不同雷诺数下的圆柱绕流数值模拟研究
不同雷诺数下的圆柱绕流数值模拟研究

不同雷诺数下的圆柱绕流数值模拟研究引言:圆柱绕流是流体力学领域中一个经典的、被广泛研究的问题。
在众多的工业应用中,圆柱绕流的研究对于风力发电机组的设计优化、管道内部液体运动的控制等方面具有重要实际意义。
雷诺数是描述流体流动的一个无量纲参数,它与流体的流速、流体的粘性有关。
本文将对不同雷诺数下的圆柱绕流进行数值模拟研究。
方法:数值模拟是一种有效的研究流体力学问题的方法,它能够通过计算机模拟得到流体的速度场、压力场等关键参数,从而进一步分析流体的特性。
在本文中,我们将使用计算流体力学方法进行圆柱绕流的数值模拟研究。
结果与讨论:我们选取了不同雷诺数的圆柱绕流作为研究对象,分别为200、400、600、800和1000,通过数值模拟得到了不同雷诺数下的圆柱绕流的速度场和压力场等关键参数。
首先,我们分析了速度场的分布。
通过数值模拟可以得到圆柱绕流过程中流体速度的分布情况。
随着雷诺数的增加,流体速度场呈现出不同的特征。
在雷诺数较低的情况下,流体绕圆柱流动的速度场分布较为简单,流速主要集中在圆柱前部和尾部。
随着雷诺数的增加,流体速度场呈现出更复杂的结构,流速分布更加均匀。
其次,我们研究了压力场的分布。
通过数值模拟可以得到圆柱绕流过程中流体压力的分布情况。
在不同雷诺数下,圆柱周围存在不同的压力区域。
当雷诺数较低时,圆柱前后表面存在较大的压差,压力分布较为不均匀。
而当雷诺数增加时,压力分布更加均匀,圆柱表面的压力变化较小。
最后,我们研究了绕流过程中的阻力情况。
通过数值模拟得到了不同雷诺数下圆柱绕流过程中的阻力系数。
我们发现,随着雷诺数的增加,阻力系数逐渐增大。
这是因为当雷诺数较低时,流体绕圆柱流动的速度较低,阻力较小;而当雷诺数增加时,流体流动速度较高,阻力也逐渐增大。
结论:本文通过数值模拟的方式研究了不同雷诺数下的圆柱绕流问题。
通过分析速度场、压力场和阻力系数等关键参数,我们得出了以下结论:随着雷诺数的增加,流体速度场更加复杂,流速分布更加均匀;压力场分布更加均匀,圆柱表面的压力变化较小;阻力系数随着雷诺数的增大而增加。
不同雷诺数下倾斜圆柱绕流三维数值模拟研究

不同雷诺数下倾斜圆柱绕流三维数值模拟研究近年来,研究倾斜圆柱绕流特性引起了学界的广泛关注。
圆柱绕流可分为水平和垂直两类,其中倾斜圆柱绕流为一种特殊的二维绕流状态,它在一定雷诺数范围内具有更复杂的流场结构特性,并且受水文物理过程的影响更为显著,研究其特性更为重要。
本研究使用时间和空间设置,以带边界流作为边界条件,利用基于六边形网格的数值模拟方法研究不同雷诺数下的倾斜圆柱绕流特性。
实验参数包括:倾斜角度α=20°,Re=1000 ~ 10000,向心轴比例范围为0.5 ~ 2.0,圆柱入口处外提升速度Um=0.3 ~ 0.8,及空气密度ρ=1。
有鉴于此,本研究根据不同雷诺数和向心轴比例,计算出倾斜圆柱绕流特性。
首先,主要考察不同雷诺数Re下倾斜圆柱绕流的流态特性,包括在不同位置的压力梯度,流场动量,温度梯度,流态结构以及涡度等信息。
其次,重点考察不同向心轴比例和轴向外提升速度下倾斜圆柱绕流的流态特性,包括压降,动量,温度梯度,以及不同方向的涡度分布。
结果表明,不同的雷诺数和向心轴比例会对倾斜圆柱绕流的流动特性产生明显不同的影响。
随着雷诺数的增大,压力梯度增大,动量梯度减小,温度梯度增大,涡度明显减少,圆柱内部的流场会变得更加复杂,气泡变小,而且其会从一种混合流场演变为一种逆流的流场结构。
另外,随着向心轴比例的增加,轴向外提升速度的变化会出现显著影响,但随着向心轴比例的增加,压力梯度会逐渐减小,动量梯度增大,温度梯度变化不大,涡度分布也会有较大变化。
研究结果表明,在不同雷诺数和向心轴比例范围内,倾斜圆柱绕流的流动特性会发生明显的变化。
本研究对于进一步理解流动特性和确定流动行为有重要的理论意义,同时也为实际工程的设计提供了参考。
总的来说,本研究通过应用数值模拟方法研究不同雷诺数下倾斜圆柱绕流特性,得出上述结论。
未来可以将此模拟实验方法应用于建立更复杂物理系统的研究,以更深入地理解绕流特性和其流动性质。
不同雷诺数下方柱绕流的数值模拟

2
计算结果与讨论
分别对雷诺数为 100, 1 103 , 1 104 和 2 2
3 4
计算得到了方柱上的阻力系数和升力系数. 阻力系数 C D 与升力系数 C L 的定义分别为: CD = FD , 1 L 2 U2 2 CL = FL 1 L 2 U2 2 ( 12)
104 时的情况进行了计算 . 当 Re = 100 时, 直接采 用 N S 方程进行计算 ; 当 Re = 1 10 , 1 10 和 2 2 10 4 时 , 则引入 k 湍流模型进行计算. 下面 给出不同雷诺数下的计算结果 . 图 2 给出了计算得到的涡线图 . 在 4 个不同 的雷诺数下, 都会在柱体的尾部出现规则的旋涡 脱落 , 尾涡交替的甩在方柱上下两侧的壁面上 , 这 就是著名的卡门涡街 . 同时我们可以发现, 方柱后 尾涡的形态会随雷诺 数的变化而产 生一定的变 化. 当雷诺数较低时 ( Re = 100) , 尾涡会拖得比较
[ 6]
图1
计算模型
各边界条件分别为: 入口 : 给定无量纲速度, u = 1, v = 0 . 出口 : 给定无量纲压力 p = 0 , 速度采用 u / x = 0, v / x = 0 . 固壁 : 采用无滑移边界条件, 即 u = 0, v = 0 . 上下边界 : u = 1, v = 0. 不可压缩牛顿流体运动的控制方程 N S 方 程可表示为: ui = 0 xi u i + uj t 式( 2 ) 中 ui = - 1 xj p + xi ui xj xj
[ 4]
得到了绕流的速度场以及柱体上的受力参数. 总 结了方柱后的涡脱落形式和流场的动力学参数随 雷诺数的变化规律 , 并将计算结果与前人的实验 和计算结果进行了对比.
不同雷诺数下圆柱绕流多重分形研究

不同雷诺数下圆柱绕流多重分形研究圆柱绕流是一种常见的流体力学问题,其中水流绕过一个圆柱体时会产生涡流。
雷诺数是衡量流体动态特征的重要参数,它可以用来表示流体的粘性、压力和流速之间的相对关系。
在不同雷诺数下,圆柱绕流的形态可能会有所不同。
在低雷诺数(Re < 40)的情况下,流体的粘性较大,因此圆柱绕流的形态会呈现出较为平滑的涡旋结构。
随着雷诺数的增加,流体的粘性会逐渐减小,圆柱绕流的形态也会逐渐变得复杂。
在雷诺数较高的情况下(Re > 40),圆柱绕流的形态会呈现出多重分形的特征,即流体中出现了多个涡旋结构,这种现象被称为“多重涡旋”。
在研究圆柱绕流多重分形的过程中,通常会使用数值模拟的方法来研究圆柱绕流的动态特征。
常用的数值模拟方法包括有限差分法、有限元法和有限体积法等。
这些方法可以用来求解流体动力学方程,从而研究不同雷诺数下圆柱绕流的形态变化。
在研究圆柱绕流多重分形的过程中,还可以使用实验方法来研究圆柱绕流的形态变化。
例如,可以使用流动可视化的方法来观察圆柱绕流的形态,或者使用绕流量测量仪器来测量绕流的强度。
除了使用数值模拟和实验方法研究圆柱绕流的多重分形之外,还可以使用理论分析的方法来研究这一现象。
例如,
可以使用流体力学的理论模型来分析圆柱绕流的形态变化,或者使用分形理论来研究圆柱绕流的多重分形现象。
总的来说,圆柱绕流多重分形是一个比较复杂的研究课题,需要综合运用数值模拟、实验和理论分析的方法才能全面地研究这一现象。
圆柱绕流的数值模拟解析

圆柱绕流的数值模拟张玉静 20070360204 过控(2)班化工与能源学院摘要:使用计算流体力学软件FLUENT,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为5,20,40,100时的绕流流动,得到流场的流函数等值线图和速度矢量图。
计算结果表明:当雷诺数增加时,流动表现出一系列不同的构造。
当Re=5时,流动不发生分离,其后未形成旋涡,当Re=20,40,100时,流体发生分离,其后形成旋涡,且旋涡随着Re的增大而增大。
利用计算流体力学软件FLUENT可以成功地模拟圆柱绕流问题,反映出流动特性。
关键词:圆柱绕流;FLUENT;雷诺数Abstract:Uniform flow around a mounting cylinder is simulated with the application of FLUENT software while Reynolds number is 5,20,40,100. Stream function and velocity vector distributions are indicated. The results show that a series of construction appears as Reynolds number increases. When Re is 5, Flow separation does not occur, and it does not form vortex . When Re is 20,40,100, Flow separation occurs, and it forms vortex. V ortex increases with the increase of Re. Using computational fluid dynamics software FLUENT can successfully simulate flow around cylindrical, reflect the flow characteristic.Key words:Flow around a circular cylinder;FLUENT;Reynolds number1 圆柱绕流理论分析研究的状况一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟对象。
亚临界雷诺数下圆柱和方柱绕流数值模拟

亚临界雷诺数下圆柱和方柱绕流数值模拟最近,随着大规模流体动力学(LFD)和其他非结构性的方法的发展,数值模拟的重要性和应用也变得越来越广泛。
在绕流过程中,绕流模拟对于准确预测流体动力学行为至关重要。
近年来,圆柱和方柱绕流一直是重要的研究热点,其真实性受到广泛关注。
圆柱和方柱绕流数值模拟,是以相对低的雷诺数Re以及它们相对的相变过程的重要工具。
Re意味着流体动力学的影响,基于Re的亚临界状态共存精确研究流体动力学。
鉴于影响数值模拟精度的数值误差的存在,理论精度和实际应用的完整性和有效性是一个重要的问题。
亚临界状态下的圆柱和方柱绕流模拟,使用分布式交错网格(DMGs),以及完全控制差分过程(FDC),已被广泛应用于当前的数值模拟研究。
在这个过程中,FDC和DMG网格可以用来准确预测流体运动,这些预测可以用来更准确地预测流体动力学参数。
在这项研究中,我们提出了一种圆柱和方柱绕流模拟方法,以及用于仿真过程的FDC/DMG技术。
我们的方法基于亚临界雷诺数(Re),以及针对Re的相变过程。
通过引入非定常非均匀网格(CNG)来改进算法的准确性和实用性。
将计算结果与实验数据进行了比较和分析,以验证该模拟方法的有效性。
本研究的主要结论如下:(1)使用亚临界雷诺数可以准确预测圆柱和方柱绕流的流体动力学参数;(2)带有CNG的FDC/DMG可以更加准确地预测绕流过程中的数值模拟;(3)使用FDC/DMG可以更准确的描述实际流体动力学参数;(4)本研究的方法可以更加准确地预测不同Re下的流体动力学行为。
总的来说,本研究为亚临界雷诺数下圆柱和方柱绕流的模拟提供了一个可行的解决方案,它可以准确预测不同Re下的流体动力学行为。
本研究还提出了一种改进的算法,可以用来更加准确地模拟绕流,提高模拟的真实性和有效性。
通过本研究,我们有望更好地理解数值仿真,并将其用于实际的工程和科学应用中,为后续的更深入的研究提供更多的可能性。
经过本次研究,我们可以得出一个结论:亚临界雷诺数下的圆柱和方柱绕流数值模拟,使用FDC/DMG技术,可以更加准确地预测绕流的流体动力学参数,提高真实性和有效性。
不同雷诺数下的单一圆柱绕流流场分析

不同雷诺数下的单一圆柱绕流流场分析近年来,不同雷诺数下的单一圆柱绕流流场分析已经成为研究动力学流体模型的重要内容之一。
围绕流动学中的单一圆柱,可以清楚地理解某些重要物理现象,研究不同雷诺数下的圆柱绕流流在有助于深入理解流体力学模型。
圆柱绕流流是一种特殊的围绕流,它出现在单一圆柱绕流场中,是一种三维流动状态。
该流动状态由柱体重力中心线作为对称轴,圆柱周围绕流流场作为边界的系统组成。
圆柱绕流流的速度分布可以用极坐标来表示,速度在柱壁方向的分布尤其明显,向外流在壁面的正负变换的速度梯度极大,而向径向的变换则较小。
在不同的雷诺数下,圆柱绕流流的流场特性有所不同。
当雷诺数维持在一定水平时,圆柱绕流流会呈现明显的静态或者稳定态;当雷诺数降低时,圆柱绕流流会出现一定的动态或者湍流态,具有更复杂的特性。
在相同雷诺数下,柱壁或者柱腔附近的流场会出现不同程度的附加流动,其中会有平流和湍流耦合作用,并影响当前的流场分布。
当雷诺数越低,湍流出现的越多,同时圆柱绕流流的特性变化也更为显著。
在低雷诺数下,径向和柱壁上流场的特性更加复杂,湍流比平流更加明显,柱壁处的流场也更加激烈,此时就可以用湍流理论来描述和分析流动特性,而在雷诺数较高的情况下,则可以用线性流体力学理论来描述和分析流场特性。
在数值模拟方面,对于不同雷诺数下的单一圆柱绕流流场来说,可以利用有限体积法(FVM)和有限元法(FEM)来模拟。
FEM是一种基于有限元的数值求解法,可以精确地模拟不同大小的圆柱绕流流场,而FVM则是一种基于格点的数值求解法,可以在空间上给出精确的流场分布,适用于横截面变形不大的圆柱绕流流场。
综上所述,对于单一圆柱绕流流场而言,雷诺数是影响其绕流流场特性的重要参数。
不同雷诺数下,圆柱绕流流场表现出不同的特性,其中最重要的是柱壁处的湍流,以及湍流与平流的耦合作用。
从数值模拟的角度来看,FEM更适用于复杂的圆柱绕流流场,而FVM则适用于较简单的柱体流场。
圆柱绕流的数值模拟研究

圆柱绕流的数值模拟研究圆柱绕流是流体力学中一个重要的问题,早在18th 世纪,物理学家Lagrange开始了对圆柱绕流的理论研究,而后人们又利用计算实验方法和计算机模拟技术,系统的研究了圆柱绕流的流动特性。
本文的目的是从大量的数值模拟实验结果出发,找出圆柱绕流的特性及其对不同参数的响应,从而为圆柱绕流设计提供依据。
首先,本文介绍了圆柱绕流的物理意义,以及数值模拟研究的基本过程。
圆柱绕流是指流经圆柱周围的速度受到围栏的影响,产生的涡流的组合,而且由于涡流的存在,流体的衍射和反射给流体带来了变化。
数值模拟研究是指用计算机对圆柱绕流的涡流组合和流体内部变化进行计算,从而得到流体流动的结果。
接下来,本文重点介绍了圆柱绕流的数值模拟研究,主要采用了基于平面流动计算和极坐标法的独特模拟方法,分析了圆柱绕流的流动特性,结果表明随着围栏尺寸的增大,流动的速度也会变大,而且当围栏受到一定的摩擦力时,流动的速度会受到一定的限制。
而且通过比较不同参数的模拟结果,还发现涡流的组合会受到不同参数的影响,比如粘性系数和温度的影响,这些结果将为圆柱绕流设计提供重要的参考。
其次,本文还对圆柱绕流的结构特性进行了深入的研究,利用可视化技术对不同参数下的绕流结构进行了详细分析,发现在给定围栏尺寸下,涡流的组合会随着温度增加而减少,流体的分布也会发生变化,在围栏尺寸较小时,涡流的组合会改变,流动的速度也会有明显的变化,而且涡流的组合会产生一定的横向分布,这些结果将为圆柱绕流的改善提供重要的参考。
最后,本文还探讨了圆柱绕流在实际应用中的优点,圆柱绕流的特点是改变尺寸和形状容易,节省空间,常用于空调系统的制冷设备或者温度控制的装置,并且由于涡流的产生,圆柱绕流可以改变温度分布,提高空调系统的效率,也可以用于控制汽车的排气。
综上所述,圆柱绕流的物理意义及其特点,以及数值模拟研究的基本过程和步骤,以及圆柱绕流的流动特性和可视化技术,都提供了有力的支持,为圆柱绕流设计提供了重要的科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 01 5在
中
国
水
运
VoI .1 5 Jul Y
No. 7
7月
Ch i n a Wa ter Tr a ns p or t
2 01 5
不 同雷诺数下 的圆柱绕流数值模拟研究
陈 禹,李 强 ,郭廷 凯
( 浙江海洋 学院 船舶与海洋I - 程系 ,浙江 舟 山 3 1 6 0 2 2 ) 摘 要:通过 a b a q u s的 CF D 模 块 ,在水动力作用下 ,对刚性 圆柱 展开了绕流三维仿真计算 ,同时也对 圆柱绕 流
的水动力特性进行了研究 。通过仿真计算得到了漩涡脱落形态、升力系数、 阻力系数 曲线 以及斯特劳哈尔数 ,经过 分析 比较可以看出 ,不同雷诺数情况下圆柱绕流在性质上存在着 比较大 的差异 。结果表 明,随着雷诺数 的增大 ,层 流变为紊 流 ,升力以及阻力系数 的变化 幅度出现 了不稳 定性 ,漩 涡的脱落 形态 也变得 不规则。 关键 词:圆柱 绕流 ;数值模 拟 ;升力 系数 ;阻力系数 ;漩涡 脱落 中图分类号:T H 3 1 1 文献标识码 :A 文章编号:1 0 0 8 - 7 9 7 3( 2 0 1 5 )0 7 — 0 0 8 8 — 0 3
王亚玲等为得到较高雷诺数 时圆柱绕流 的三维特性 , 采
用有限体积 法 , 选取 了 Re = 1 0 。 和 Re =1 0 , 对黏性 不可 压缩 流场条件下 的圆柱绕流展开 了了三维仿真 试验『 6 】 。苏铭德和 康 钦军 选取 Re = 1 0 和 2X 1 0 ,使 用大涡模拟 的方法 ,对 圆
收稿 日期 :2 0 1 5 — 0 5 — 0 3 作者简介 :陈
a
P
式 中:u= ( U, ,
3 . 升 力 和 阻 力 系数
) 为来 流及 垂直方 向的速度矢
量 ,P 为压力 , 为流体 的密度 , 为流体的运动粘性系数。
升力系数和 阻力系数如下 :
禹 ( 1 9 8 9 一 ) ,男 ,浙江海洋学院 ,硕士研究 生。
柱 绕流展开仿真模拟 ,仿真 结果与实验分析基本一致 ,说明
大 涡模 拟方法对流场为 层流或者湍流 的圆柱绕流仿真计 算是 可 行合 理的【 J 。董双岭 ,吴颂平等选取较低雷诺数 Re并进行
圆柱绕流数值模拟 ,发现 涡量等值线与压力等值线 的差 异对
图 1 仿真计算模型
2. 流体 控 制 方程
S t r o u h a l 数 ,并与 以往文 献以及试验结果进行 了对 比。
一
、
数 值模 型
1 . 计 算 模 型
圆柱 绕流一直是一个被广泛研究 的课题 ,均匀流来流条
计 算 参 数 :取 流 体 运 动 粘 性 系 数 = 1 . 0× 1 0 — 6 m / s ( 2 o o c) 。 仿真计算模型如图 1所示。 流体流动方向是 自左 向右, 流场最左边的平面为入流处 ( i n l e t ) ,最右边的平面为 自由出流
本文采用的是粘性不可压缩 Na v i e r — St o k e s的方程 ,
流场域 的连续和动量方程如下 :
V u : 0
O ut - ( ” v ) “:一
—
涡量等值线形 状的变化存在 影响 _ 8 l 。姚熊 亮 ,方媛嫒等进行
了高雷诺数情况下 的圆柱 绕流的数值模拟 ,分析得 到尾 流的
( 1 ) + ” ( 2 )
脱落沿柱体 展像 出现 了显 著 的扭 曲,三位效果突 出【 9 l 。顾解 忡和 黄祥 鹿 采 用 S t a n s b y 等 发 展 了 的 随 机 点 涡 法 对 R e = 2 , 0 0 0 下 的圆柱绕流进行 了数值模拟 ,将 结果与实验对 比基本相符[ 1 o l 。R o s h k o通过进行圆柱绕流的相关实验得到 漩涡发放形态与雷诺数存在着关系【 】 “ 。
1 4 - s ]
。
表面设置为速度为 0的剪切流动。上下表面 ( s y mme t r y )沿
柱 向速度为 0 。三维矩形流场计算区域为 1 6 D X 3 3 D ( D 为圆 柱直径) ,模型上游来流区域为 8 D,下游尾流区为 2 5 D,离上 下边界各为 8 D。三维计算模型展 向长度为 4 D。
处 ( o u t l e t ) 。上下边界为只有流动条件 ( f a r i f e l d ) ,固定 圆柱
件 下的研究尤为居 多。研 究发现雷诺数 R e 的大小对涡街 的
发放形态起着至 关重要 的作 用。 Ch a r l e s等用 DE S方法 , 在 亚 临界 区内 ,展开 了圆柱绕流数值模 拟计算 ,得到 的仿真结 果与实验结果 比较 ,但没有涉及湍流强度方面的相关研究[ i i 。 Br e ue r通过建立 三维 圆柱和 流场模 型展开 了圆柱 绕流 的仿 真 实验 ,与相同条件下 的相关文 献的实验与仿真结果基本一 致l 2 l 。C a t a l a n o选取 了较高 的雷诺数展开 了圆柱绕 流的仿真 模拟 ,并与 R A NS模型 的圆柱绕流仿真模拟 比较l 3 J 。P r a s a d 和 Wi l l i a ms o n通过圆柱绕流的实验得到 , Re 在 1 , 2 0 0左右 时,边 界层的分离不再稳 定 ,漩涡发放形态逐渐 向紊流过 度
随着科 学技术 的迅速发展 ,人们对 圆柱绕流现象越来越
重视 ,尤其是在航天航空 以及海 洋工程等设计 中常常需要将 其 考虑在内。长期处水动力作 用下的圆柱 结构 ,当遇到复杂 的水动力条件时可能会受到破坏 或者 产生疲劳 ,这些危害往
往是不可逆 的。
本文通 过进行粘性不 可压缩流体条件下的 圆柱绕流 的数 值 模拟 ,得 到 了在 不 同雷 诺数情 况 下 的升 力 阻力系 数 以及