破坏时的特点是:受拉钢筋屈服,受压区混凝土被压碎,破坏前变形较大,有明显预兆,属于延性破坏类型。在钢筋混凝土结构中,利用混凝土的抗压能力较强而抗拉能力很弱,钢筋的抗拉能力很强的特点,用混凝土主要承受梁中和轴以上受压区的压力,钢筋主要承受中和轴以下受拉区的拉力,即使受拉区的混凝土开裂后梁还能继续承受相当大的荷载,直到受拉钢筋达到屈服强度以后,荷载再略有增加,受压区混凝土被压碎,梁才破坏。由于混凝土硬化后钢筋与混凝土之间产生了良好的粘结力,且钢筋与混凝土两种材料的温度线膨胀系数十分接近,当温度变化时,不致产生较大的温度应力而破坏二者之间的粘结,从而保证了钢筋和混凝土的协同工作。 1.2 钢筋混凝土结构有哪些主要优点和主要缺点? 钢筋混凝土结构的优点有:1)经济性好,材料性能得到合理利用;2)可模性好;3)耐久性和耐火性好,维护费用低;4)整体性好,且通过合适的配筋,可获得较好的延性;5)刚度大,阻尼大;6)就地取材。缺点有:1)自重大;2)抗裂性差;3)承载力有限;4)施工复杂;5)加固困难。 1.3结构有哪些功能要求?简述承载能力极限状态和正常使用极限状态的概念。 结构功能:安全性、适用性、耐久性 承载能力极限状态:结构或构件达到最大承载力或者变形达到不适于继续承载的状态,称为承载能力极限状态。 正常使用极限状态:结构或构件达到正常使用或耐久性中某项规定限度的状态称为正常使用极限状态。 。第二章 2.7什么是混凝土的徐变?徐变对混凝土构件有何影响?通常认为影响徐变的主要因素有哪些?如何减小徐变? 结构或材料承受的荷载或应力不变,而应变或变形随时间增长的现象称为徐变。徐变对混凝土结构和构件的工作性能有很大影响,它会使构件的变形增加,在钢筋混凝土截面中引起应力重分布的现象,在预应力混凝土结构中会造成预应力损失。影响混凝土徐变的主要因素有:1)时间参数;2)混凝土的应力大小;3)加载时混凝土的龄期;4)混凝土的组成成分;5)混凝土的制作方法及养护条件;6)构件的形状及尺寸;7)钢筋的存在等。减少徐变的方法有:1)减小混凝土的水泥用量和水灰比;2)采用较坚硬的骨料;3)养护时尽量保持高温高湿,使水泥水化作用充分;4)受到荷载作用后所处的环境尽量温度低、湿度高。 2.9软钢和硬钢的应力-应变曲线有何不同?两者的强度取值有何不同?热轧钢筋按强度分为几种?钢筋的应力-应变曲线有哪些数学模型? 软钢的应力—应变曲线有明显的屈服点和流幅,而硬钢则没有。对于软钢,取屈服下限作为钢筋的屈服强度;对于硬钢,取极限抗拉强度σb 的85%作为条件屈服点,取条件屈服点作为钢筋的屈服强度。热轧钢筋按强度可分为HPB235 级(Ⅰ级,符号φ )、HRB335 级(Ⅱ级,符号)、HRB400 级(Ⅲ级,符号)和RRB400 级(余热处理Ⅲ级,符号)四种类型。常用的钢筋应力—应变曲线的数学模型有以下三种:1)描述完全弹塑性的双直线模型;2)描述完全弹塑性加硬化的三折线模型;3)描述弹塑性的双斜线模型。 2.10

课后习题答案(叶见曙主编结构设计原理1-9章)76656

结构设计原理课后答案 1- 1配置在混凝土截面受拉区钢筋的作用是什么? 答:当荷载超过了素混凝土的梁的破坏荷载时,受拉区混凝土开裂,此时, 受拉区混凝土虽退出工作,但配置在受拉区的钢筋将承担几乎全部的拉力,能继 续承担荷载,直到受拉钢筋的应力达到屈服强度,继而截面受压区的混凝土也被 压碎破坏。 1- 2试解释一下名词:混凝土立方体抗压强度;混凝土轴心抗压强度;混凝土 抗拉强度;混凝土劈裂抗拉强度。 答:混凝土立方体抗压强度:我国国家标准《普通混凝土力学性能试验方法 标准》 (GB/T 50081-2002)规定以每边边长为 150mm 的立方体为标准试件,在 20C± 2C 的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方 法和试验方法测得的抗压强度值(以MPa 为单位)作为混凝土的立方体抗压强度, 用符号f cu 表示。 混凝土轴心抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》 (GB/T50081-2002)规定以150m M 150mr K 300mm 勺棱柱体为标准试件,在20°C ± 2C 的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和 试验方法测得的抗压强度值(以MPa 为单位)称为混凝土轴心抗压强度,用符号 f c 表示。 混凝土劈裂抗拉强度:我国交通部部颁标准《公路工程水泥混凝土试验规程》 (JTJ 053-94)规定,采用150mm 立方体作为标准试件进行混凝土劈裂抗拉强度 测定,按照规定的试验方法操作,则混凝土劈裂抗拉强度 f ts 按下式计算: 混凝土抗拉强度:采用100X 100x 500mm g 凝土棱柱体轴心受拉试验,破坏 时试件在没有钢筋的中部截面被拉断,其平均拉应力即为混凝土的轴心抗拉强 度,目前国内外常采用立方体或圆柱体的劈裂试验测得的混凝土劈裂抗拉强度值 换算成轴心抗拉强度,换算时应乘以换算系数 0.9,即f t 0.9笊 1- 3混凝土轴心受压的应力一应变曲线有何特点?影响混凝土轴心受压应力一 应变曲线有哪几个因素? 答:完整的混凝土轴心受拉曲线由上升段 0C 下降段CD 和收敛段DE 三个 阶段组成。 f ts 2F n A 0.637 F 第

混凝土结构设计原理课后习题答案

混凝土结构设计原理课后习题答案 第一章绪论 问答题参考答案 开始采用或积极发展性能化设计方法和理论。 性能化方法是确定工程结构要达到的总体目标或设计性能,设计师根据性能目标的不同,设计不同的设计方案,并评估设计方案是否达到性能目标的要求。学习(1)钢筋混凝土是由钢筋和混凝土两种材料组成的复合材料,是非均匀、非连续、非弹性的材料。力学关系是在试验的基础上,通过几何、物理和平衡关系建立的。 (2)钢筋混凝土构件中的两种材料在强度和数量上存在一个合理的配比范围。如果钢筋和混凝土在面积上的比例及材料强度的搭配超过了这个范围,就会引起构件受力性能的改变,从而引起构件截面设计方法的改变,这是学习时必须注意的一个方面。 由于混凝土材料的复杂性、离散性,混凝土材料的理论体系是建立在试验的基础上的。许多假定依赖与试验结果,许多公式来源于试验验证,许多因素无法控制,仍需通过构造措施加以解决,许多理论尚需不断发展与完善,具有不同功能的混凝土材料性能尚需不断挖掘。 (4)本课程主要讲解钢筋混凝土基本构件,应当了解每一种构件在结构体系的作用、受力情况。例如梁、柱是受弯构件,主要受弯、受剪;柱、墙、受压弦杆是受压构件,主要受压、弯,受压、剪,双向受压弯;雨蓬梁、柱是受扭构件,主要受扭,受弯、剪、扭,受压、弯、剪、扭;受拉弦杆是受拉构件,主要受拉、弯。 (5)本课程所要解决的不仅是构件的承载力和变形计算等问题,还包括构件的截面形式、材料选用及配筋构造等。结构构件设计是一个综合性的问题,需要考虑各方面的因素。因此,学习本课程时要注意学会对多种因素进行综合分析,培养综合分析判断能力。 第一章绪论 单选题 1.与素混凝土梁相比,钢筋混凝上梁承载能力()。

结构设计原理第一次作业-(1)

第一次作业(1、2、3章) 第一章 1、配置在混凝土截面受拉区钢筋的作用是什么? 答:在混凝土未破坏前,和混凝土一起承受拉、压应力(拉应力主要有钢筋承受,压应力主要由混凝土承受),破坏后全部力由钢筋承受。 2、混凝土轴心受压的应力—应变曲线有何特点? 答:完整的混凝土轴心受拉曲线由上升段OC 、下降段CD 和收敛段DE 三个阶段组成。 上升段:当压应力0.3c f σ<左右时,应力——应变关系接近直线变化(OA 段), 混凝土处于弹性阶段工作。在压应力 0.3c f σ≥后,随着压应力的增大,应力——应变关系愈来愈偏离直线,任一点的应变ε可分为弹性应变和塑性应变两部分,原有的混凝土内部微裂缝发展,并在孔隙等薄弱处产生新的个别裂缝。当应力达到0.8c f (B 点)左右后,混凝土塑性变形显著增大,内部裂缝不断延伸拓展,并有几条贯通,应力——应变曲线斜率急剧减小,如果不继续加载,裂缝也会发展,即内部裂缝处于非稳定发展阶段。当应力达到最大应力c f σ=时(C 点),应力应变曲线的斜率已接近于水平,试件表面出现不连续的可见裂缝。 下降段:到达峰值应力点C 后,混凝土的强度并不完全消失,随着应力σ的减小(卸载),应变仍然增加,曲线下降坡度较陡,混凝土表面裂缝逐渐贯通。 收敛段:在反弯点D 点之后,应力下降的速率减慢,趋于残余应力。表面纵缝把混凝土棱柱体分为若干个小柱,外载力由裂缝处的摩擦咬合力及小柱体的残余强度所承受。 3、什么叫混凝土的徐变?影响徐变有哪些主要原因? 答:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象称为混凝土的徐变。 主要影响因素: (1)混凝土在长期荷载作用下产生的应力大小; (2)加荷时混凝土的龄期; (3)混凝土的组成成分和配合比; (4)养护及使用条件下的温度与湿度。

结构设计原理复习

第一篇钢筋混凝土结构 第一章钢筋混凝土结构的基本概念及材料的物理力学性能 (一)填空题 1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压。 2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。 3、混凝土的变形可分为两类:受力变形和体积变形。 4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性,同时还要求与混凝土有较好的粘结性能。 5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。 6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原因是:钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混凝土对钢筋起保护作用。 7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形。其中混凝土的徐变属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。 (二)判断题 3、线性徐变在加荷初期增长很快,一般在两年左右趋以稳定,三年左右徐变即告基本终止。………………………………………………………………………………………………【√】 5、钢筋中含碳量愈高,钢筋的强度愈高,但钢筋的塑性和可焊性就愈差。…………【√】 (三)名词解释 1、混凝土的立方体强度────我国《公路桥规》规定以每边边长为150mm的立方体试件,在20℃±2℃的温度和相对湿度在90%以上的潮湿空气中养护28天,依照标准制作方法 f表和试验方法测得的抗压极限强度值(以MPa计)作为混凝土的立方体抗压强度,用符号 cu 示。 2、混凝土的徐变────在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为混凝土的徐变。 3、混凝土的收缩────混凝土在空气中结硬时体积减小的现象称为混凝土的收缩。 (四)简答题 1、简述混凝土应力应变曲线的三个阶段? 答:在上升段,当应力小于0.3倍的棱柱体强度时,应力应变关系接近直线变化,混凝土处于弹性工作阶段。在应力大于等于0.3倍的棱柱体强度后,随着应力增大,应力应变关系愈来愈偏离直线,任一点的应变可分为弹性应变和塑性应变两部分。原有的混凝土内部微裂缝发展,并在孔隙等薄弱处产生新的个别的微裂缝。当应力达到0.8倍的棱柱体强度后,混凝土塑性变形显著增大,内部微裂缝不断延伸扩展,并有几条贯通,应力应变曲线斜率急剧减小。当应力达到棱柱体强度时,应力应变曲线的斜率已接近于水平,试件表面出现不连续的常见裂缝。

相关文档
最新文档