开关电源实验报告

开关电源实验报告
开关电源实验报告

开关电源实验报告

一、开关电源电路图及清单

1.1 60W-12V开关电源电路图

图1-1 开关电源电路原理1.2.60W-12V开关电源电清单

二、开关电源介绍

开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED 灯袋,电脑机箱,数码产品和仪器类等领域。它是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。

开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。

模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国

特色的产学研联合发展之路,为我国国民经济的高速发展做出贡献。

开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关电源具有以下特征:①电源电压和负载在规定的范围内变化时,输出电压应保持在允许的范围内或按要求变化;②输出与输入之间有良好的电气隔离;③可以输出单路或多路电压,各路之间有电气隔离。本次实验是要采用UC3842制作一路输出的AV220V-DC5V的30W开关电源。

三、开关电源原理及其工作原理

3.1.开关电源原理

1)工作模式

开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。

开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。

根据开关器件在电路中连接的方式,开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。

2)开关电源原理

开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,

电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压值。最后这些交流波形经过整流滤波后就得到直流输出电压。控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。

本实验电路由主电路、控制电路、启动电路和反馈电路4部分组成。主电路采用单端反激式拓扑。控制电路是整个开关电源的核心,控制的好坏直接决定了电源整体性能,电路电流环控制采用UC3842内部电流环,电压外环采用TL431和PC817构成外部误差放大器。

输入市电首先经过滤波、整流后变换为直流电压,再经过直流变换器变换为所需的直流电压;通过检测和控制电路对其输出进行调整。

图3-1 开关电源基本结构框图

3.2.开关电源工作原理

1)开关电源滤波原理

该滤波器有两个输入端和一个接地端,两个输出端,制作使用时外壳使用金

属屏蔽并接地,电路包括共模电感LFIA、滤波电容器CY1、CY2、CX1。CY1、CY2跨接在输出端,经电容分压后接地,能有效的抑制共模干扰。LFIA对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过偶合后总电感量迅速增大,因此共模信号呈现很大的感抗,使之不易通过。

2)整流电路原理

从电源滤波输出后的电压经整流滤波器输入,经过BD1进行桥式全波整流得到非稳压的直流输出。采用桥式全波整流可省去笨重的输入变压器,使设计重量可大大减轻,输出也得到近似平滑的良好直流电压,转换效率相对较高。

3)振荡电路原理

由R12、C6与UC3842内部振荡器,+12V基准电源一起完成振荡,产生高频信号。+12V基准电压经过定时电阻R12给C6充电,然后C6再经过芯片内部电路进行放电,从第4脚得到锯齿波电压。由于输出采用脉宽调制控制方式,考虑到噪声电压也会影响输出脉冲宽度,振荡电路加了消噪电容C7。

4)输出电路原理

由于采用的是高频调制信号的方法,故输出级电源变压器很小,调整管采用频率响应快的N沟道场效应管,输出级受UC3842PWM波调整,通过Q1进行功率转换,直流电压从T原边N1流经Q1输出变压器原边产生大电流的PWM电压波,经过T变比偶合,使输出端产生大电流的电压,输出通过D6整流,C13-C15滤波,再经过平波电抗器L1使输出为平滑稳定的12V稳压输出。N2输出用作电压负反馈。

①交流220V电源输入先经双向滤波器,过滤电网上的干扰谐波,再经桥式整流电路变成直流;

②再利用高频PWM(脉冲宽度调制)信号控制开关管,控制反激式斩波电路的输出电压,再经过滤波电路得到输出电压;

③输出部分通过光电耦合反馈给控制电路,控制PWM占空比,以达到稳定输出的目的;

④在变压器部分存在回馈电路是辅助电路,在桥式整流电路的输出是控制PWM

电路的起振。

从电网取出的220V交流输入电压经过隔离变压器输出220V交流电压,这样做的目的是防止开关电源出现问题时产生较为严重的损失。220V交流输入电压CON3经双向滤波器CY1、CY2和滤波电容CX1输出220V直流电压,保险丝FS的使用是为了防止浪涌电流损坏整流桥BDKBP210。

整流过的高电压(280~300VDC)经过稳压管C1接到变压器的一端上,变压器的另一端接到高压MOSFET Q1的Source。为了保证控制电路的正常工作,D2、R3、C4、C5构成辅助电源为控制芯片UC3842提供工作电压。根据反激式变换器的工作原理,当电压由正半周期到负半周期时,电压传到变压器的另外一边。经滤波电容和电感的作用,在输出端得到稳定的+12V直流电压。

在控制信号部分,如果要让UC3842开始工作,必须要给芯片提供一个工作电压。而提供工作电压的辅助电源,在正半周期是不工作的,因为在正半个周期由于反激式变换器的缘故没有给辅助电源提供电压。这时经过R7降压就得到一个+5V电压,这个电压可以为UC3842提供电压,所以R7可以起到启动电路的作用,R7的阻值就要求很大,可以达到100K。在R18和R19的公共短接入反馈电压,下面的R19、R17、SVR1、TL431和C11构成误差放大器,将误差信号通过光电耦合器PC817传到三极管的基极。UC3842的启动电压为+12V,这样也起到了标准电压的作用,将反馈电压和标准电压进行比较,从UC3842的6号引脚输出控制MOSFET的开通和关断来减小误差。UC3842为主回路提供一个方波信号,使得主回路符合反激原理,方波占空比的大小可以控制输出电压的大小,由此,得到我们想要稳定的一个电压值。

四、主要元器件介绍

1)UC3842

〈1〉UC3842简介:

Unitrode公司的UC3842是一种高性能固定频率电流型控制器,包含误差放大器、PWM比较器、PWM锁存器、振荡器、内部基准电源和欠压锁定等单元,其结构图如图1所示。

各管脚功能简介如下。

1脚COMP是内部误差放大器的输出端,通常此脚与2脚之间接有反馈网络,以确定误差放大器的增益和频响。2脚FEED BACK是反馈电压输入端,此脚与内部误差放大器同向输入端的基准电压(一般为+2.5V)进行比较,产生控制电压,控制脉冲的宽度。3脚ISENSE是电流传感端。在外围电路中,在功率开关管(如VMos管)的源极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电压,此电压送入3脚,控制脉宽。此外,当电源电压异常时,功率开关管的电流增大,当取样电阻上的电压超过1V时,UC3842就停止输出,有效地保护了功率开关管。4脚RT/CT是定时端.锯齿波振荡器外接定时电容C和定时电阻R的公共端。5

脚GND是接地。6脚OUT是输出端,此脚为图滕柱式输出,驱动能力是±lA。这种图腾柱结构对被驱动的功率管的关断有利,因为当三极管VTl截止时,VT2导通,为功率管关断时提供了低阻抗的反向抽取电流回路,加速功率管的关断。7

脚Vcc 是电源。当供电电压低于 +16V 时,UC3824不工作,此时耗电在1mA 以

下。输入电压可以通过一个大阻值电阻从高压降压获得。芯片工作后,输入电压

可在+10~+30V 之间波动,低于+10V 停止工作。工作时耗电约为15mA ,此电流

可通过反馈电阻提供。8脚VREF 是基准电压输出,可输出精确的+5V 基准电压,电流可达50mA 。UV3842的电压调整率可达0.01%,工作频率为500kHz ,启动电

流小于1mA ,输入电压为10~30V ,基准电压为4.9~5.1V ,工作温度为0~70℃,输出电流为1A 。

〈2〉UC3842的性能特点:

①它属于电流型单端PWM 调制器,具有管脚数量少、外围电路简单、安装调试简

便、性能优良、价格低廉等优点。能通过高频变压器与电网隔离,适于构成无工

频变压器的20~50W 小功率开关电源。

②最高开关频率为500kHZ,频率稳定度达0.2%。电源效率高,输出电流大,能直

接驱动双极型功率晶体管或VMOS 管、DMOS 管、TMOS 管。输出电流为200mA ,峰

值为1A ,既可驱动双极型三极管也可驱动MOSFET 管。若驱动双极型三极管,应

加入开关管截止加速RC 电路,同时将内部振荡器的频率限制在40kHz 以下;若驱动MOSFET 管,振荡频率由外接RC 电路设定。

③内部有高稳定度的基准电压源,典型值为5.0V ,允许有±0.1V 的偏差。温度

系数为0.2mV/℃。

④稳压性能好。其电压调整率可达0.01%/V,能同第二代线性集成稳压器(例如

LM317)相媲美。启动电流小于1mA,正常工作电流为15mA 。

⑤除具有输入端过压保护与输出端过流保护之外,还设有欠压锁定电路,使工作

稳定、可靠。

⑥最高输入电压IM V =30V ,输出最大峰值电流PM I =1A,平均电流为0.2A,本身最

大功耗DM P =1W,最大输出功率OM P =50W 。

⑦启动电压大于16V 、启动启动前电源电流仅0.5mA 。处于正常工作状态时,工

作电压在10~34V 之间,负载电流为15mA 。超出此限制,开关电源呈欠电压或

过电压保护状态,无驱动脉冲输出。

⑧内设5V(50mA)基准电压源,经2∶1分压后作为取样基准电压。

⑨内设过流保护输入端(3脚)和误差放大器输入端(1脚)两个PWM 控制端。

误差放大器输入构成主PWM 控制系统,可使负载变动在30%~100%时输出负载调

整率在8%以下,负载变动70%~100%时输出负载调整率在3%以下。

⑩过流检测输入端可对逐个脉冲控制,直接控制每个周期的脉宽,使输出电压调

整率达到0.01%/V 。如果3脚电压大于1V 或1脚电压小于1V ,PWM 比较器输出

高电平使锁存器复位,直到下一个脉冲到来时才重新置位。利用1脚和3脚的电

平关系,在外电路控制锁存器的开/闭,使锁存器每个周期只输出一次触发脉冲。因此,电路的抗干扰性极强,开关管不会误触发,提高了可靠性。

〈3〉UC3842的引脚排列及内部框图

图4-1 UC3842结构图

UC3842采用DIP-8封装如上图4-1,管脚I V 、O V 、GND 端分别接输入电压、

输出电压、地。REF V 为内部5.0V 基准电压引出端。T R /T C 是外接定时电阻、定

时电容的公共端。UC3842内部框图如图2,其主要包括5.0V 基准电源,振荡器、误差放大器,过流检测电压比较器、PWM 锁存器、输入欠压锁定电路、门电路、输出级、34V 稳压管。其中: 1 脚是内部误差放大器的输出端, 通常此脚与 2反馈网络, 以确定误差放大器的增益和频响。2脚是反馈电压输入端, 将取样电

压加到误差放大器的反相输入端, 再与同相输入端的基准电压( 一般为5 V) 进行比较, 产生误差电压。3 脚是电流检测输入端, 与取样电阻配合, 构成过流保护电路。当电源电压异常时, 功率开关管的电流增大, 当取样电阻上的电压超过1 V时, UC3842就停止输出, 可以有效地保护功率开关管。4 脚外接锯齿波振荡器外部定时电阻与定时电容, 决定振荡频率。5 脚接地。6 脚是输出端, 此脚为图腾柱式输出, 能提供 l A 的峰值电流, 可驱动双极型功率开关管或MOSFET。7 脚接电源, 当供电电压低于 16 V 时, UC3842不工作, 此时耗电在 1 mA 以下。输入电压可以通过一个大阻值电阻从高压降压获得[ 2]。芯片工作后, 输入电压可在 10~ 30 V 之间波动, 低于 10V 则停止工作。工作时耗电约为 15 mA。8 脚是基准电压输出, 输出精确的 5 V 基准电压, 电流可达 50mA。由图1( b) 可见, 它主要包括误差放大器、PWM 比较器、PWM 锁存器、振荡器、内部基准电源和欠压锁定等单元。UC3842的电压调整率可达 0.01% , 工作频率为500 kHz。

2)TL431

TL431是可控精密稳压源。它的输出电压用两个电阻就可以任意的设置到从Verf(2.5V)到36V范围内的任何值。该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替稳压二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。TL431在开关电源中起到误差放大器的作用,将产生的直流电压与标准的+12V比较,将误差通过PC817送到UC3842中,从而控制Q1的开通和关断。

将输出的电压经R19和R18降压,输入TL431进行比较,再通过电位计SVR 调节,使输出电压达到+12V。

〈1〉内部结构

TL431的具体功能可以用图c的功能模块示意。由图可以看到,VI是一个内部的2.5V的基准源,接在运放的反向输入端。由运放的特性可知,只有当REF 端(同向端)的电压高于VI(2.5V)时,三极管中才会有电流通过,同相输入电压少于2.5V时,三极管处于截止状态(理想状态下),随着REF端电压的微小变化,通过三极管图1的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。

TL431可等效为一只稳压二极管,其基本连接方法如下图所示。下图a可作

2.5V基准源,下图4-3作可调基准源,电阻R2和R3与输出电压的关系为U0=(1+R2/R3)2.5V

具体工作原理:当输入电压增大,输出电压增大导致了输出采样增大,这时内部电路通过调整使得流过自身的电流增大,这也就使得流过限流的电路增大,这样限流电阻的压降增大,而输出电压等于输入电压减限流电阻压降增大使得输出电压减小,实现稳压。

〈2〉TL431的相关参数

在绝对极大等级下;阴极电压可达到37V,阴极电流值范围为-100~+150mA。一般在实际应用时,阴极电压取36V,阴极流过的电流值为100mA。反馈输入电压为2.495V,反馈输入电流为1.5mA。

3) PC817

PC817是常用的线性光耦,广泛用在电脑终端机、可控硅系统设备、测量仪器、影印机、自动售票、家用电器,如风扇、加热器等。电路之间的信号传递,常常在各种要求比较紧密的功能电路中被当作耦合器件,具有上下级电路完全隔离的作用,相互不产生影响。使之前端与负载完全隔离,目的在于增加安全性,减小电路干扰,减化电路设计。

〈1〉PC817的特点及内部引脚

光耦的基本结构是将光发射器(红外发光二极管。红外LED)和光敏器(硅光电探测敏感器件)的芯片封装在同一外壳内,并用透明树脂灌封充填作光传递介质,通常将光发射器的管脚作输入端,光敏器的引脚作为输出端,当输入端加电信号时,光发射器发出的光信号通过透明树脂光导介质投射到光敏器后,转换成电信号输出,实现了以光为媒介的电→光→电信号转换传输,并在电气上是完全隔离的。光耦的主要性能特点如下:

①隔离性能好,输入端与输出端完全实现了电隔离,其绝缘电阻RISO一般均能达到1010Ω以上,绝缘耐压VISO在低压时都可满足使用要求,高耐压一般能超过lKv,有的可达10kV以上。

②光信号单向传输,输出信号对输入端无反馈,可有效阻断电路或系统之间的电联系,但并不切断他们之间的信号传递。

③光信号不受电磁干扰,工作稳定可靠。

④抗共模干扰能力强,能很好地抑制干扰并消除噪音。

⑤光发射和光敏器件的光谱匹配十分理想,响应速度快,传输效率高。

⑥易与逻辑电路连接。

⑦无触点。寿命大。体积小耐冲击。

⑧工作温度范围宽,符合工业和军用温度标准。

当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。

五、焊接工艺介绍

焊接是整个试验过程的一种重要环节,焊接工艺的好坏直接决定了实验的成功与否,即使实验元器件全部都选择、安装正确,焊接不达标的话也达不到理想

效果,因此我们必须学习焊接的基本工艺,掌握一些焊接的技巧。

〈1〉进行锡焊,必须具备的条件有以下几点:

①焊件必须具有良好的可焊性

所谓可焊性是指在适当温度下,被焊金属材料与焊锡能形成良好结合的合金的性能。不是所有的金属都具有好的可焊性,有些金属如铬、钼、钨等的可焊性就非常差;有些金属的可焊性又比较好,如紫铜、黄铜等。在焊接时,由于高温使金属表面产生氧化膜,影响材料的可焊性。为了提高可焊性,可以采用表面镀锡、镀银等措施来防止材料表面的氧化。

②焊件表面必须保持清洁

为了使焊锡和焊件达到良好的结合,焊接表面一定要保持清洁。即使是可焊性良好的焊件,由于储存或被污染,都可能在焊件表面产生对浸润有害的氧化膜和油污。在焊接前务必把污膜清除干净,否则无法保证焊接质量。金属表面轻度的氧化层可以通过焊剂作用来清除氧化程度严重的金属表面,则应采用机械或化学方法清除,例如进行刮除或酸洗等。

③要使用合适的助焊剂

助焊剂的作用是清除焊件表面的氧化膜。不同的焊接工艺,应该选择不同的助焊剂,如镍铬合金、不锈钢、铝等材料,没有专用的特殊焊剂是很难实施锡焊的。在焊接印制电路板等精密电子产品时,为使焊接可靠稳定,通常采用以松香为主的助焊剂。一般是用酒精将松,香溶解成松香水使用。

④焊件要加热到适当的温度焊接时,热能的作用是熔化焊锡和加热焊接对象,使锡、铅原子获得足够的能量渗透到被焊金属表面的晶格中而形成合金。焊接温度过低对焊料原子渗透不利,无法形成合金,极易形成虚焊,焊接温度过高,会使焊料处于非共晶状态,加速焊剂分解和挥发速度,使焊料品质下降,严重时还会导致印制电路板上的焊盘脱落。需要强调的是,不但焊锡要加热到熔化,而且应该同时将焊件加热到能够熔化焊锡的温度。

⑤合适的焊接时间

焊接时间是指在焊接全过程中,进行物理和化学变化所需要的时间。它包括被焊金属达到焊接温度的时间、焊锡的熔化时间、助焊剂发挥作用及生成金属合金的时间几个部分。当焊接温度确定后,就应根据被焊件的形状、性质、特点等来确定合适的焊接时间。焊接时间过长,易损坏元器件或焊接部位;过短,则达不到效果,时间最长不超过5s。焊点质量及检查:对焊点的质量要求,应该包括电气接触良好、机械结合牢固和美观三个方面。保证焊点质量最重要的一点,就是必须避免虚焊。虚焊产生的原因及其危害:虚焊主要是由待焊金属表面的氧化物和污垢造成的,它使焊点成为有接触电阻的连接状态,导致电路工作不正常,出现连接时好时坏的不稳定现象,噪声增加而没有规律性,给电路的调试、使用和维护带来重大隐患。此外,也有一部分虚焊点在电路开始工作的一段较长时间内,保持接触尚好,因此不容易发现。但在温度、湿度和振动等环境条件的作用下,接触表面逐步被氧化,接触慢慢地变得不完全起来。虚焊点的接触电阻会引起局部发热,局部温度升高又促使不完全接触的焊点情况进一步恶化,最终甚至使焊点脱落,电路完全不能正常工作。这一过程有时可长达一、二年,其原理可以用“原电池”的概念来解释,当焊点受潮使水汽渗入间隙后,水分子溶解金属氧化物和污垢形成电解液,虚焊点两侧的铜和铅锡焊料,相当于原电池的两个电极,铅锡焊料失去电子被氧化,铜材获得电子被还原。在这样的原电池结构中,虚焊点内发生金属损耗性腐蚀,局部温度升高加剧了化学反应,机械振动让其中的间隙不断扩大,直到恶性循环使虚焊点最终形成断路。据统计数字表明,在电子整机产品的故障中,有将近一半是由于焊接不良引起的。然而,要从一台有成千上万个焊点的电子设备里来,实在不是容易的事。所以,虚焊是电路可靠性的重大隐患,必须严格避免。进行手工焊接操作的时候,尤其要加以注意。一般来说,造成虚焊的主要原因是:焊锡质量差;助焊剂的还原性不良或用量不够,被焊接处表面未预先清洁好,镀锡不牢;烙铁头的温度过高或过低,表面有氧化层;焊接时间掌握不好,太长或太短;焊接中焊锡尚未凝固时,焊接元件松动。

<2>对焊点的要求:

①可靠的电气连接

焊接是电子线路从物理上实现电气连接的主要手段。锡焊连接不是靠压力,而是靠焊接过程形成的牢固连接的合金层达到电气连接的目的。如果焊锡仅仅是堆在焊件的表面或只有少部分形成合金层,也许在最初的测试和工作中不会发现焊点存在问题,但随着条件的改变和时间的推移,接触层氧化,脱离出现了,电路产生时通时断或者干脆不工作,而这时观察焊点外表,依然连接如初。这是电子产品工作中最头疼的问题,也是产品制造中必须十分重视的问题。

②足够的机械强度

焊接不仅起到电气连接的作用,同时也是固定元器件,保证机械连接的手段。这就有个机械强度的问题。作为锡焊材料的铅锡合金本身强度是比较低的,只有普通钢材的10%。要想增加强度,就要有足够的连接面积。如果是虚焊点,焊料仅仅堆在焊盘上,自然就谈不到强度了。另外,在元器件插装后把引线弯折,实行钩接、绞合、网绕后再焊,也是增加机械强度的有效措施。造成强度较低的常见缺陷是因为焊锡未流满焊点或焊锡量过少,还可能因为焊接时焊料尚未凝固就发生件振动而引起的焊点结晶粗大,像豆腐渣状或有裂纹。

③光洁整齐的外观

良好的焊点要求焊料用量恰到好处,表面圆润,有金属光泽。外表是焊接质量的反映,注意:焊点表面有金属光泽是焊接温度合适、生成合金层的标志,这不仅仅是美观的要求。

六、实验现象分析

最后需要对开关电源进行测试,需要测试三个点的波形,分别为Q1的基极、Q1的发射极和D2 FR104的阳极。将电源开关接到220V交流电上,用万用表测试输出电压是否为直流+12V,如有偏差调节电位计SVR使输出电压为+12V。

图5-1 反馈电路波形

这幅图是回馈电路中在二极管D2处测得的波形,由于二极管单相导通性,示波器只观测到其中一半的波形,而且实验中变压器采用的异名端的接法,所以经过分析和实际所得到的波形图可以我们测得的波形是是正确的,此处测得的电压是为了给UC3842做辅助电源用的。

图5-2

图5-3

这两幅图测的是MOSFET导通时的电压,两个波形不一样确实同一点测出的波形,是因为在采样电压R10两端并联了一个电容,如果电容放电完成则是第二幅是不连续的波形,如果并联电容放电未完成则是第一副图连续模式,所以这两幅图其实是一样的,只是电容充放电的原因导致了这种现象。

图5-4

七、实验心得

实验从焊接电路板开始,当老师把开关电源套件发下来的时候,让我想起了本科做的电子实习,那时候就是在实验室全班人焊接各种电路板,所以现在一点也不陌生。我们自己买了一套电烙铁设备,还有万用表,测电阻方便。通过一级学科综合实验的学习,我了解了电阻的标识,刚开始我还是查阅资料用五色环来标记电阻的,后来觉得这样比较麻烦,就直接用万用表省时省力。也了解了电容的标识,知道了电解电容有正负极,白色条的一端是负极。还了解了三极管以及各种芯片的标识,对示波器的使用有了更进一步的提升,学会了如何去拆开一个电路模块,如何按照顺序依次安装电路模块,学会了开关电源的工作原理,对电源的滤波电路、整流电路、单臂反激式斩波电路、控制电路有了一定的了解,对其中的一些基本的元器件UC3842、TL431、PC387等工作原理、主要应用有了一些认识,技能有了全面提高。的在整个实验过程中,李老师渊博的知识、丰富的经验给了我们很大的启发,从梁老师那里,我们受益匪浅。

在实验室测试时,有的同学的开关电源LED灯不亮,有的同学的是电解电容冒烟了。遇到了各种各样的问题,我自己的开关电源虽然完成的挺好,也没有出现什么问题,但是同学们出现的问题我也得搞明白。还有就是在实验过程中,仍存在一些未来得及解决的问题,比如对 UC3842利用斜波补偿技术消除次谐波振荡现象以降低其工作的不稳定性和克服电路尖峰噪声干扰对输出纹波及其测量的影响等具体问题,有待今后做进一步了解。

对于这次学科实验,在整个实验过程中遇到了许多问题,期间得到了梁老师和很多同学的帮助,使得实验得以顺利完成,在此致以真挚的感谢。

此次一级学科综合实验对于电气工程专业硕士研究生来说,不仅提高了我们的知识面,而且提高了我们的动手能力和实验分析能力。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

开关电源实验报告

开关电源实验报告 一开关电源原理 如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。

MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 (3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

1.2功率变换电路 (1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。(2)常见的原理图: (3)工作原理 R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

华南理工大学高频开关电源实验报告

四、实验记录及处理 1、设定输出电流,当负载变化时,测量输出的电压、电流如表1所示 表1 外特性数据记录 1 2 3 4 5 6 7 8 50A U/V 10.01 17.30 26.00 36.04 50.30 51.10 51.60 52.10 I/A 49.60 49.60 49.70 49.60 49.00 39.50 34.00 29.80 100A U/V 15.80 27.08 41.00 48.10 50.00 51.00 51.50 51.80 I/A 99.70 99.60 99.80 77.80 50.40 39.50 34.70 34.70 150A U/V 18.50 34.60 45.10 47.70 49.80 51.00 51.50 52.00 I/A 149.90 150.00 121.30 84.80 53.30 42.40 36.80 32.40 200A U/V 22.80 41.40 45.50 47.70 50.00 51.00 51.50 51.90 I/A 200.00 193.70 127.60 86.20 54.80 43.10 35.80 31.90 250A U/V 26.20 41.10 45.10 47.70 50.00 50.80 51.40 51.80 I/A 246.70 194.30 126.10 84.00 53.10 41.20 36.20 31.70 300A U/V 29.80 41.20 45.10 47.80 50.10 51.00 51.60 52.60 I/A 295.70 196.00 120.00 84.10 53.30 41.50 36.10 31.60 外特性曲线图如下: 图4 变极性TIG焊接电源外特性 曲线分析: 在输出功率P一定的情况下,由于P=I2 R,随着负载R的增加,输出电流I 只能下降,又因为P=UI,输出电压U上升,曲线无法继续保持恒流特性,这一特性在大电流输出时更加明显。

高频开关电源电路原理分析

高频开关电源电路原理分析 开关电源微介绍开关电源具有体积小、效率高的一系列优点。已广泛应用于各种电子产品中。然而,由于控制电路复杂,输出纹波电压高,开关电源的应用也受到限制。它 电源小型化的关键是电源的小型化,因此必须尽可能地减少电源电路的损耗。当开关电源工作在开关状态时,开关电源的开关损耗不可避免地存在,损耗随着开关频率的增加而增大。另一方面,开关电源中的变压器和电抗器等磁性元件和电容元件的损耗随着频率的增加而增加。它 在目前市场上,开关电源中的功率晶体管大多是双极型晶体管,开关频率可以达到几十kHz,MOSFET开关电源的开关频率可以达到几百kHz。必须使用高速开关器件来提高开关频率。对于开关频率高于MHz的电源,可以使用谐振电路,这被称为谐振开关模式。它可以大大提高开关速度。原则上,开关损耗为零,噪声非常小。这是一种提高开关电源工作频率的方法。采用谐振开关模式的兆赫变换器。开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的开关电源其实是高频开关电源的缩写形式,和电源本身的关闭和开启式没有任何关系的。 开关电源分类介绍开关电源具有多种电路结构:(1)根据驱动方式,存在自激和自激。它2)根据DC/DC变换器的工作方式:(1)单端正激和反激、推挽式、半桥式、全桥式等;2)降压式、升压式和升压式。它 (3)根据电路的组成,有谐振和非谐振。它 (4)根据控制方式分为:脉宽调制(PWM)、脉冲频率调制(PFM)、PWM和PFM混合。(5)根据电源隔离和反馈控制信号耦合方式,存在隔离、非隔离和变压器耦合、光电耦合等问题。这些组合可以形成各种开关模式电源。因此,设计者需要根据各种模式的特点,

开关电源实验报告

开关电源实验报告 一、开关电源电路图及清单 1.1 60W-12V开关电源电路图 图1-1 开关电源电路原理1.2.60W-12V开关电源电清单

二、开关电源介绍 开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED 灯袋,电脑机箱,数码产品和仪器类等领域。它是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。 模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国

开关电源课程设计

目录 前言 (1) 第一章开关电源技术课程设计任务书 (2) 第二章主电路原理设计 (7) 第三章开关变压器设计 (9) 第四章主要元器件的选型 (16) 第五章电路仿真及结果 (23) 总结 参考文献 附表一 附表二

前言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。

第一章开关电源技术课程设计任务书 一、课程设计的目的 通过开关电源技术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文 献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 一、题目 题目:反激型开关电源电路设计 注意事项: ①学生也可以选择规定题目方向外的其它开关电源电路设计。 ②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。 设计装置(或电路)的主要技术数据

毕业实习报告——开关电源

毕业实习 报告 班级 学号 学生姓名 指导教师 电气工程与自动化系 2013年4月13日

一、实习目的 1、通过毕业实习加深对专业知识的理解 在四年大学生活中,学生对专业先关知识进行了系统的学习,已基本具备专业相关素质。但通过课本学习和实验训练,学生很难深入理解所学专业,所以毕业实习至关重要,是本科阶段最后一个也是最关键一个环节。毕业实习期间,学生可以更深刻地体会到平日所学在社会相关行业中的应用,进而联系课本相关知识,加深对其的理解。 2、通过毕业实习更好完成毕业设计 毕业实习一般与毕业设计先关,它的质量关系到了毕业设计的好坏,作为大学期间最重要的实习之一,必须认真参与。通过最后一次实习,让学生进一步了解生产现场,把在校期间的学习和生产结合起来,发现自己的不足,以更好地完成毕业设计。 3、通过毕业实习增强实践能力 在毕业实习期间,学生接触到的不再是课本上硬生生的理论,可以亲眼看到、亲手摸到专业相关仪器设备,并可以了解设计制作、生产加工、维护管理等一系列环节的工作。通过亲身投入工作,可以充分锻炼动手实践的能力,避免一般大学生眼高手低的缺点。 4、通过毕业实习了解相关行业发展状况,把握以后发展方向 现代社会发展迅速,从课本上学到的知识、看到的信息部分已经过时,要想了解行业发展动态、真正做到学有所用,必须深入社会相关行业。毕业实习也就为我们提供了这么一个机会。通过实习,我们可以真正了解到目前广泛应用的技术,也为我们日后的学习和发展找准方向。 5、通过毕业实习锻炼学生职业化相关素质,以更好融入社会 学生即将离开校园步入社会,必须丢掉自己做学生时的一些行为习惯,以适应社会生活。而“职业化”是衡量一个人能不能胜任一份工作的标准,如何使学生具备“职业化”的相关素质也是大学教育的一个重点。通过毕业实习,学生可以初步了解职场,了解自己应该具备哪些职业素质,为以后的发展奠定基础。 二、实习时间和地点 ●实习时间:2013年4月1日——2013年4月10日 ●实习地点:洛阳嘉盛电源科技有限公司(河南省洛阳市高新技术开发区延光 路火炬园C座4层) 三、实习单位简介 洛阳嘉盛电源科技有限公司位于国家级高新技术产业开发区-----洛阳火炬创新创业园,是集产品开发、生产、销售、服务于一体的民营企业。凭借先进的技术,多年的开发与销售经验,以及完善的品质管理体系、先进的检测设备和完善的售后服务,赢得广大客户的信赖与支持。企业基本信息如下:企业类型:有限责任公司

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源课程实践报告

开关电源课程实践报告

————————————————————————————————作者:————————————————————————————————日期:

电源开关课程实践设计报告降压斩波电路设计 姓名:张金涛 学号: 121104133 指导教师:许树玲 成绩: 日期: 2014.10.25

课程设计任务书 学生姓名:专业:自动化 指导教师:许树玲工作单位:物电学院 题目: 一、初始条件: 可用元器件:电容、整流管或整流桥、功率开关管、电力二极管、隔离变压器电阻、滤波电感等。 可用仪器:示波器、电压表、电流表。 二、要求完成的主要任务: (1)设计任务 根据技术要求和已知条件,完成无输入变压器整流、电容滤波DC-DC变换器电路的设计。 (2)设计要求 1、要求设计一个工频、单相、无变压器输入,整流桥整流、纯电容滤波,DC-DC 变换器电路,设输出电压U O=50V,输出电流1—10A,输入电压有10%的波动,输出纹波电压要求低于0.1V,假设所用器件均无能量损耗。 2、选择电路方案,完成对确定方案电路的设计。计算电路元件参数,并画出总 体电路原理图,阐述基本原理并进行软件仿真。 3、按规定格式写出课程设计报告。 三、时间安排: 1、2014年9月28日,集中布置课程设计任务、选题; 2、2014年9月29--10月11日,完成资料查询、设计和仿真; 3、2014年10月11---25日,撰写课程设计报告。 指导教师:许树玲 2014-9-28

一、原理图 二、原理图分析及元件参数计算 1、根据题目要求,电源电压有10%的波动,设电容C1两端电压为Uin ,则: V U in 4.2901.1*220*2.1max == 6.2379.0*220*2.1min ==in U 2、占空比D 由公式in o V V D = 得: 172.04.29050max min ===in o V V D

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

开关电源实习报告

第十届TI杯电子设计竞赛培训实 习报告 日8月7年2012 1.开关稳压电源 1.1工频变压器 工频变压器作为本电源降低电压的核心。它把有效值为220V的交流市电降低为20V的交流电压。为后级稳压环节输入一个低的直流电压做了准备。 1.2整流滤波 本电源整流采用4安的集成整流桥堆。前级滤波采用三个电容进行。如图1示,分别为C12,C14,C15。C14是一个1000uF的铝电解电容,它可以很好地滤除低频脉动成分,使整流输出波形变得很平滑。电容的高频小信号模型为电感、电容、电阻的串联。铝电解电容,由于其内部结构决定了它的高频等效电感比较大。再加之铝电解电容的容值比较大,这就导致它的自身谐振频率比较低。这样它可以很好地滤除低频杂波成分,但是对于高频杂波成分,它的滤除效果不是很好。这就需要给他并联一个0.1uF的瓷片电容C15,这样滤波器的带宽就会大大提高,可以滤除掉更多的杂波成分。C12是作为LM2576的输入滤波的,以保证输入LM2576的交流杂波成分更小。 1.3稳压 本电源稳压环节采用LM2576开关降压(Buck)型集成稳压芯片。其内部集成了52KHz的振荡器,功率管,PWM调制器和反馈环路。LM2576输出最大电流可以保证3A,输入最大电压40V。D4是一个肖特基二极管,型号为MBR20200。它是作为Buck电路的续流二极管使用的。电感L2是一个用铁粉磁环绕制的100uH 的大功率电感,它是Buck电路的储能电感。L2和C13共同组成了一个LC滤波器。R12,R10是一个电阻串联分压网络。LM2576的4脚在分压网络分压点采集电压反馈给其内部误差放大器,控制PWM调制器改变PWM波的脉宽,从而控制功

开关电源工作频率的原理分析

开关电源工作频率的原理分析 一、开关电源的原理和发展趋势 第一节高频开关电源电路原理 高频开关电源由以下几个部分组成: 图12-1 (一)主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 (二)控制电路 一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。 (三)检测电路 除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据。 (四)辅助电源 提供所有单一电路的不同要求电源。

第二节开关控制稳压原理 图12-2 开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示: EAB=TON/T*E 式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。 由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。 按TRC控制原理,有三种方式: (一)、脉冲宽度调制(Pulse Width Modulation,缩写为PWM) 开关周期恒定,通过改变脉冲宽度来改变占空比的方式。 (二)、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM) 导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。 (三)混合调制 导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。 第三节开关电源的发展和趋势

反激式开关电源课程设计报告

目录 第一章课程设计的目的 2 第二章课程设计的要求 2 第三章主电路原理 4 第四章变压器的设计9 第五章器件选型15 第六章仿真及结果20 总电路图28 心得体会29 参考文献30

第一章、课程设计的目的 通过开关电源技术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献 资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 第二章、课程设计的要求 1. 题目 题目:反激型开关电源电路设计 注意事项: ①学生也可以选择规定题目方向外的其它开关电源电路设计。 ②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。 开关稳压电源基本原理框图

主要技术数据 1、交流输入电压AC95~270V; 2、直流输出5V,1A; 3、输出纹波电压≤0.2V; 4、输入电压在95~270V之间变化时,输出电压误差≤0.03V; 设计内容: 开关电源主电路的设计和参数选择 IGBT电流、电压额定的选择 开关电源驱动电路的设计 开关变压器设计 画出完整的主电路原理图和控制电路原理图 电路仿真分析和仿真结果 2.在整个设计中要注意培养灵活运用所学的电力电子技术知 识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。 主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。 3.在整个设计中要注意培养独立分析和独立解决问题的能力

开关电源实验指导

开关电源技术实验指导书 信息工程学院电气及自动化教研室 2009.04.18

实验一电流控制型脉宽调制开关稳压电源研究 一.实验目的 1.掌握电流控制型脉宽调制开关电源的工作原理,特点与构成。 2.熟悉电流控制型脉宽调制芯片UC3842的工作原理与使用方法。 3.掌握开关电源的调试方法与参数测试方法。 二.实验内容 1.利用芯片UC3842,连接实验线路,构成一个实用的开关稳压电源电路。 2.芯片UC3842的波形与性能测试 (1)开启与关闭阀值电压。 (2)锯齿波,包括周期、占空比、幅值等,并与理论值相比较。 (3)不同负载以及不同交流输入电压时的输出PWM波形,并与正确波形相对比。 (4)反馈电压端(即UC38422号脚)与电源端(即7号脚)波形。 (5)输出PWM脉冲封锁方法测试。 3.开关电源波形测试 (1)GTR集电极电流与集-射极电压波形。 (2)变压器原边绕组两端波形。 (3)输出电压V O波形。 4.开关电源性能测试 (1)电压调整率(抗电压波动能力)测试。 (2)负载调整率(抗负载波动能力)测试。 (3)缓冲电路性能测试。 三.实验系统组成及工作原理 电源装置是电力电子技术应用的一个重要领域。其中高频开关式直流稳压电源由于具有效率高,体积小和重量轻等突出优点,获得了广泛的应用。 开关电源的控制电路可分为电压控制型和电流控制型。前者是一个单闭环电压控制系统,后者是一个电压、电流双闭环控制系统,电流控制型较电压控制型有不可比拟的优点。 具体实验原理可参见附录。 具体线路见图5—4。 四.实验设备和仪器 1.MCL-08直流斩波及开关电源实验挂箱 2.双踪示波器 3.万用表 五.实验方法

开关电源课设报告

电气与电子信息工程学院 《电力电子装置设计与制作》 课程设计报告 名称:开关直流降压电源(BUCK)设计 专业名称:电气工程及其自动化 班级:14级专升本(1)班 学号:0125 姓名: 指导教师:南光群、张智泉、叶天凤 课程设计时间:2015年11月30日—12月10日 课程设计地点:K2-414和K2-306实验室

电力电子装置设计与制课程设计成绩评定表 指导教师签字:

年月日 《电力电子装置设计与制作》 课程设计任务书 2015~2016学年第一学期 学生姓名:专业班级:电气工程及其自动化14级专升本1班指导教师:南光群、张智泉、叶天凤工作部门:电气与电子信息工程学院 一、课程设计题目: 开关直流降压电源(BUCK)设计 二、课程设计内容 根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。如实验结果不满足要求,则修改设计,直到满足要求为止。 设计题目选: 题目一:开关直流降压电源(BUCK)设计 主要技术指标: 1)输入交流电压220V(可省略此环节)。 2)输入直流电压在14-18V之间。 3)输出直流电压11V,输出电压纹波小于2%。 4)输出电流1A。 5)采用脉宽调制PWM电路控制。 三、进度安排

四、基本要求 1、独立设计原理图各部分电路的设计; 2、制作硬件实物,演示设计与调试的结果。 3、写出课程设计报告。内容包括电路图、工作原理、实际测量波形、调试分析、测量精度、结论和体会。 4、写出设计报告:不少于3000字,统一复印封面并用A4纸写出报告。 ○1封面、课程设计任务书 ○2摘要,关键词(中英文) ○3方案选择,方案论证 ○4系统功能及原理。(系统组成框图、电路原理图) ○5各模块的功能,原理,器件选择 ○6实验结果以及分析 ○7设计小结 ○8附录---参考文献

AC-DC反激开关电源实验报告

反激开关电源的设计与调试 1.实验目的: 掌握反激电路、TOP255YN芯片的使用方法与各元器件的参数计算;掌握各种测试仪器的使用;输入220交流电压,得到12V电压,1.5A电流稳定主输出;副输出5V,1A。频率f=66KHZ,输出功率23W,输出纹波100mV。 2.实验器材: 示波器、负载、输入电源、测温器、万用表。 3.实验内容: (1)反激电路工作原理

连续模式初级电流有前沿阶梯且从前沿开始斜坡上升。在开关管关断期间,次级电流为阶梯上叠加衰减的三角波。当开关管在下个周期开始导通瞬间,次级仍然维持有电流。在下一个周期开关管开通时刻,变压器储存能量未完全释放,仍有能量剩余。

三、实验数据分析 输入电压为220V 交流,整流后得到Vdc=311V 直流。MOS 管上电压为Vdc+(Np/Ns )*(Vo+1)=400V 。 (1)变压器设计 占空比:) /)(1()1(8.0)/)(1(on Ns Np Vo Vdc T Ns Np Vo T ++-?+==0.4695 初级匝数:f Ae Bpk T V N **?*?=2on o 2p =71匝取72匝 f=66khz 次级匝数:dc on of f 1o p s V T T V N N **+* =)(=8.2匝取9匝 次级峰值电流:=-=) 1(o crs Ton Vo P I 2.83A 次级平均电流:csr of f ar I T I *==1.5A Vo Ton Po Icpr *=25.1=0.337A Top255芯片峰值电流:Ton I I /cpr p ==0.802A 过载保护: 典型值Ilimit=1.7A

相关文档
最新文档