圆系方程及其应用.doc

圆系方程及其应用.doc
圆系方程及其应用.doc

直线系、圆系方程1、过定点直线系方程在解题中的应用

过定点(x,y0 )的直线系方程:A(x x0) B( y y0) 0(A,B 不同时为0).

例 1 求过点P( 1,4) 圆(x 2)2 ( y 3)2 1的切线的方程.

分析:本题是过定点直线方程问题,可用定点直线系法.

解析:设所求直线的方程为A(x 1) B(y 4) 0(其中A,B不全为零),

则整理有Ax By A 4B 0,

∵直线l 与圆相切,∴圆心 C (2,3) 到直线l 的距离等于半径1,故2A 3B A 4B

2 2

A B

1

整理,得A(4 A 3B) 0,即A 0 (这时 B 0 ),或

3

A B 0.

4

故所求直线l 的方程为y 4 或3x 4y13 0 .

点评:对求过定点(x,y0 )的直线方程问题,常用过定点直线法,即设直线方程为: A(x x0) B(y y0) 0,0

注意的此方程表示的是过点P(x,y ) 的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素

0 0

的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象.

练习:过点P( 1,4) 作圆 2 2

(x 2) (y 3) 1的切线l ,求切线l 的方程.

解:设所求直线l 的方程为A(x 1) B(y 4) 0 (其中A,B不全为零),

则整理有Ax By A 4B 0,

∵直线l 与圆相切,∴圆心 C (2,3) 到直线l 的距离等于半径1,故2A 3B A 4B

2 2

A B

1,

整理,得A(4 A 3B) 0,即A 0 (这时 B 0 ),或 3 0

A B .

4

故所求直线l 的方程为y 4 或3x 4y13 0 .

2、过两直线交点的直线系方程在解题中的应用

过直线l :A1x B1 y C1 0(A1, B1 不同时为0)与m:A2 x B2 y C2 0(A2, B2 不同时为0)交点的直线

系方程为:A x B y C A x B y C (R ,为参数).

1 1 1 (

2 2 2 ) 0

例2 求过直线:x 2y 1 0与直线:2x y 1 0 的交点且在两坐标轴上截距相等的直线方程.

分析:本题是过两直线交点的直线系问题,可用过交点直线系求解.

解析:设所求直线方程为:x 2y 1 (2 x y 1) 0 ,

当直线过原点时,则 1 =0,则=-1,

所:

x 2y 0 ;

当所x 令 y =0,解得 x = 1

2

1

由题意得,

1

2

=

1 2

1

,所

: 5x 5y 4 0 . 综上所述,所: x 2y 0或 5x 5y 4 0 . 3、系题 例明m x y m 1 0( 是参数且 m ∈

定点并求出定. 分析题,可用恒等和特法 . 解析:(恒等式法方: (x 1)m y 1 0 , ∵ m ∈R, ∴ x y 1 0 1 0 ,解得, x 1, y 1, m x y m 1 0( m 是参数

且 m ∈定点( 1,1). (特法)取 m =0, m =1 得, y 1,

x y 2 0

立解得, x 1, y 1, 将( 1,1)代入

m x y m 1足方程, m x y m 1 0( m 是参数且 m ∈定点( 1,1). 证题,常用方法有恒等式法和特法,恒等式法就是方关于参数的 恒等式形式,利用参数属于 恒等式个0,列出关于 x , y

的解,求出

定;特殊直 线法,去两个特殊,得到两条特接着两条特的交,并代入系验,即得 定点 . 一系方程有如下几种: 1、以 (a,b)为圆心的同心圆系方程: 2 y 2 x + D x + E 2、过直线A x + By +C=0与圆x 2 y 2 + Dx + Ey +F=0交点的圆系方程为: x 2

y 2 + Dx + Ey +F+ ( Ax

+ By +C)=0( R)

3、过两圆C : 1

2 y

2

x + D 1

x E 1

y F 1 = 0

, C 2 : 2

y

2

x

D 2 x

E 2

y

D 1 x

E y

2

y

2

x +D2 x E2 y F2 )=0(≠- 1,此圆系不含C2 : F +(

1

1

0)

特别地,当=-1时,上述方程为根轴方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程.

注:为了避免利用上述圆系方程时讨论圆C,可等价转化为过圆C1 和两圆公共弦所在直线交点的圆系方

2

程: 2 2

x y D1x E1 y F1 [( D1 D2) x (E1 E2 )y (F1 F2)] 0

二、圆系方程在解题中的应用:

1、利用圆系方程求圆的方程:

2 2 2 2

例求经过两圆x +y +6x-4=0 和x +y +6y-28=0 的交点,并且圆心在直线x- y-4=0 上的圆的方程。

例1、求经过两圆 2 y

2

x +3 x -y -2=0和

2 3 2

3x y +2 x +y +1=0交点和坐标原点的圆的方程.

解:方法3:由题可设所求圆的方程为:

( 2 y 2

x +3 x -y -2)+(

2 3 2

3x y +2 x +y +1)=0

∵(0,0)在所求的圆上,∴有-2+=0.从而=2

2 y2 x y x2 y2 x y 故所求的圆的

方程为:(x 3 2) 2(3 3 2 1) 0

即 2 7

2

7x y +7 x +y =0。

2+y2+6x 4=0 和x2+y 2+6y 28=0 的交点,并且圆心在直线x y 4=0 上的圆的方程.

练习:求经过两圆x

2 2 2 2

1 解: 构造方程x +y +6x 4+λ(x +y +6y 28)=0

2+(1+ λ)y2+6x+6 λy (4+28λ)=0

即(1+λ)x

3 3

此方程的曲线是过已知两圆交点的圆,且圆心为)

( ,

1 1

3 3

当该圆心在直线x y 4=0 上时,即 4 0,7.

1 1

2 2

∴所求圆方程为x

+y x+7y 32=0

2 2 切于且过的圆的方程

练习x y x y 20 A B

:求与圆 4 2 0 ( 1,3), ( 2,0)

.

解:过A( 1,3) 3x 4y 15 0。与已知圆构造圆系

的圆的切线为

2 x

2

y 4x 2y 20 (3x 4y 15) 0,

代入( 2,0)

得8

7

,所以所求圆方程为

7 2 x 7 2 y 4x 18y 20 0.

2、利用圆系方程求最小面积的圆的方程:

例2(1):求过两圆 2 2 5

x y 和

2 2

( x 1) ( y 1) 16的交点且面积最小的圆的方程。

分析:本题若先联立方程求交点,再设所求圆方程,寻求各变量关系,求半径最值,虽然可行,但运算量较大。自然选用过两圆交点的圆系方程简便易行。为了避免讨论,先求出两圆公共弦所在直线方程。则问题可转化为求过两圆公共弦及圆交点且面积最小的圆的问题。

解:圆 2 2 5

x y 和

2 2

(x 1) ( y 1) 16的公共弦方程为2x 2y11 0

椭圆的参数方程(教案)

学习好资料欢迎下载 8.2椭圆的几何性质(5) ——椭圆的参数方程(教案) 齐鲁石化五中翟慎佳2002.10.25 一.目的要求: 1?了解椭圆参数方程,了解系数a b、「含义。 2. 进一点完善对椭圆的认识,并使学生熟悉的掌握坐标法。 3. 培养理解能力、知识应用能力。 二.教学目标: 1. 知识目标:学习椭圆的参数方程。了解它的建立过程,理解它与普通方 程的相互联系;对椭圆有一个较全面的了解。 2. 能力目标:巩固坐标法,能对简单方程进行两种形式的互化;能运用参 数方程解决相关问题。 3. 德育目标:通过对椭圆多角度、多层次的认识,经历从感性认识到理性 认识的上升过程,培养学生辩证唯物主义观点。 三.重点难点: 1. 重点:由方程研究曲线的方法;椭圆参数方程及其应用。 2. 难点:椭圆参数方程的推导及应用。 四.教学方法: 引导启发,计算机辅助,讲练结合。 五.教学过程: (一)引言(意义) 人们对事物的认识是不断加深、层层推进的,对椭圆的认识也遵循这一规律。 本节课学习椭圆的参数方程及其简单应用,进一步完善对椭圆认识。(二)预备知识(复习相关) 1. 求曲线方程常用哪几种方法? 答:直接法,待定系数法,转换法〈代入法〉,参数法。 2. 举例:含参数的方程与参数方程

2 “ x = 2t 例如:y =kx+1 (k 参数)含参方程'而I 十1 (t 参数) 3 ?直线及圆的参数方程?各系数意义? (三)推导椭圆参数方程 1. 提出问题(教科书例5) 例题.如图,以原点为圆心,分别以 a b (a>b>0)为半径作两个圆。 点B 是大圆半径OA 与小圆的交点,过点 A 作AN _0x ,垂足为N ,过 点B 作BM _AN ,垂足为M 。求当半径0A 绕点0旋转时点M 的轨迹 的参数方程。 2. 分析问题 本题是由给定条件求轨迹的问 题,但动点较多,不易把握。故采用 间接法 --- 参数法。 引导学生阅读题目,回答问题: (1) 动点M 是怎样产生的? M 与A 、B 的坐标有何联系? (2) 如何设出恰当参数? 设/ AOX=:为参数较恰当。 3. 解决问题(板演) 解:设点M 的坐标(x,y ),是以Ox 为始边,OA 为终边的正角, 取为参数,那么 x=ON=|OA|cos 「, y=NM=|OB|sin 「即 4. 更进一步(板演:化普通方程) -=cos? 分别将方程组①的两个方程变形,得t a 两式平方后相加, '=si n? 是参数方程。 J 5 *實 x = a cos? y =bsin ①引为点M 的轨迹参数方程,「为参数。

圆的参数方程及应用

对于圆的普通方程222()()x a y b R -+-=来说,圆的方程还有另外一种表达 形式cos sin x a R y b R θθ=+??=+?(θ为参数) ,在解决有些问题时,合理的选择圆方程的表达形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。 一、求最值 例1 已知点(x ,y )在圆221x y +=上,求2223x xy y ++的最大值和最小值。 【解】圆2 2 1x y +=的参数方程为:cos sin x y θθ=??=? 。 则2223x xy y ++=22cos 2sin cos 3sin θθθθ++ = 1cos 21cos 2sin 2322θθθ+-++? 2sin 2cos 2θθ=+-=22sin(2)4π θ+-,则38k πθπ=+(k ∈Z )时,2223x xy y ++的最大值为:22+;8 k π θπ=-(k ∈Z ) 时,2223x xy y ++的最小值为22-。 【点评】解某些与圆的方程有关的条件制问题,可应用圆的参数方程转化为三角函数问题的方法解决。 二、求轨迹 例2 在圆224x y +=上有定点A (2,0),及两个动点B 、C ,且A 、B 、C 按逆时针方向排列, ∠BAC=3π ,求△ABC 的重心G (x ,y )的轨迹 方程。 【解】由∠BAC= 3 π,得∠BOC=23π,设∠ABO=θ(403π θ<<),则B(2cos θ,2sin θ),C(2cos(θ+23π),2sin(θ+23 π )),由重心坐标公式并化简,得: 22cos()333 2sin()33x y πθπθ? =++??? ?=+?? ,由5333πππθ<+<,知0≤x <1, C x y O A B 图1

圆系方程及其应用.doc

直线系、圆系方程1、过定点直线系方程在解题中的应用 过定点(x,y0 )的直线系方程:A(x x0) B( y y0) 0(A,B 不同时为0). 例 1 求过点P( 1,4) 圆(x 2)2 ( y 3)2 1的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为A(x 1) B(y 4) 0(其中A,B不全为零), 则整理有Ax By A 4B 0, ∵直线l 与圆相切,∴圆心 C (2,3) 到直线l 的距离等于半径1,故2A 3B A 4B 2 2 A B 1 , 整理,得A(4 A 3B) 0,即A 0 (这时 B 0 ),或 3 A B 0. 4 故所求直线l 的方程为y 4 或3x 4y13 0 . 点评:对求过定点(x,y0 )的直线方程问题,常用过定点直线法,即设直线方程为: A(x x0) B(y y0) 0,0 注意的此方程表示的是过点P(x,y ) 的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素 0 0 的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习:过点P( 1,4) 作圆 2 2 (x 2) (y 3) 1的切线l ,求切线l 的方程. 解:设所求直线l 的方程为A(x 1) B(y 4) 0 (其中A,B不全为零), 则整理有Ax By A 4B 0, ∵直线l 与圆相切,∴圆心 C (2,3) 到直线l 的距离等于半径1,故2A 3B A 4B 2 2 A B 1, 整理,得A(4 A 3B) 0,即A 0 (这时 B 0 ),或 3 0 A B . 4 故所求直线l 的方程为y 4 或3x 4y13 0 . 2、过两直线交点的直线系方程在解题中的应用 过直线l :A1x B1 y C1 0(A1, B1 不同时为0)与m:A2 x B2 y C2 0(A2, B2 不同时为0)交点的直线 系方程为:A x B y C A x B y C (R ,为参数). 1 1 1 ( 2 2 2 ) 0 例2 求过直线:x 2y 1 0与直线:2x y 1 0 的交点且在两坐标轴上截距相等的直线方程. 分析:本题是过两直线交点的直线系问题,可用过交点直线系求解. 解析:设所求直线方程为:x 2y 1 (2 x y 1) 0 ,

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (2 2 0220=-+-的参数方程是???α +=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α +=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 y x 2 2(20π <α<), 22b a 4+, 例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+ ?+α=++=cos 82110 21cos 12211x 21x x B A 3sin 42 119 21sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值

例3 设点P (x ,y )在椭圆19y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则55 53arcsin sin 534|5sin 4cos 3|d 22-??? ? ? +α= +-α+α=。 当5 3 arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 P , π),A (a ,0)。 解得1cos =α(舍去),或2 22 b a b cos -=α。 因为1cos 1<α<-,所以1b a b 1222<-<-。可转化为1e e 112 2<-<-,解得21e 2 > ,于是1e 22<<。故离心率e 的取值范围是? ?? ? ??122,。 [截距法]解线性规划问题 由于线性规划的目标函数:z ax by b =+≠()0可变形为y a b x z b =- +,则z b 为直线y a b x z b =-+的纵截距,那么我们在用线性规划求最值时便可以得到如下结论: (1)当b >0时,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,便是z 取得最大值的点;反之,使纵截距取得最小值的点,就是z 取得最小值的点。 (2)当b <0时,与b >0时情形正好相反,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,是z 取得最小值的点;使纵截距取得最小值的点,便是z 取得最大值的点。

直线的参数方程教案

直线的参数方程 教学目标: 1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 教师提出问题: 1.曲线参数方程的概念及圆与椭圆的参数方程. 2.直线的方向向量的概念. 0 / 13

3.在平面直角坐标系中,确定一条直线的几何条件是什么? 4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程. 5.如何建立直线的参数方程? 这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考. 【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备. 二、直线参数方程探究 1.回顾数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么? 教师提问后,让学生思考并回答问题. 教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA 为数轴的单位方向向量,OA 方向与数轴的正方向一致,且OM tOA =;②当OM 与OA 方向一致时(即OM 的方向与数轴正方向一致时),0t >; 当OM 与OA 方向相反时(即OM 的方向与数轴正方向相反时),0t <; 当M 与O 重合时,0t =; ③||OM t =.教师用几何画板软件演示上述过程.

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

参数方程考点

参数方程“考点”面面看 “参数方程”主要内容是直线、圆和椭圆的参数方程,参数方程和普通方程的互化,参数方程的简单应用三块,下面针对这三块内容进行透析: 一、直线、圆和椭圆的参数方程 例1.若直线的参数方程为1223x t y t =+??=-?(t 为参数),则直线的斜率为 . 分析:经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为x x t y y t t =+=+???00 cos sin αα(为参数) 解:将直线的参数方程为1223x t y t =+??=-? 化为12x y ?=????=?? (t 为参数),则直线的斜率为32 -. 评注:关键是要弄清楚直线的参数方程的形式. 经过定点P(x 0,y 0)的直线的参数方程也可以写成00x x at y y bt =+??=+?(t 为参数),斜率就是b a . 二、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标). 例2.方程2222 t t t t x t y --?=-??=+??(为参数)表示的曲线是__________________. 分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略. 解:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()()22 2222224t t t t x y ---=--+=-,即有224y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 评注:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性. 例3.设P 是椭圆22 2312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 . 分析: 由于研究二元函数x+2y 相对困难,因此有必要消元,但由x ,y 满足的方程2x 2+3y 2=12表出x 或y ,会出现无理式,这对进一步求函数最值依然不够简洁,能否有其他途径把二元函数x+2y 转化为一元函数呢?

圆与方程及应用(1)

第五讲 圆与方程及应用 一、知识链接 1、圆的定义,圆心,半径的概念 2、圆的方程的标准式,一般式 3、直线与圆的位置关系及判断与应用 二、基本问题 1.方程05242 2=+-++m y mx y x 表示圆的条件是 ( ) A .14 1 << m m 或 C .41m 2.方程03222 2 2 =++-++a a ay ax y x 表示的图形是半径为r (0>r )的圆,则该圆圆心在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.若方程2 2 2 2 0(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称, 必有 ( ) A .E F = B .D F = C .D E = D .,,D E F 两两不相等 4.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是 ( ) A .-1>-+F F E D 且 B .0,0>

圆系方程及其应用

圆系方程及其应用 This model paper was revised by the Standardization Office on December 10, 2020

圆系方程及其应用 一、常见的圆系方程有如下几种: 1、以(,)a b 为圆心的同心圆系方程:222()()(0)x a y b λλ-+-=> 与圆22y x ++Dx +Ey +F=0同心的圆系方程为:22y x ++Dx +Ey +λ=0 2、过直线Ax +By +C=0与圆22y x ++Dx +Ey +F=0交点的圆系方程为:22y x ++Dx +Ey +F+λ(Ax +By +C)=0(λ∈R) 3、过两圆1C :22y x ++111F y E x D ++=0,2C :22y x ++222F y E x D ++=0交点的圆系方程为:22y x ++111F y E x D +++λ(22y x ++222F y E x D ++)=0(λ≠-1,此圆系不含2C :22y x ++222F y E x D ++=0) 特别地,当λ=-1时,上述方程为根轴方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程. 注:为了避免利用上述圆系方程时讨论圆2C ,可等价转化为过圆1C 和两圆公共弦所在直线交点的圆系方程:22111121212[()()()]0x y D x E y F D D x E E y F F λ+++++-+-+-= 二、圆系方程在解题中的应用: 1、利用圆系方程求圆的方程: 例1 求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程。

2017参数方程学案.doc

第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数??? x =f (t ),y =f (t ), 并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为??? x =x 0+t cos α, y =y 0+t sin α(t 为参 数). 设P 是直线上的任一点,则t 表示有向线段P 0P → 的数量. (2)圆的参数方程??? x =r cos θ, y =r sin θ(θ为参数). (3)圆锥曲线的参数方程 椭圆x 2a 2+y 2 b 2=1的参数方程为??? x =a cos θ,y =b sin θ(θ为参数). 双曲线x 2a 2-y 2 b 2=1的参数方程为??? x =a sec φ,y =tan φ(φ为参数). 抛物线y 2=2px 的参数方程为??? x =2pt 2,y =2pt (t 为参数). 双基自测 1.极坐标方程ρ=cos θ和参数方程??? x =-1-t , y =2+t (t 为参数)所表示的图形分别 是( ).

A .直线、直线 B .直线、圆 C .圆、圆 D .圆、直线 解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=x ρ,∴ρ2=x ,∴x 2+y 2=x 表示圆. 又∵??? x =-1-t ,y =2+t ,相加得x +y =1,表示直线. 答案 D 2.若直线??? x =1-2t , y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________. 解析 参数方程??? x =1-2t , y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线 4x +ky =1垂直可得-32×? ???? -4k =-1,解得k =-6. 答案 -6 3.二次曲线??? x =5cos θ, y =3sin θ(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为x 225+y 2 9=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l 的参数方程为:??? x =2t , y =1+4t (t 为参数),圆C 的极 坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________. 解析 将直线l 的参数方程:??? x =2t , y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22 sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为 2-1 1+4 ,因为该距离小于圆的半径,所以直线l 与圆C 相交. 答案 相交

抛物线的参数方程(教师版)

14. 抛物线的参数方程 主备: 审核: 学习目标:1. 了解椭圆的参数方程的推导过程及参数的意义; 2. 掌握椭圆的参数方程,并能解决一些简单的问题. 学习重点:椭圆参数方程的应用, 学习难点:椭圆参数方程中参数的意义. 学习过程: 一、课前准备: 阅读教材3334P P -的内容,理解抛物线的参数方程的推导过程,并复习以下问题: 1.将下列参数方程化为普通方程: (1)2 23 x t y t t =-?? =+-?(t 为参数),答:2 53x x y --=; (2)224x m y m ?=?=?(m 为参数),答:2 8x y =. 2.将下列普通方程化为参数方程: (1)2 2x y =,其中1x t t =-(t 为参数),答:221224 x t t y t t ?=-???=+-? ; (2)2 34y x =,其中x t =(0t ≥为参数) ,答:x t y =???=?? . 二、新课导学: (一)新知: 抛物线的参数方程的推导过程: 如图:设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角记为α,当α在(,)22 ππ - 内变化时, 点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的M 点与对应.因此,可以取α为参数探求抛物线的参数方程. 根据三角函数的定义得,tan y x α=,即tan y x α=,联立2 2y px =,得 22tan 2tan p x p y α α?=??? ?=?? (α为参数),这为抛物线的不含顶点的参数方程,但方程的形式不够简洁, 设1 tan t α=,(,0)(0,)t ∈-∞+∞U ,则222x pt y pt ?=?=?(t 为参数 ), 当0t =时,由参数方程得,正好为顶点(0,0)O ,因此当(,)t ∈-∞+∞时,上式为 22y px =的参数方程. 注意:参数t 的几何意义为:表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 动动手:(1)选择适当的参数t ,建立抛物线2 2x py =的参数方程 .

圆的标准方程与一般方程 (1)

圆的标准方程 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条 件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究 例(1):写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2 r ,点在圆外 (2)2200()()x a y b -+-=2 r ,点在圆上 (3)2200()()x a y b -+-<2 r ,点在圆内 例(2):ABC ?的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程

师生共同分析:从圆的标准方程222 ()()x a y b r -+-= 可知,要确定圆的标准方程,可用待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析:如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点 (1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分 线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或 CB 。 (教师板书解题过程) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC V 外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的 标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 课堂练习:课本127p 第1、3、4题 4.提炼小结: 1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。

直线系圆系方程

直线系、圆系方程 1、过定点直线系方程在解题中的应用 过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例1求过点(14)P -,圆22(2)(3)1x y -+-=的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1, 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方 程为:00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题 时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习: 过点(1 4)P -,作圆22(2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1, 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 2、过两直线交点的直线系方程在解题中的应用 过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (22022 0=-+-的参数方程是? ??α+=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α+=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 例1 求椭圆)0b a (1b y a x 22 22>>=+的内接矩形的面积及周长的最大值。 解:如图,设椭圆1b y a x 22 22=+的内接矩形在第一象限的顶点是A (ααsin b cos a ,)(2 0π<α<),矩形的面积和周长分别是S 、L 。 ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=, 当且仅当4 a π=时,22m a x b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,22max b a 4L +=,此时α存在。 二、求轨迹

例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+?+α=++=cos 82 11021cos 12211x 21x x B A 3sin 42 11921sin 6211y 21y y B A +α=+?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α=3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值 例3 设点P (x ,y )在椭圆19 y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则5553arcsin sin 53 4|5sin 4cos 3|d 22-??? ??+α=+-α+α=。 当5 3arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 四、求解有关离心率等入手比较困难的问题

圆系方程及其应用

圆系方程及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆系方程及其应用 一、常见的圆系方程有如下几种: 1、以(,)a b 为圆心的同心圆系方程:222()()(0)x a y b λλ-+-=> 与圆22y x ++Dx +Ey +F=0同心的圆系方程为:22y x ++Dx +Ey +λ=0 2、过直线Ax +By +C=0与圆22y x ++Dx +Ey +F=0交点的圆系方程为:22y x ++Dx +Ey +F+λ(Ax +By +C)=0(λ∈R) 3、过两圆1C :22y x ++111F y E x D ++=0,2C :22y x ++222F y E x D ++=0交点的圆系方程为: 22y x ++111F y E x D +++λ(22y x ++222F y E x D ++)=0(λ≠-1,此圆系不含2C :22y x ++222F y E x D ++=0) 特别地,当λ=-1时,上述方程为根轴方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程. 注:为了避免利用上述圆系方程时讨论圆2C ,可等价转化为过圆1C 和两圆公共弦所在直线交点的圆系方程:22111121212[()()()]0x y D x E y F D D x E E y F F λ+++++-+-+-= 二、圆系方程在解题中的应用: 1、利用圆系方程求圆的方程: 例1 求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程。 解一:求出两交点(-1,3)(-6,-2),再用待定系数法:1.用一般式; 2.用标准式。 (注:标准式中可先求圆心的两个坐标,而圆心正好在两交点的中垂线上。) 解二:用两点的中垂线与直线的交点得圆心: 1.两交点的中垂线与直线相交;

聚焦直线系、圆系方程的应用

聚焦直线系、圆系方程的应用 【直线系方程的应用】 一、过定点直线系方程在解题中的应用 过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例 1 求过点(14)P -,圆2 2 (2)(3)1x y -+-=的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04 A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方程为: 00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习: 过点(1 4)P -,作圆22 (2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04 A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 二、过两直线交点的直线系方程在解题中的应用 过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时为0)交点的直线系方程为:111222()0A x B y C A x B y C λ+++++=(R λ∈,λ为参数). 例2 求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程. 分析:本题是过两直线交点的直线系问题,可用过交点直线系求解. 解析:设所求直线方程为:21(21)0x y x y λ+++-+=,

圆系方程的应用及要点

圆系方程的应用及要点 1. 引子 题: 求经过两条曲线x 2+y 2+3x -y=0和3x 2+3y 2+2x+y=0交点的直线方程. 常规解法是: 联立方程 ?????=+++=-++)2(0233)1(032222y x y x y x y x 求方程组解 )3(047) 2(3)1(=--?y x 得 得代入即),1(,4 7x y = .137134;00313 4,0,0473164922112122???????-=-=???==-===-++ y x y x x x x x x x ),得分别代入(解得 即两交点坐标为 A(0,0), ).13 7,134(--B 过两交点的直线方程为 7x -4y=0. (4) 观察分析以上解题过程,可发现所得结果(4)与中间状态(3)是一样的.这个是不是普遍规律,本质是什么? 2. 曲线系方程 由上面(1),(2)得到(3),这是解方程的基本步骤,这一步的几何意义是什么呢?我们可得以下结论 结论1: 如果两条曲线方程是 f 1(x,y)=0 和 f 2(x,y)=0, 它们的交点是P(x 0,y 0),则 方程 f 1(x,y)+λf 2(x,y)=0的曲线也经过P(x 0,y 0) (是任意常数). 此结论即由联立方程???==)6(0),()5(0 ),(21y x f y x f 得到 )7(0),(),(21=+y x f y x f λ 只须将(x 0,y 0)代入(7),可立即证明。 有了这个结论,有些题目可快速求解。过两圆交点的公共弦所在直线方程就是将两圆方程联立消去二次项所得方程。 例2 (课本P70.13题) 求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程. 解: 构造方程 x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0 即 (1+λ)x 2+(1+λ)y 2+6x+6λy -(4+28λ)=0 此方程的曲线是过已知两圆交点的圆,且圆心为)13,13(λλλ+-+- 当该圆心在直线x -y -4=0上时,即 .7,041313-==-+++-λλ λλ得 ∴ 所求圆方程为 x 2+y 2-x+7y -32=0

相关文档
最新文档