【考点7】概率

合集下载

山东初二初中数学期末考试带答案解析

山东初二初中数学期末考试带答案解析

山东初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列实数中,无理数是A.B.C.D.0.10100100012.-64的立方根是A.-8B.±8C.±4D.-43.下列图形:其中是轴对称图形的共有A.1个B.2个C.3个D.4个4.向如图所示的等边三角形区域扔沙包(区域中每一个小等边三角形除颜色外完全相同),假设沙包击中每一个小等边三角形是等可能的,扔沙包一次,击中阴影区域的概率等于A.B.C.D.5.下列各组数中,是勾股数的一组为A.3,4,25B.6,8,10C.5,12,17D.8,7,66.下列各式成立的是A.=9B.="2"C.=±5D.=67.若等腰三角形的一角为100°,则它的底角是A.20°B.40°C.60°D.80°8.一次函数y=-2x+4的图象与x轴的交点坐标是A.(2,0)B.(0,2)C.(0,4)D.(4,0)9.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=12,BD=8,则点D到AB的距离是A.6B.4C.3D.210.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是A B C D11.如图,在Rt△ABC中,∠B=90°,AB=8,BC=4,斜边AC的垂直平分线分别交AB、AC于点E、O,连接CE,则CE的长为A. 5B. 6C. 7D. 4.512.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路,若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是A.汽车在高速公路上行驶速度为100km/hB.乡村公路总长为90kmC.汽车在乡村公路上行驶速度为60km/hD.该记者在出发后4.5h到达采访地二、填空题1.49的算术平方根是_______。

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)(解析版)

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)(解析版)

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)【考点分析】①转移概率:对于有限状态集合S ,定义:)|(1,i n j n j i X X P P ==+=为从状态i 到状态j 的转移概率.②马尔可夫链:若ij i n j n i i n i n j n P X X P X X X X P n ==⋅⋅⋅==+==-==+-)|(),,,|(101101,即未来状态1+n X 只受当前状态n X 的影响,与之前的021,,,X X X n n ⋅⋅⋅--无关.③完备事件组:如果样本空间Ω中一组事件组},,{21n A A A ⋅⋅⋅符合下列两个条件:(1)n j i j i A A j i ⋅⋅⋅=≠∅=⋂,2,1,,,;(2)Ω==k nk A 1 .则称},,{21n A A A ⋅⋅⋅是Ω的一个完备事件组,也称是Ω的一个分割.④全概率公式: 设},,{21n A A A ⋅⋅⋅是一个完备事件组,则有)|()()(1knk kA B P A P B P ∑==⑤一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=-==+-==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P 另一方面,由于αβ==+==+-==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11-+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+-++=i i i i cP bP aP P【精选例题】【例1】(2023·新高考1卷)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .解析:(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭.(3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,故52()11853n n E Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【例2】某公司为激励员工,在年会活动中,该公司的()3n n ≥位员工通过摸球游戏抽奖,其游戏规则为:每位员工前面都有1个暗盒,第1个暗盒里有3个红球与1个白球.其余暗盒里都恰有2个红球与1个白球,这些球的形状大小都完全相同.第1位员工从第1个暗盒里取出1个球,并将这个球放入第2个暗盒里,第2位员工再从第2个暗盒里面取出1个球并放入第3个暗盒里,依次类推,第n 1-位员工再从第n 1-个暗盒4.马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第1n +次状态的概率分布只跟第n 次的状态有关,与第1,2,3,n n n ---⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行()*N n n ∈次操作后,记甲盒子中黑球个数为n X ,甲盒中恰有1个黑球的概率为n a ,恰有2个黑球的概率为n b .(1)求1X 的分布列;(2)求数列{}n a 的通项公式;(3)求n X 的期望.解析:(1)由题可知,1X 的可能取值为0,1,2.由相互独立事件概率乘法公式可知:()11220339P X ==⨯=;()111225133339P X ==⨯+⨯=;()12122339P X ==⨯=,故1X 的分布列如下表:1X 012P295929(2)由全概率公式可知:()11n P X +=()()()()11111212n n n n n n P X P X X P X P X X ++==⋅==+=⋅==()()1010n n n P X P X X ++=⋅==()()()11222211210333333n n n P X P X P X ⎛⎫⎛⎫⎛⎫=⨯+⨯=+⨯=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()522120933n n n P X P X P X ==+=+=,即:()15221933n n n n n a a b a b +=++--,所以11293n n a a +=-+,所以1313595n n a a +⎛⎫-=-- ⎪⎝⎭,又()11519a P X ===,所以,数列35n a ⎧⎫-⎨⎬⎩⎭为以132545a -=-为首项,以19-为公比的等比数列,所以132121545959n n n a -⎛⎫⎛⎫-=-⋅-=⋅- ⎪⎪⎝⎭⎝⎭,即:321559nn a ⎛⎫=+⋅- ⎪⎝⎭.(3)由全概率公式可得:()12n P X +=()()()()11121222n n n n n n P X P X X P X P X X ++==⋅==+=⋅==()()1020n n n P X P X X ++=⋅==()()()21111200333n n n P X P X P X ⎛⎫⎛⎫=⨯⋅=+⨯⋅=+⋅= ⎪ ⎪⎝⎭⎝⎭,即:12193n n n b a b +=+,又321559nn a ⎛⎫=+⋅- ⎪⎝⎭,所以11232139559n n n b b +⎛⎫⎛⎫=++-⎪ ⎪ ⎪⎝⎭⎝⎭,所以11111]1111[5593559n nn n b b ++⎛⎫⎛⎫-+-=-+- ⎪⎪⎝⎭⎝⎭,又()11229b P X ===,所以111121105599545b ⎛⎫-+⨯-=--= ⎪⎝⎭,所以1110559n n b ⎛⎫-+-= ⎪⎝⎭,所以111559nn b ⎛⎫=-- ⎪⎝⎭,所以()()20121n n n n n n n E X a b a b a b =++--=+=.5.足球是一项大众喜爱的运动.2022卡塔尔世界杯揭幕战将在2022年11月21日打响,决赛定于12月18日晚进行,全程为期28天.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第n 次触球者是甲的概率记为n P ,即11P =.(1)求3P (直接写出结果即可);(2)证明:数列14n P ⎧⎫-⎨⎬⎩⎭为等比数列,并判断第19次与第20次触球者是甲的概率的大小.解析:(1)由题意得:第二次触球者为乙,丙,丁中的一个,第二次触球者传给包括甲的三人中的一人,故传给甲的概率为13,故313P =.(2)第n 次触球者是甲的概率记为n P ,则当2n ≥时,第1n -次触球者是甲的概率为1n P -,第1n -次触球者不是甲的概率为11n P --,则()()1111101133n n n n P P P P ---=⋅+-⋅=-,从而1111434n n P P -⎛⎫-=-- ⎪⎝⎭,又11344P -=,14n P ⎧⎫∴-⎨⎬⎩⎭是以34为首项,公比为13-的等比数列. 则1311434n n P -⎛⎫=⨯-+ ⎪⎝⎭,∴181931114344P ⎛⎫=⨯-+> ⎪⎝⎭,192031114344P ⎛⎫=⨯-+< ⎪⎝⎭,1920P P >,故第19次触球者是甲的概率大6.(2019全国1卷).为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i )证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii )求4p ,并根据4p 的值解释这种试验方案的合理性.解析:(1)由题意可知X 所有可能的取值为:1-,0,1()()11PX αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:X1-01P()1αβ-()()11αβαβ+--()1αβ-(2)0.5α= ,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7ii i i p ap bp cp i -+=++=⋅⋅⋅ ;即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅;()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i ii i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=-()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.。

高中数学7-1条件概率与全概率公式7-1-2全概率公式新人教A版选择性必修第三册

高中数学7-1条件概率与全概率公式7-1-2全概率公式新人教A版选择性必修第三册

=P(APi)P(B(B) |Ai)=
P(Ai)P(B|Ai)
n
,i=1,2,…,n.
P(Ak)P(B|Ak)
k=1
(2)在贝叶斯公式中,P(Ai)和 P(Ai |B)分别称为原因的先验概率和后验 概率.
【预习自测】
全概率公式与贝叶斯公式的联系与区别是什么? 提示:两者的最大不同在处理的对象不同,其中全概率公式用来计 算复杂事件的概率,而贝叶斯公式是用来计算简单条件下发生的复杂事 件,也就是说,全概率公式是计算普通概率的,贝叶斯公式是用来计算 条件概率的.
由全概率公式,得
P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)·P(B3)=13×15+14×12+112 ×130=1630.
(2)所求概率为 P(B2|A),由贝叶斯公式,得 P(B2|A)=P(A|PB(2A)P) (B2)=141×321=2165.
60
P(Ai)(i=1,2,…,n)是在没有进一步信息(不知道事件B是否发生) 的情况下,人们对诸事件发生可能性大小的认识.当有了新的信息(知 道B发生),人们对诸事件发生可能性大小P(Ai|B)有了新的估计.贝叶斯 公式从数量上刻画了这种变化.
3.(题型2)李老师一家要外出游玩几天,家里有一盆花交给邻居帮 忙照顾,如果这几天内邻居记得浇水,那么花存活的概率为0.8,如果这 几天邻居忘记浇水,那么花存活的概率为0.3.假设李老师对邻居不了解, 即可以认为邻居记得和忘记浇水的概率均为0.5,几天后李老师回来发现 花还活着,则邻居记得浇水的概率为________.
【答案】181
【解析】设 B 表示“邻居记得浇水”,-B 表示“邻居忘记浇水”,A 表示“花还活着”,由贝叶斯公式,得 P(B|A)=P(B)P(AP|B(B)+)PP(A(-|BB))P(A|-B ) =0.5×00..58×+00..85×0.3=181.

第七课 概率问题

第七课 概率问题

如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,•事件
的图象上的概率一定大
的倍数的概率
江苏扬州,
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方
法,求出所选两名留守儿童来自同一个班级的概率.
2011
其中的一项实验,由学生自己抽签确定做哪项试验.在这次测试
博思教育中小学个性化辅导专家
东城校区:东城育兴路劳动局斜对面南城校区:南城新基路口国美对面电话:22291990。

高中数学复习课第7课时概率课件

高中数学复习课第7课时概率课件
(1)将所求事件转化为几个彼此互斥的事件的和事件;
(2)将一个较复杂的事件转化为几个互斥事件的和事件,需要
分类较多,而其对立面的分类较少时,可考虑利用对立事件的
概率公式,即“正难则反”.它常用来求“至少……”或“至多……”
型事件的概率.
【变式训练4】 某商场进行有奖销售,购满100元商品得1张奖
券,多购多得.1 000张奖券为一个开奖单位,每个开奖单位设特
等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等
奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券中奖的概率;
(3)1张奖券不中特等奖且不中一等奖的概率.


解:(1)P(A)= ,P(B)=
故事件


= ,P(C)=
的个数是有限的,那么称样本空间Ω为有限样本空间.
3.什么是随机事件,必然事件,不可能事件?
提示:一般地,把试验E的样本空间Ω的子集称为E的随机事件,
简称事件,常用A,B,C等表示.样本空间Ω是其自身的子集,因
此Ω也是一个事件;又因为它包含所有的样本点,每次试验无
论哪个样本点ω出现,Ω都必然发生,因此称Ω为必然事件.空
互斥事件与对立事件的判断方法:
(1)利用基本概念:①互斥事件不可能同时发生;②对立事件首
先是互斥事件,且必有一个发生.
(2)利用集合的观点:设事件A,B所包含的样本点组成的集合
表示分别是A,B.
①事件A与B互斥,即A∩B=⌀;
②事件A与B对立,即A∩B=⌀,且A∪B=Ω(Ω为样本空间),也即
A=∁ΩB或B=∁ΩA.
)
A.① B.②④ C.③ D.①③

小学奥数:7-9-1 概率.学生版

小学奥数:7-9-1 概率.学生版

7-9-1.概率教学目标“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,兼有应用性和趣味性,其内容及延伸贯穿于初等数学到高等数学,因此成为小学数学中新增内容.1.能准确判断事件发生的等可能性以及游戏规则的公平性问题.2.运用排列组合知识和枚举等计数方法求解概率问题.3.理解和运用概率性质进行概率的运算.知识要点一、概率的古典定义如果一个试验满足两条:⑴试验只有有限个基本结果;⑵试验的每个基本结果出现的可能性是一样的.这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()m P A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中所涉及的概率都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.二、对立事件对立事件的含义:两个事件在任何一次试验中有且仅有一个发生,那么这两个事件叫作对立事件如果事件A 和B 为对立事件(互斥事件),那么A 或B 中之一发生的概率等于事件A 发生的概率与事件B 发生的概率之和,为1,即:()()1P A P B +=.三、相互独立事件事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件.如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即:()()()P A B P A P B ⋅=⋅.例题精讲模块一、概率的意义【例1】气象台预报“本市明天降雨概率是80%”.对此信息,下列说法中正确的是________.①本市明天将有80%的地区降水.②本市明天将有80%的时间降水.③明天肯定下雨.④明天降水的可能性比较大.【考点】概率的意义【难度】1星【题型】填空【关键词】希望杯,决赛【解析】降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间.80%的概率也不是指肯定下雨,100%的概率才是肯定下雨.80%的概率是说明有比较大的可能性下雨.【答案】④【例2】约翰与汤姆掷硬币,约翰掷两次,汤姆掷两次,约翰掷两次,……,这样轮流掷下去.若约翰连续两次掷得的结果相同,则记1分,否则记0分.若汤姆连续两次掷得的结果中至少有1次硬币的正面向上,则记1分,否则记0分.谁先记满10分谁就赢.赢的可能性较大(请填汤姆或约翰).【考点】概率的意义【难度】2星【题型】填空【关键词】走美杯,5年级,决赛,第7题【解析】连续扔两次硬币可能出现的情况有(正,正);(正,反);(反,正);(反,反)共四种情况。

2022年甘肃省兰州市中考数学试题(解析版)

2022年甘肃省兰州市中考数学试题(解析版)

兰州市2022 年中考试题数学〔A〕本卷须知:1.本试卷总分值150 分,考试用时120 分钟。

2.考生必须将姓名、准考证号、考场、座位号等个人信息填〔涂〕在答题卡上。

3.考生务必将答案直接填〔涂〕写在答题卡的相应位置上。

一、选择题:本大题共15 小题,每题4 分,共60 分,在每题给出的四个选项中仅有一项为哪一项符合题意的。

1.如图是由5 个大小相同的正方体组成的几何体,那么该几何体的主视图是〔〕。

〔A〕〔B〕〔C〕〔D〕【答案】A【解析】主视图是从正面看到的图形。

从正面看有两行,上面一行最左边有一个正方形,下面一行有三个正方形,所以答案选A。

【考点】简单组合体的三视图2.反比例函数的图像在〔〕。

〔A〕第一、二象限〔B〕第一、三象限〔C〕第二、三象限〔D〕第二、四象限【答案】B【解析】反比例函数的图象受到k的影响,当k 大于0 时,图象位于第一、三象限,当k小于0 时,图象位于第二、四象限,此题中k =2 大于0,图象位于第一、三象限,所以答案选B。

【考点】反比例函数的系数k 与图象的关系3.△ABC ∽△DEF,假设△ABC与△DEF的相似比为3/4,那么△ABC与△DEF对应中线的比为〔〕。

〔A〕3/4〔B〕4/3〔C〕9/16〔D〕16/9【答案】A【解析】根据相似三角形的性质,相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比,此题中相似三角形的相似比为3/4,即对应中线的比为3/4,所以答案选A。

【考点】相似三角形的性质4.在Rt △ABC中,∠C=90°,sinA=3/5,BC=6,那么AB=〔〕。

〔A〕4 〔B〕6 〔C〕8 〔D〕10【答案】D【解析】在Rt △ABC中,sinA=BC/AB=6/AB=3/5,解得AB=10,所以答案选D。

【考点】三角函数的运用5.一元二次方程的根的情况〔〕。

〔A〕有一个实数根〔B〕有两个相等的实数根〔C〕有两个不相等的实数根〔D〕没有实数根【答案】B【解析】根据题目,∆==0, 判断得方程有两个相等的实数根,所以答案选B。

2021_2022学年新教材高中数学第7章概率3频率与概率课件北师大版必修第一册

2021_2022学年新教材高中数学第7章概率3频率与概率课件北师大版必修第一册

A.9199
B.1
1 000
C.1909090
D.12
【解析】选 D.抛掷一枚质地均匀的硬币,只考虑第 999 次,有两 种结果:正面朝上,反面朝上,每种结果等可能出现,故所求概率为 1 2.
1.概率意义下的“可能性”是大量随机现象的客观规律,与我 们平时所说的“可能”“估计”是不同的,也就是说,单独一次结果 的不肯定性与积累结果的规律性,才是概率意义下的“可能性”,而 日常生活中的“可能”“估计”侧重于某次的偶然性.
【解析】(1)一对夫妇生两小孩可能是(男,男),(男,女),(女, 男),(女,女),所以 A 不正确;中奖概率为 0.2 是说中奖的可能性为 0.2,当摸 5 张票时,可能都中奖,也可能中一张、两张、三张、四张, 或者都不中奖,所以 B 不正确;10 张票中有 1 张奖票,10 人去摸, 每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是 0.1, 所以 C 不正确;D 正确.
表情7-7是20世纪波兰的一些统计资料,(结果精确度 0.0001).
从表7-7可以看出,它们与拉普拉斯得到的结果非常相近.
【概率】 在相同条件下,大量重复进行同一试验时,随机事件A发
生的频率通常会在某个常数附近摆动,即随机事件A发生的频率 具有稳定性.这时,把这个常数叫作随机事件A的概率,记作P(A).
【解析】选 D.概率是描述事件发生的可能性大小.
2.事件 Aห้องสมุดไป่ตู้发生的概率接近于 0,则( B )
A.事件 A 不可能发生 B.事件 A 也可能发生 C.事件 A 一定发生 D.事件 A 发生的可能性很大
3.从一批准备出厂的电视机中随机抽取 10 台进行质量检查,其 中有 1 台是次品,若用 C 表示抽到次品这一事件,则对 C 的说法正

七年级数学暑假专题—概率北师大版

七年级数学暑假专题—概率北师大版

初一数学暑假专题—概率北师大版【本讲教育信息】一、教学内容概率(第四章) 1、确定事件与不确定事件 2、求简单事件发生的概率 3、判断游戏是否公平二、教学目标1、理解确定事件与不确定事件的概念,会判断一个事件是确定事件还是不确定事件2、会求简单事件发生的概率3、能利用概率来判断游戏是否公平的问题三、知识要点分析1、确定事件与不确定事件(重点) 确定事件包括必然事件与不可能事件生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件; 有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。

有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件。

实质:①不可能事件:指每次都完全没有机会发生,即发生的机会是0,表示为P (不可能事件)=0;②必然事件:指每次都一定发生,即发生的机会是100%,表示为P (必然事件)=1;③不确定事件:指有可能会发生,也有可能不会发生,即发生的机会介于0和100%之间,但不包括0和100%,即0<P (不确定事件)<1。

2、求简单事件发生的概率(重点、难点)求法:①一步试验事件的概率,等于试验中我们关注结果的次数除以所有等可能出现的结果的次数,用公式表示为nkP(k 表示关注结果的次数,n 表示所有等可能出现结果的次数);②两步试验事件概率的计算方法主要有两种:一是列表,二是画树状图,再依照①找出公式中的k ,n ,求出其发生的概率P 。

3、判断游戏是否公平判断一个游戏是否公平,要看游戏的双方是否各有50%赢的机会,如果不是,那么这个游戏就是不公平的,要想使它变成公平的,就要修改游戏规则.一个公平的游戏,双方获胜的可能性出现的机率是相等的。

有的游戏可通过试验或用列表的形式进行列举。

【典型例题】考点一:确定事件与不确定事件例1. 下列事件为必然事件的是A. 抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环aD.若a是实数,则0【题目分析】本题要求判断所给的事件是否是必然事件。

【导与练】(新课标)2016高考数学二轮复习 专题7 概率与统计 第2讲 概率、随机变量及其分布列 理

【导与练】(新课标)2016高考数学二轮复习 专题7 概率与统计 第2讲 概率、随机变量及其分布列 理

第2讲概率、随机变量及其分布列一、选择题1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( A )(A)(B)(C)(D)解析:甲、乙两人都有3种选择,共有3×3=9种情况,甲、乙两人参加同一兴趣小组共有3种情况,所以甲、乙两人参加同一兴趣小组的概率P==,故选A.2.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( D )(A)(B)(C)(D)解析:设事件“甲或乙被录用”为事件A,则表示甲、乙都未被录用,由古典概型,P()==, 所以P(A)=1-=.3.某一批花生种子,如果每1粒发芽的概率为,那么播下3粒这样的种子恰有2粒发芽的概率是( C )(A)(B)(C)(D)解析:用X表示发芽的粒数,独立重复试验服从二项分布B(3,),P(X=2)=()2()1=.4.已知随机变量ξ服从正态分布N(2,1),若P(ξ>3)=0.023,则P(1≤ξ≤3)等于( D )(A)0.046 (B)0.623 (C)0.977 (D)0.954解析:因为ξ~N(2,1),P(ξ>3)=0.023,所以由正态分布的对称性可知P(1≤ξ≤3)=1-2P(ξ>3)=1-2×0.023=0.954,所以选D.5. 如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( A )(A)1- (B)-1 (C)2-(D)解析:依题意,有信号的区域面积为×2=,矩形的面积为2,所求概率为P==1-.则E(6X+8)的值为( B )(A)13.2 (B)21.2 (C)20.2 (D)22.2解析:由随机变量的期望公式可得E(X)=1×0.2+2×0.4+3×0.4=2.2,E(6X+8)=6E(X)+8=6×2.2+8=21.2.7. 如图,△ABC和△DEF都是圆内接正三角形,且BC∥EF,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在△ABC内”,用B表示事件“豆子落在△DEF内”,则P(B|A)等于( D )(A)(B)(C)(D)解析:如图,作三条辅助线,根据已知条件得这些小三角形都全等,所以P(B|A)===.故选D.8.(2015湖北卷)设X~N(μ1,),Y~N(μ2,),这两个正态分布密度曲线如图所示.下列结论中正确的是( C )(A)P(Y≥μ2)≥P(Y≥μ1)(B)P(X≤σ2)≤P(X≤σ1)(C)对任意正数t,P(X≤t)≥P(Y≤t)(D)对任意正数t,P(X≥t)≥P(Y≥t)解析:由题图可知μ1<0<μ2,σ1<σ2,所以P(Y≥μ2)<P(Y≥μ1),故A错;P(X≤σ2)>P(X≤σ1),故B错;当t为任意正数时,由题图可知P(X≤t)≥P(Y≤t),而P(X≤t)=1-P(X≥t),P(Y≤t)=1-P(Y≥t),所以P(X≥t)≤P(Y≥t),故C正确,D错.9.如果X~B(20,p),当p=且P(X=k)取得最大值时,k的值为( C )(A)8 (B)9 (C)10 (D)11解析:当p=时,P(X=k)=()k·()20-k=·()20,显然当k=10时,P(X=k)取得最大值.10.已知袋中装有标号为1,2,3的三个小球,从中任取一个小球(取后放回),连取三次,则取到的小球的最大标号为3的概率为( B )(A)(B)(C)(D)解析:P==,故选B.11. 如图,在网格状小地图中,一机器人从A(0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是,向右的概率是,问6秒后到达B(4,2)点的概率为( D )(A)(B)(C)(D)解析:根据题意,从A到B相当于6次试验中4次向右走,2次向上走,因此所求概率为()2·()4=,故选D.12.若a,b∈(0,2),则函数f(x)=ax3+2x2+4bx+1存在极值的概率为( A )(A)(B)(C) (D)解析:f′(x)=ax2+4x+4b,函数f(x)=ax3+2x2+4bx+1存在极值,则Δ=42-4a×4b>0,所以ab<1,又=2ln 2,所以函数有极值的概率为=.二、填空题13.(2015广东卷)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=.答案:14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.解析:十个数中任取七个不同的数共有种情况,七个数的中位数为6,那么6只有处在中间位置,有种情况,于是所求概率P==.答案:15.(2014浙江卷)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)= . 解析:设P(ξ=1)=x,P(ξ=2)=y,则得表格如下:由分布列的性质得+x+y=1,①又E(ξ)=0×+1×x+2y=1,②①、②联立,解得x=且y=.所以D(ξ)=(1-0)2×+(1-1)2×+(1-2)2×=.答案:16.甲、乙等5名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.设随机变量X为这5名志愿者中参加A岗位服务的人数,则X的数学期望为. 解析:根据题意,5名志愿者被随机分配到A,B,C,D四个不同岗位,每个岗位至少一人,共有=240种,而X=1,2,则P(X=1)===,P(X=2)===,故E(X)=1×+2×=.答案:三、解答题17.(2014湖北卷)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?解:(1)依题意,p1=P(40<X<80)==0.2,p2=P(80≤X≤120)==0.7,p3=P(X>120)==0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为p=(1-p3)4+(1-p3)3p3=()4+4×()3×=0.9477.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此P(Y=10000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下所以,E(Y)=4200×0.2+10000×0.8=8840.③安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,3综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.解:(1)当需求量n<16时,卖出n枝,剩(16-n)枝,当需求量n≥16时,16枝全卖出.所以y=(n∈N).(2)由题意知,日需求量n与对应概率如表①由题意知X=60,70,80,且P(X=60)=P(n=14)=0.1,P(X=70)=P(n=15)=0.2,P(X=80)=P(n≥16)=0.7,所以X的分布列为X的数学期望E(X)=60×0.1+70×0.2+80×0.7=76.X的方差D(X)=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.②答案一:花店一天应购进16枝.当花店一天购进17枝玫瑰花时,用Y表示当天的利润(单位:元),则Y=55,65,75,85.P(Y=55)=P(n=14)=0.1,P(Y=65)=P(n=15)=0.2,P(Y=75)=P(n=16)=0.16,P(Y=85)=P(n≥17)=0.54.所以E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4,D(Y)=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04. 综上知D(X)<D(Y)且相差较大,虽然E(X)<E(Y)但相差不大,所以一天购进16枝玫瑰花时利润波动相对较小,且平均获利基本相同,故花店一天应购进16枝玫瑰花.答案二:花店一天应购进17枝玫瑰花,理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元)则Y的分布列为Y的期望为E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4.可知E(Y)>E(X),故购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润,故花店一天应购进17枝玫瑰花.互斥事件与相互独立事件的概率训练提示:(1)注意相互独立事件与互斥事件的区别.(2)独立重复试验中概率的计算.1.甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.6,0.6,0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后,至少有一人被该高校预录取的概率.解:(1)分别记“甲、乙、丙三个同学笔试合格”为事件A1,A2,A3;E表示事件“恰有一人通过笔试”,则P(E)=P(A1)+P(A2)+P(A3)=0.6×0.5×0.6+0.4×0.5×0.6+0.4×0.5×0.4=0.38.即恰有一人通过笔试的概率是0.38.(2)分别记“甲、乙、丙三个同学被该高校预录取”为事件A,B,C,则P(A)=0.6×0.6=0.36,P(B)=0.5×0.6=0.3,P(C)=0.4×0.75=0.3.事件F表示“甲、乙、丙三个同学中至少有一人被该高校预录取”.则表示甲、乙、丙三个同学均没有被该高校预录取,即=,于是P(F)=1-P()=1-P()P()P()=1-0.64×0.7×0.7=0.6864.2.某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6,击中目标时,击中任何一部分的概率与其面积成正比.(1)设X表示目标被击中的次数,求X的分布列;(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).解:(1)依题意知X~B(4,),P(X=0)=()0(1-)4=,P(X=1)=()1(1-)3=,P(X=2)=()2(1-)2=,P(X=3)=()3(1-)1=,P(X=4)=()4(1-)0=.所以X的分布列为(2)设A i表示事件“第一次击中目标时,击中第i部分”i=1,2.B i表示事件“第二次击中目标时,击中第i部分”,i=1,2.依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,A=A1∪B1∪A1B1∪A2B2,所求的概率P(A)=P(A1)+P(B1)+P(A1B1)+P(A2B2)=P(A1)P()+P()P(B1)+P(A1)P(B1)+P(A2)P(B2)=0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.28.离散型随机变量的均值与方差训练提示:求离散型随机变量均值与方差的基本方法(1)已知随机变量的分布列求它的均值、方差,按定义求解.(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差,可直接用X的均值、方差的性质求解.(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解.3.(2015重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.(2)X的所有可能值为0,1,2,且P(X=0)==,P(X=1)==,P(X=2)==.故E(X)=0×+1×+2×=(个).4.柴静的《穹顶之下》发布后,各地口罩市场受其影响生意火爆,A市场虽然雾霾现象不太严重,但经抽样有25%的市民表示会购买口罩,现将频率视为概率,解决下列问题:(1)从该市市民中随机抽取3位,求至少有一位市民会购买口罩的概率;(2)从该市市民中随机抽取4位,X表示愿意购买口罩的市民人数,求X的分布列及数学期望. 解:(1)依题意可得,任意抽取一位市民会购买口罩的概率为,从而任意抽取一位市民不会购买口罩的概率为.设“至少有一位市民会购买口罩”为事件A,则P(A)=1-()3=1-=,故至少有一位市民会购买口罩的概率为.(2)X的所有可能取值为0,1,2,3,4.P(X=0)=()4=,P(X=1)=()3×==,P(X=2)=()2×()2==,P(X=3)=()1×()3==,P(X=4)=()4=,E(X)=0×+1×+2×+3×+4×=1,或因为X~B(4,),所以E(X)=np=1.5. 现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C 槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的分布列及数学期望.解:(1)由题意可知投一次小球,落入B槽的概率为()2+()2=.(2)投一次小球,落入A槽的概率为()2=,落入B槽的概率为,落入C槽的概率为()2=.X的所有可能取值为0,5,10,P(X=0)=()3=,P(X=5)=+×+()2×=,P(X=10)=+×+×()2=,E(X)=0×+5×+10×=.日最高气温不高于32 ℃的频率为0.9.(2)若视频率为概率,求六月份西瓜日销售额的期望和方差;(3)在日最高气温不高于32 ℃时,求日销售额不低于5千元的概率. 解:(1)由已知得P(t≤32)=0.9,所以P(t>32)=1-P(t≤32)=0.1,所以Z=30×0.1=3,Y=30-(6+12+3)=9.(2)P(t≤22)==0.2,P(22<t≤28)==0.4,P(28<t≤32)==0.3,P(t>32)==0.1,所以六月份西瓜日销售额X的分布列为所以E(X)=2×0.2+5×0.4+6×0.3+8×0.1=5,D(X)=(2-5)2×0.2+(5-5)2×0.4+(6-5)2×0.3+(8-5)2×0.1=3. (3)因为P(t≤32)=0.9,P(22<t≤32)=0.4+0.3=0.7,所以由条件概率得P(X≥5|t≤32)=P(22<t≤32|t≤32)===.。

2021_2022学年新教材高中数学第7章概率1

2021_2022学年新教材高中数学第7章概率1
解 事件A的含义为:连续抛掷一枚骰子2次,第二次投出的点数为1; 事件B的含义为:连续抛掷一枚骰子2次,第二次投出的点数比第一 次投的大1; 事件C的含义为:连续抛掷一枚骰子2次,两次投出的点数之和为5.
1.随机事件:一般地,把试验E的样本空间Ω的子集称为E的随机事件,简 称事件.常用A,B,C等表示. 2.必然事件:样本空间Ω是其自身的子集,因此Ω也是一个事件;又因为 它包含所有的样本点,每次试验无论哪个样本点ω出现,Ω都必然发生, 因此称Ω为必然事件. 3.不可能事件:空集Φ也是Ω的一个子集,可以看作一个事件;由于它不 包含任何样本点,它在每次试验中都不会发生,故称⌀为不可能事件.
【解析】选 A.根据随机事件、必然事件、不可能事 件的定义可知,①为不可能事件,②为随机事件, ③为必然事件.
3.抛掷3枚硬币,试验的样本点用(x,y,z)表示,集合M表示“既有正面朝上,也有
反面朝上”,则M=
.
【解析】试验的样本空间为Ω={(正,正,正),(正,正,反),(正,反,正),(反,正,
【归纳总结】
样本空间:一般地,将试验E的所有可能结果组成的集 合称为试验E的样本空间,记作Ω. 样本点:样本空间Ω的元素,即试验E的每种可能结果, 称为试验E的样本点,记作ω . 有限样本空间:如果样本空间Ω的样本点的个数是有限 的,那么称样本空间Ω为有限样本空间. 列举法:把一个试验的所有可能的结果一一列举出来的 方法叫作列举法.
1.理解确定性现象、随机现象的概念.2.结合具体实例,理解样本点 和有限样本空间的含义.3.掌握试验的样本空间的写法.4.理解随机 事件与样本点的关系.
1.通过对确定性现象、随机现象、样本空间等概念的学习,培养数学 抽象素养.2.通过利用穷举法写出试验的样本空间,培养数学建模素 养.3.通过对随机、必然、不可能事件等概念的学习,培养数学抽象 素养.

小学四年级数学下册知识点:概率

小学四年级数学下册知识点:概率

小学四年级数学下册知识点:概率
1. 概率的介绍
- 概率是指事件发生的可能性大小。

- 用数字表示概率,范围从0到1,0表示不可能发生,1表示
一定会发生。

- 概率可以通过实验、统计和推理等方法进行计算。

2. 实验与事件
- 实验是指对某个问题进行观察、测量或测试的过程。

- 在一个实验中,可能出现多个不同的结果或事件。

- 事件是指实验中我们感兴趣的某个结果或发生的情况。

3. 等可能事件
- 等可能事件是指在实验中所有可能结果发生的概率是相等的。

- 例如,抛一枚公平的硬币正面朝上和反面朝上的概率都是1/2。

4. 互斥事件
- 互斥事件是指两个事件不能同时发生的情况。

- 例如,抛一枚公平的硬币正面朝上和反面朝上就是互斥事件。

5. 概率的计算
- 如果事件的发生次数是有限的,概率可以用事件发生的次数除以总实验次数来计算。

- 例如,如果我们抛一枚公平的硬币10次,其中正面朝上的次数是4次,那么正面朝上的概率就是4/10 = 0.4。

- 对于等可能事件,概率还可以用事件发生的次数除以总事件数来计算。

6. 事件的组合
- 多个事件可以组合在一起形成更复杂的事件。

- 对于互斥事件的组合,两个事件同时发生的概率为0。

- 对于非互斥事件的组合,可以通过概率的计算规则来计算。

以上就是小学四年级数学下册中关于概率的基本知识点。

【中考12年】海南省2001-2012年中考数学试题分类解析 专题7 统计与概率

【中考12年】海南省2001-2012年中考数学试题分类解析 专题7 统计与概率

[中考12年]某某省2001-2012年中考数学试题分类解析专题7:统计与概率一、选择题1. (2001年某某省3分)甲、乙两人3次都同时到某个体米店买米,甲每次买m (m 为正整数)千克米,乙每次买米用去2m 元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元.那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是【 】.A .甲比乙便宜B .乙比甲便宜C .甲与乙相同D .由m 的值确定2. (2002年某某省3分)某少年军校准备从甲,乙,丙,三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是x x x 8.3===乙甲丙,方差分别是222S 1.5S 2.8S 3.2===乙甲丙,,.那么根据以上提供的信息,你认为应该推荐参加全市射击比赛的同学是【 】A .甲B .乙C .丙D .不能确定3. (2003年某某省2分)如图是某报纸公布的我国“九五”期间国内生产总值的统计图.那么“九五”期间我国国内生产总值平均每年比上一年增长【】4. (2004年某某某某课标2分)从一副扑克牌中抽出5X红桃,4X梅花,3X黑桃放在一起洗匀后,从中一次随机抽出10X,恰好红桃、梅花、黑桃3种牌都抽到,这件事情【】A、可能发生B、不可能发生C、很有可能发生D、必然发生5. (2004年某某某某课标2分)下表是两个商场 1至 6 月份销售“椰树牌天然椰子汁”的情况(单位:箱)1月2月3月4月5月6月甲商场450 440 480 420 576 550乙商场480 440 470 490 520 516根据以上信息可知【】A、甲比乙的月平均销售量大B、甲比乙的月平均销售量小C、甲比乙的销售量稳定D、乙比甲的销售量稳定6. (2004年某某某某课标2分)第五次全国人口普查资料显示,2000年我省总人口为786.75万,图中表示我省2000年接受初中教育这一类别的数据丢失了,那么结合图某某息,可推知2000年我省接受初中教育的人数为【】【答案】B。

【精品】专题7从古典概率论到现代概率论

【精品】专题7从古典概率论到现代概率论


拉普拉斯建立的古典概率理论的逻辑 基础十分脆弱,对于事件的概率定义 及运算都要用到“等可能性”概念, 而在一个具体问题上还需要考察有多 少等可能的情形。贝特朗悖论的出现 表明了直观的、经验性的概率概念的 本质缺陷,对建立概率论的严密逻辑 基础提出了要求。
四、概率论的公理化~~现代概率时期 (20世纪)
泊松 (Poisson,1781——1840)
《关于刑事案件和民事案件审判概率 的研究》 (1837) 引入泊松分布 推广大数定律

彼得堡学派(切比雪夫 、马 尔科夫 、李雅普诺夫 )

切比雪夫 (Tschebyscheff ,18211894):在一系列研究中切比雪夫首先 引入并提倡使用的随机变量概念,后来 成为概率论与数理统计中最重要的概念。 建立了切比雪夫不等式,证明了泊松形 式大数定律,建立了有关独立随机变量 序列的大数定律并对随机变量和收敛到 正态分布的条件,即中心极限定理进行 讨论。
惠更斯 (C.Huygens ,1629~1695,荷 兰)
—— 第一篇关于概率论的正式论文 数学期望:如果 p表示一个人获 得一定金额 s的概率,则 sp 称 为他的数学期望。
《论赌博中的推理》(1657)
雅各· 伯努利(Jacob Bernoulli , 1654~1705,瑞士)
《猜度术》(出版于1713年)——“把概率论建立在稳 固数学基础上的首次认真的尝试” : ①关于惠更斯《论赌博中的推理》的一个精彩评注 ②对排列组合理论的深入研究 ③将排列组合理论运用于概率论 ④概率论在法律和经济等问题上的应用 ⑤伯努利大数定律 (大数定律的最早形式),这是占据《猜 度术》全书中心位置的结果,被称为“主命题”,是概 率论中的第一个极限定理。雅各· 伯努利考虑的是最简单 的情形,即在整个试验序列中,某个给定事件出现的概 率始终保持为常数

文科数学高考知识点概率

文科数学高考知识点概率

文科数学高考知识点概率概率是数学中的一个重要分支,也是文科数学高考中的一个重要考点。

概率可以说是一种描述随机性的工具,它可以帮助我们分析和预测各种事件的发生可能性。

在高考中,概率常常和统计一起出现,共同构成了数学的一大门类。

一、概率的基本概念在学习概率之前,我们首先需要了解一些基本的概念。

概率的基本单位是事件,而事件是指某件事情发生或者不发生。

在概率的计算中,我们通常使用事件发生的可能性大小来描述概率的大小。

概率的取值范围是0到1之间,其中0表示不可能事件,而1表示必然事件。

二、概率的计算方法1.古典概型古典概型是最简单的概率计算方法之一。

在古典概型中,我们假设每个样本点出现的机会是相等的,然后通过计算有利事件出现的样本点数目与总样本点数目的比值来计算概率。

2.频率概率频率概率是根据事件发生的频率来计算概率。

通过大量的实验或观察,我们可以统计出事件发生的次数,然后计算事件发生的频率作为概率的近似值。

3.几何概型在几何概型中,我们通常是通过计算几何图形的面积或者长度来求解概率。

几何概型常常应用在正方形、圆形、三角形等几何图形的计算中。

4.条件概率条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。

条件概率的计算对于解决一些实际问题非常有用,它能够帮助我们预测在特定条件下事件发生的可能性。

5.全概率全概率是利用分区思想来计算概率的一种方法。

通过将一个事件分解成若干个互斥且穷尽的事件,然后计算各个事件发生的概率并相加,就可以得到整个事件发生的概率。

三、概率的应用概率在现实生活中有着广泛的应用。

在商业领域中,概率可以用于市场调研、销售预测等方面。

在医学领域中,概率可以帮助医生分析疾病的风险和预后。

在金融领域中,概率可以用于投资决策和风险控制。

在运输和物流领域中,概率可以帮助我们进行货物运输和交通流量的规划。

总之,概率在各个领域中都发挥着重要的作用。

结语概率作为一门重要的数学学科,是文科数学高考中的重要考点之一。

天津市2001-2012年中考数学试题分类解析 专题7 统计与概率

天津市2001-2012年中考数学试题分类解析 专题7 统计与概率

2001-2012年天津市中考数学试题分类解析汇编(12专题)专题7:统计与概率一、选择题1. (2001天津市3分)对于数据:2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别是【 】 A .4,4,6 B .4,6,4.5 C .4,4,4.5 D .5,6,4.5 【答案】C 。

【考点】众数,中位数,平均数。

【分析】利用众数,中位数与平均数的意义求解:众数为4;中位数为(4+4)÷2=4;平均数为(2+4+4+5+3+9+4+5+1+8)÷10=4.5。

故选C 。

2.(天津市2002年3分)在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83.则这组数据的众数、平均数与中位数分别为【 】 (A )81,82,81 (B )81,81,76.5 (C )83,81,77 (D )81,81,81 【答案】D 。

【考点】众数,中位数,中位数。

【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个。

在这一组数据中81是出现次数最多的,故众数是81。

平均数是指在一组数据中所有数据之和再除以数据的个数。

平均数为(85+81+89+81+72+82+77+81+79+83)÷10=81。

中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。

由此将这组数据重新排序为72,77,79,81,81,81,82,83,85,89,处于中间位置的那个数是81、81∴中位数为:(81+81)÷2=81。

故选D 。

3.(天津市2005年3分) 已知甲、乙两组数据的平均数相等,若甲组数据的方差S 0.055=甲,乙组 数据的方差S 0.105=乙,则【 】(A )甲组数据比乙组数据波动大 (B )乙组数据比甲组数据波动大(C )甲组数据与乙组数据的波动一样大 (D )甲、乙两组数据的数据波动不能比较 【答案】B 。

新教材高中数学第七章概率本章总结提升课件北师大版必修第一册

新教材高中数学第七章概率本章总结提升课件北师大版必修第一册
射击10发子弹也不可能全中,其中必有一发不中,试判断这种认识正确与否.
解射手甲射击一次,中靶是随机事件,他射击10次可以看作是重复做了10次
试验,而每次试验的结果都是随机的,所以10次的结果也是随机的,这10次
射击可能一次也不中,也可能中一次、二次、…、甚至十次都中.虽然中靶
是随机事件,但却具有一定的规律性,概率为0.9,是说在多次的试验中,中靶
规律方法 相互独立事件概率的求法
(1)首先要搞清事件间的关系(是否彼此互斥、是否相互独立、是否对立),
正确区分“互斥事件”与“对立事件”.当且仅当事件A和事件B相互独立时,才
有P(AB)=P(A)P(B).
(2)某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减
少运算量,提高准确率.要注意“至多”“至少”等题型的转化.
(1)若a,b都是从集合{1,2,3}中任取的一个数,求函数f(x)在(-∞,-1)上单调递
减的概率;
(2)若a是从集合{1,2,3}中任取的一个数,b是从集合{1,2,3,4}中任取的一个
数,求方程f(x)=0在区间(-∞,-3)上有实数根的概率.
解(1)记“函数f(x)在区间(-∞,-1)上单调递减”为事件A.
(1)因为A9与A10互斥,所以P(A9∪A10)=P(A9)+P(A10)=0.28+0.32=0.60.
(2)记“至少命中8环”为事件B,B=A8+A9+A10,又A8,A9,A10两两互斥,
所以P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.
(3)记“命中不足8环”为事件C,则事件C与事件B是对立事件,所以

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。

第9章统计与概率第7节 条件概率与全概率公式 课件 高考数学一轮复习

第9章统计与概率第7节 条件概率与全概率公式 课件 高考数学一轮复习
【解析】 P=35××24=130.
【答案】
3 10
内容索引
思考1►►► 如何判定条件概率?
内容索引
当题目中涉及“在什么条件下(前提下)”等字眼时,一般为条件概 率;或已知事件的发生影响了所求事件的概率时,一般也为条件概率.
内容索引
题组二 条件概率的计算 3 现有5个乒乓球,其中3个新的,2个旧的,每次取1个,不
则 P(A)=35,P( A )=25,P(B|A)=0.9,
P( B |A)=0.1,P(B| A )=0.4,P( B | A )=0.6.
(1) 由全概率公式,得 P(B)=P(A)P(B|A)+P( A )P(B| A )=35×0.9+25
×0.4=0.7.
内容索引
(2)
由题意,得
P(
A
1234
内容索引
A 小区的概率是26400=14,故 B 正确;对于 C,甲、乙两位同学被安排在同 一小区,共有 A44=24(种)不同的安排方法,所以甲、乙两位同学被安排在 同一小区的概率为22440=110,故 C 错误;对于 D,甲同学被安排到 A 小区 有 60 种安排方法,在甲同学被安排到 A 小区支教的前提下,A 小区有两 名同学的安排方法有 24 种,所以在甲同学被安排到 A 小区支教的前提下, A 小区有两名同学的概率是2640=25,故 D 正确.故选 ABD.
内容索引
(3) 设本年度所交保费为随机变量X.
X 0.85a
a
1.25a
1.5a
1.75a
2a
P
0.30
0.15
0.20
0.20
0.10
0.05
平 均 保 费 E(X) = 0.85a×0.30 + 0.15a + 1.25a×0.20 + 1.5a×0.20 +
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年数学高考试题分类解析【考点7】概率一、选择题1.(浙江理9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A.15 B.25C.35D45【答案】B2.(四川理1)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5)4 [19.5,23.5)9 [23.5,27.5)18 [27.5,31.5)1l [31.5,35.5)12 [35.5.39.5)7 [39.5,43.5)3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A.16 B.13C.12D.23【答案】B【解析】从31.5到43.5共有22,所以221663P==。

3.(陕西理10)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是A.136B.19C.536D.16【答案】D4.(全国新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)13(B)12(C)23(D)34【答案】A5.(辽宁理5)从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=(A)18(B)14(C)25(D)12【答案】B6.(湖北理5)已知随机变量ξ服从正态分布()22N ,a,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B .0.4C .0.3D .0.2【答案】C7.(湖北理7)如图,用K 、1A 、2A 三类不同的元件连接成一个系统。

当K 正常工作且1A 、2A 至少有一个正常工作时,系统正常工作,已知K 、1A 、2A 正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A .0.960B .0.864C .0.720D .0.576【答案】B8.(广东理6)甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34【答案】D9.(福建理4)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12 D .23【答案】C 二、填空题10.(湖北理12)在30瓶饮料中,有3瓶已过了保质期。

从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期饮料的概率为 。

(结果用最简分数表示)【答案】2814511.(福建理13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。

若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。

【答案】3512.(浙江理15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙丙公司面试的概率为p ,且三个公司是否让其面试是相互独立的。

记X 为该毕业生得到面试得公司个数。

若1(0)12P X ==,则随机变量X 的数学期望()E X =【答案】5313.(湖南理15)如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。

将一颗豆子随 机地扔到该图内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事 件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )= _____________; (2)P (B|A )= .【答案】(1)21,(2)4π14.(上海理9)马老师从课本上抄录一个随机变量ε的概率分布律如下表 请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。

据此,小牛给出了正确答案E ε= 。

【答案】215.(重庆理13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率__________【答案】113216.(上海理12)随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。

【答案】0.98517.(江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为?!?321P(ε=x )x【答案】131618.(江苏5)5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______【答案】31三、解答题19.后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。

(Ⅰ)求当天商品不进货的概率;(Ⅱ)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期型。

解(I )P (“当天商品不进货”)P =(“当天商品销售量为0件”)P +(“当天商品销售量为1件”).103205201=+=(Ⅱ)由题意知,X 的可能取值为2,3.P X P ==)2((“当天商品销售量为1件”);41205==P X P ==)3((“当天商品销售量为0件”)P +(“当天商品销售量为2件”)P +(“当天商品销售量为3件”).43205209201=++=故X 的分布列为X 的数学期望为.411433412=⨯+⨯=EX20.(安徽理20)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。

现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,,p p p 123,假设,,p p p 123互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。

若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,,q q q 123,其中,,q q q 123是,,p p p 123的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)E X ; (Ⅲ)假定p p p 1231>>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。

解:本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识.解:(I )无论以怎样的顺序派出人员,任务不能被完成的概率都是)1)(1)(1(321p p p ---,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于.)1)(1)(1(1321133221321321p p p p p p p p p p p p p p p +---++=----(II )当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是.23)1)(1(3)1(2212121211q q q q q q q q q EX +--=--+-+=(III )(方法一)由(II )的结论知,当以甲最先、乙次之、丙最后的顺序派人时, .232121p p p p EX +--=根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值. 下面证明:对于321,,p p p 的任意排列321,,q q q ,都有≥+--212123q q q q ,232121p p p p +--……………………(*)事实上,)23()23(21212121p p p p q q q q +---+--=∆.0)]())[(1())((1())(2()()()()(2)()(221211221112221211221121212211≥+-+-≥--+--=-----+-=+--+-=q q p p q q p q q p p q p q p q p q p q p q q p p q p q p即(*)成立.(方法二)(i )可将(II )中所求的EX 改写为,)(312121q q q q q -++-若交换前两人的派出顺序,则变为,)(312121q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减小均值.(ii )也可将(II )中所求的EX 改写为212123q q q q +--,或交换后两人的派出顺序,则变为313123q q q q +--.由此可见,若保持第一个派出的人选不变,当23q q >时,交换后两人的派出顺序也可减小均值.序综合(i )(ii )可知,当),,(),,(321321p p p q q q =时,EX 达到最小. 即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.21.(北京理17)以下茎叶图记录了甲、乙两组个四名同学的植树棵树。

乙组记录中有一个数据模糊,无法确认,在图中以X 表示。

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望。

(注:方差()()()2222121n s x xxxx xn ⎡⎤=-+-++-⎢⎥⎣⎦ ,其中x 为1x ,2x ,…… n x 的平均数)解:(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为;435410988=+++=x方差为.1611])43510()4359()4358()4358[(4122222=-+-+-+-=s(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。

分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P (Y=17)=.81162=同理可得;41)18(==Y P ;41)19(==Y P .81)21(;41)20(====Y P Y PEY=17×P (Y=17)+18×P (Y=18)+19×P (Y=19)+20×P (Y=20)+21×P (Y=21)=17×81+18×41+19×41+20×41+21×81=1922.(福建理19)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,……,8,其中X ≥5为标准A ,X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 (I )已知甲厂产品的等级系数X1的概率分布列如下所示:且(II )为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 3 46 3 47 5 3 48 5 3 8 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.(III )在(I )、(II )的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.解:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。

相关文档
最新文档