THM Processes in a Fluid-Saturated Poroelastic Geomaterial

THM Processes in a Fluid-Saturated Poroelastic Geomaterial
THM Processes in a Fluid-Saturated Poroelastic Geomaterial

1 INTRODUCTION

This paper deals with the thermoelastic effects in saturated geomaterials. Temperature changes can cause deformations of the pore water and the solid phase, which can lead to changes in pore pressure and effective stress. An increase in the pore pressure, in particular, can cause damage to the solid skeleton. The isothermal theory of three-dimensional consolidation proposed by Bi-ot (1941, 1956) was extended by Rice and Cleary (1976) to include the effects of compressibili-ty of the water and solid phase. Booker and Savvidou (1985, 1989) specifically solved the prob-lem of consolidation of a porous media in the presence of heat sources: point, disk, cylindrical and spherical sources. The investigations of Selvadurai & Nguyen (1995, 1996) and Nguyen and Selvadurai (1995) deal with the thermo-hydro-mechanical behavior of fractured and intact geomaterials proposed for storing heat-emitting nuclear fuel waste. Rutqvist et al. (2001) pre-sented a comparative study of four theories and computational implementations for both fully and partially saturated geomaterials which are subject to thermal loadings. Thermo-hydro-mechanical problems for soils with an elastoplastic skeletal material were considered by Lewis et al. (1986) and Hueckel et al. (1987). Reviews of recent developments in the theory of linear poroelasticity with applications are given by Selvadurai (1996), Wang (2000), Auriault et al. (2002), Coussy (2004) and Abousleiman et al. (2005). This paper demonstrates the use of the computational multi-physics code COMSOL? for

solving a thermo-hydro-mechanical problem in geomechanics. COMSOL is a finite element code that allows the user to enter, as an input, the governing partial differential equations. For the purpose of validating the COMSOL software, we use an analytical solution for a one-

dimensional problem of a fluid-saturated geomaterial, initially at a uniform temperature and flu- THM Processes in a Fluid-Saturated Poroelastic Geomaterial:

Comparison of Analytical Results and Computational Estimates

A. P . Suvorov & A.P.S. Selvadurai

McGill University, Montreal, Canada

ABSTRACT: The theory of poroelasticity, extended to include thermal effects, provides a use-

ful model for the study of the quasi-static response of fluid-saturated geomaterials subjected to heating. The basic model has been used quite extensively for modeling thermo-hydro-mechanical responses of rock encountered in nuclear waste management endeavours and geo-thermal energy extraction endeavours. The practical application of these theories invariably re-quires recourse to computational approaches where the governing partial differential equations are solved using Galerkin finite element techniques along with a suitable time-integration tech-nique that assures stability of the solution. In recent years a number of multi-physics codes and general purpose finite element codes have been advocated for the study of such THM responses. The unconditional accuracy of these computational approaches can be assessed only by recourse to comparisons with known analytical solutions. This paper examines the capabilities of two computational codes in predicting the thermo-poroelastic response in a column of heated geo-material subjected to heat diffusion and pore pressure dissipation through the upper surface, and to surface tractions.

id pressure, which undergoes heat diffusion and pore pressure dissipation due to the reduction of the surface temperature and pressure to zero. In addition, the geomaterial column is subjected to a normal traction at the surface. A further aspect of the research is to provide an inter-code vali-dation of the accuracy of COMSOL through a comparison with results obtained for the one-dimensional problem, using the general purpose finite element code ABAQUS?. The paper is organized as follows: The governing equations and the three-dimensional theory are presented in Section 1. An analytical solution for the one-dimensional problem is presented in Section 2. In Section 3 we describe the information the COMSOL user should provide to solve a thermo-hydro-mechanical problem via the finite element approach. Finally, in Section 4 we compare the results of the analytical solution from COMSOL and ABAQUS.

2 GOVERNING EQUATIONS

Consider a fully saturated poroelastic medium subjected to external mechanical loading and heating. The poroelastic medium consists of two phases - the porous solid and the liquid occu-pying the pore space. The porous solid is assumed to be isotropic, linearly elastic, and locally non-deformable (i.e. rigid grain material). It is convenient to use concise notation in which spa-tial coordinates z y x ,,are replaced by 123(,,)

x x x x

In the absence of body forces, the total stresses in the poroelastic medium ij σmust satisfy equi-

librium equations, 0,=j ij σ (1)

The Duhamel-Neumann form of the constitutive relationship that accounts for thermal effects

due to T and pore fluid pressure effects due to p takes the form, ij ij s D ij V D

D ij D ij p T K G K G δδαδεεσ???+=332(2 (2)

where p is the excess pore pressure, T is the temperature change,ij ε are the strain components,

kk V εε= is the volumetric strain, s α

is the linear thermal expansion coefficient of the solid

phase, D D G K ,are the bulk and shear modulus of the geomaterial under drained conditions.

Note that absence of the thermal expansion coefficient of the fluid f αin (2) does not imply that it has to be zero. The thermal expansion of the fluid, along with the thermal expansion of the solid phase, affects the value of the pressure. It is worth noting that when drainage is allowed, the fluid pressure in the geomaterial will

dissipate with time. Thus, the mechanical properties D K , D G

and thermal expansion coefficient

of the drained geomaterial will be equivalent to those for a porous geomaterial skeleton with empty pores. However, even when pressure is zero, the liquid is technically present in the por-ous fully saturated geomaterial. Therefore, the temperature field in (2) must be obtained as a so-lution of the heat transfer (conduction) equation for a porous medium with liquid filled pores.

The infinitesimal strain components are related to the displacement components i u by the re-

lationship )(21

,,i j j i ij u u +=ε (3)

Substituting (2) and (3) into the equilibrium equations (1) leads to, 03)3(,,,=????++i s D i i D ki k D

D T K p u G u G K α (4)

Another governing equation can be derived from the void occupancy equation and Darcy’s

law. The void occupancy equation states that the volume outflow from a geomaterial element must match the decrease in volume of the element plus any increase in volume of the constitu-ents due to an increase in temperature: ,0(3)(1)(3)t l l V f s f

p

n v dt n n T n T K εαα++=+?∫ (5)

where l l v ,is the divergence of fluid velocity, n is porosity, f K is the bulk modulus of the fluid.

In turn, Darcy’s law can be written as, m lm

l p k v n ,γ?= (6)

where lm k are components of the permeability tensor, and γis the unit weight of the fluid. Subs-

titution of (6) into (5) and differentiation of (5) with respect to time results in another governing equation ,,(3)(1)(3)l l

lm lm f s f du k n

dp

dT

dT

p n n dt K dt

dt dt ααγ?++=+? (7)

The temperature field must satisfy the heat conduction equation, 0=?????T k t T c eq eq (8)

where eq c is the effective specific heat of the porous medium and eq k is the effective thermal conductivity of the porous medium. To find these coefficients, it is possible to use, for example, volume averaged estimates. Thus, the specific heat and conductivity can be estimated as,

s s f f eq c n c n c ρρ)1(?+=

s f eq k n nk k )1(?+= (9)

where f ρand s ρ

are the densities of the liquid and solid phase, f c and s c are their specific heat

capacities, and f k , s k are the thermal conductivity of the liquid and solid material.

The governing equations (4), (7) and (8) must be accompanied by initial and boundary condi-

tions. Initial conditions are prescribed for the temperature and the pressure within the domain Ω,

)()0,(0x p t x p == in Ω

)()0,(0x T t x T == in Ω (10)

The boundary conditions on the boundary Γ=?Ω are,

)(),(x T t x T Γ= on 1T Γ; )(),(,x q t x T k i i eq =? o n 2T Γ;)(),(x p t x p Γ= on 1P Γ )(,x h p k l m lm

=?γ on 2P Γ; )(),(x u t x u i i Γ= on 1U Γ (11)

)(),(x t n t x i j ij =σ on 2U Γ

where Γ=Γ∪Γ21T T , Γ=Γ∪Γ21P P , Γ=Γ∪Γ21U U .

3 SOLUTION OF ONE - DIMENSIONAL PROBLEM

Consider an idealized problem of a one-dimensional column of fluid-saturated geomaterial oc-cupying the region L x ≤≤20 being initially at an elevated temperature 0T

. During this heating,

fluid drainage across the boundary 0

2=x is prevented, which results in an initial fluid pressure build-up. Subsequently, the temperature and pressure at the surface of the region are reduced to zero and a compressive load 0σ is applied at the upper surface of the column. The heat flux,

fluid velocity and displacement are zero at the bottom surface of the column. Assuming that there are no lateral displacements

0),(),(31==t x u t x u ; 2,2u V =ε (12)

The boundary conditions for the temperature, pressure, displacements and stresses are:

()0,02==t x p ; 0),(22==??

?

?????t L x x p

()0,02==t x T ; 0),(22==??

?

?????t L x x T (13)

0222),0(σσ==t x ; 0),0(212==t x σ

0),(22==t L x u

The initial conditions for the temperature and pressure are:

02)0,(T t x T == (14a)

()020,p t x p == (14b)

The temperature field satisfying the partial differential equation (8) governing heat conduc-

tion and the boundary/initial conditions (13), (14a) is given by, 222220221,3,5...4(,)sin()exp();24eq

m m

eq

m k m m T x t T x t m L c L π

πκκπ==?=∑

(15)

Note that the total normal stress 22σinside the column is equal to the applied stress,

022),(σσ=t x (16)

From the constitutive equation (2)

022223)34

(σσαε==??+p T K G K s D D D (17)

and, therefore, the normal strain is

)3(34

1022p T K G K s D D

D V +++==ασεε (18) Equation (18) can be used in (7) to obtain a differential equation for the fluid pressure, i.e.

dt

dT G K K dt dT n dt dT n dt dp G K K n p k s D

D D s f D D f αααγ3343)1(3]341[22,22+??+=+++? (19)

Solution of equation (19) is obtained as the sum of the solution of the homogeneous equation

H p , and a particular solution of the inhomogeneous equation *p , i.e.,

*p p p H += (20)

The homogenous equation is obtained from the equation above by setting 0=T , and the general solution is given by, 2222222221,3,5 (4)

()

3(,)sin()exp();424(1())

3D D H m m m m D D

f k K G m m p x t C x t n

L L K G K ππωωγ=+

=?=++∑ (21) where m C

are unknown coefficients. Now we need to find a particular solution of the given equ-

ation by considering application of temperature T

. The particular solution of (19) is taken in the

same form as the temperature field (15), 22*222221,3,5...(,)sin()exp();24eq

m m m eq

m k m m p x t A x t L c L π

πκκ==?=∑ (22)

To find the unknown coefficients m A , (22) is substituted into (19). This gives

2

222222

0)3/41

(44)3)1(333/4(m f D D m s f s D D D

m K n G K L m k m T

n n G K K A κ

πγπ

κααα++????+= (23)

Since the total fluid pressure must satisfy the initial condition, ∑====5

,3,120

02)2sin(4)0,(m x L m m p p t x p π

π (24)

From (20) and (24) we can establish the following connection between the coefficients, m m A m p C ?=π40 (25)

The initial fluid pressure can be found from the void occupancy equation (5) at time 0

=t and

constitutive equation (17), f

D D s D D D s f K n G K T K

G K T n n p )3/4(13)3/4(]3)1(3[0

000++?+?++?=ααασ (26)

To summarize, the total solution for the fluid pressure is given by, ∑∑==?+

?=...5,3,12

2...5,3,1222)exp()2sin()exp()2sin(),(m m m m m m t x L m A t x L m C t x p κπωπ (27)

where m A

is found from (23), m C from (25) and the initial pressure 0p from (26).

This completes the solution for the pressure. Now the strain is derived using constitutive equa-tion (18), )3(3

/41

022p T K G K s D D D V +++==ασεε

The displacement field can be found by integrating the strain, U dx

p T K G K u s D D D ++++

=∫202)3(3/41

ασ (28)

where U is the constant of integration. This gives 22

2021,3,5...221,3,5...

2201,3,5...18[3cos()exp(

)4/322cos()exp()22cos()exp()()]

2D s m D D m m m m m

m m L m u K T x t K G L

m L

m C x t m L L

m A x t y L m L π

ακππ

ωππ

κσπ====???

+????+?∑∑∑ (29)

The constant of integration is found by requiring that the displacement be zero at the lower sur-face, i.e., 0),(22==t L x u .

4 RESULTS OBTAINED USING COMSOL? AND ABAQUS?

The solution for the one-dimensional problem described in the previous section is used to va-

lidate performance of the multi-physics code COMSOL. The solution was also verified using the ABAQUS finite element program. We can define a sequence of auxiliary problems. In each auxiliary problem, the temperature is applied gradually within a short period of time, starting

from a zero value and reaching a maximum value 0T

. The sequence is formed by setting the du-

ration over which the temperature rise takes place to zero. Note that the initial conditions for the original problem, in which the temperature is raised instantaneously to 0T

, can be considered as

a limit of the sequence of the solutions of these auxiliary problems. When the user solves the auxiliary problems with the help of ABAQUS, the step GEOSTAT-

IC is not needed, since the initial temperature and all initial fields are indeed zero. (The step GEOSTATIC is used to find equilibrium state for the geomaterial subject to initial pressure and initial stresses.) One can confirm that the solutions of the auxiliary problems converge, at time 0

=t , to the current solution, when the temperature is applied instantaneously. Therefore,

the step GEOSTATIC must not be used if the user solves the original problem with ABAQUS. In fact, this step will give a wrong solution, in which for example, the displacement is zero at time 0=t for the case of incompressible fluid. Also, note that ABAQUS requires the input of the void ratio e instead of porosity. They are related as,

n n

e ?=1

In the input file the initial pressure can be set equal to zero; the user does not have to evaluate the value of the initial pressure (26).

When solving the problem with COMSOL the user has to modify certain dialog boxes. First of

all, in the dialog box of the elasticity problem, in the section “Load” the user has to check the checkbox “Include thermal expansion” and in the field “Temp” put in the name of the variable de-noting the temperature T

. Then, in the same dialog box, the user has to add the body forces that

are caused by the pressure gradient. Thus, according to (4), the parameter “body load”x F must be assigned the value x p ,?, the parameter y F

takes the value y p ,?. Note that the terms containing derivatives of temperature i T ,need not be added to the fields of this dialog box since, for the ther-

mo-elastic problem, the temperature gradient is already included as a body force. Next, the user has to modify the mass conservation equation. COMSOL solves the Darcy’s eq-

uation in the form of a piezo-conduction equation (Barenblatt et al., 1990; Selvadurai et al., 2005; Selvadurai, 2009)

s f s

Q gD p k t p S =+??????)]([ρη

where S is the storage term, s Q is the liquid source, g is the gravitational acceleration, f ρ

is the fluid density, s k is the saturated permeability coefficient, η

is the viscosity of the fluid. To match this form of mass conservation law with the given equation (7), in the dialog box of

the Darcy’s equation, in the section Coefficients, the user has to add source terms according to (7). For the right-hand side of the Darcy’s equation s Q , the user has to input

))0(*0/0(**3*)1())0(*0/0(**3*t t t T Tt n t t t T Tt n vyt s f <+?+<++?αα

Here the vertical displacement in COMSOL is denoted by v , the coordinate 2x

y =, vyt is the de-rivative of v with respect to y and time t ,0T is the initial (applied) temperature, 0t is an arbitrarily

chosen but small value of time. The expression )

0(t t

satisfied, and it is 0 otherwise. The term containing 0/0t T should not be omitted since it represents an approximate derivative

of the Heaviside function 0()

H T t with respect to time.

To eliminate the effect of self weight, the user can set gravitational acceleration equal to zero, i.e., 0

=g .

The storage parameter S

must be set to f K

n /. Thus, in the case of an incompressible fluid 0=S .

Also, the user has to make sure that γη//22k

k s = as in (7). As in ABAQUS, there is no need

for the user to know the initial pressure (26), it can be set to zero. In the dialog box “Conduction” in the section Init, the user has to specify the initial tempera-

ture 0T

. Also, in the section “Thermal Properties”, the user can specify effective heat capacity

and effective thermal conductivity for the porous media.

5 NUMERICAL RESULTS

Consider the THM problem for a 1D column of height 10=L m. The column occupies the

domain L x ≤≤20. The column is initially at the elevated temperature equal to C T 1000=and is acted upon by the non-zero pore pressure that builds up initially due to the absence of fluid drainage across the boundaries. The pressure and the temperature at the upper surface 02=x

are

reduced to zero and the constant compressive stress 100?=σMPa is applied at the upper sur-

face. The following properties are used: Table 1. Properties of soil _____________________________________________________________________________

Property Value

_____________________________________________________________________________ Porosity n 0.25 Young’s modulus E = 60*109 Pa Poisson’s ratio ν = 0.3 Unit weight of water 9800 N/m 3 Fluid permeability k = 2.94e-12 m/s Effective thermal conductivity eq k = 4 (W/moC) Effective specific

heat eq c = 2465000 (J/kg/oC) Linear thermal expansion of solid phase s α= 8.3 *10-6 (1/ oC) Linear thermal expansion of liquid neglected Fluid bulk modulus =f K ∞ or 2.2*109 Pa (two values are used to examine effect of fluid compressibility)

_____________________________________________________________________________

In the figures presented here the analytical solution is shown with a solid line and the COM-

SOL solution is shown in dotted lines. Figure 1 shows the temperature distribution through the depth of the geomaterial column at 1, 100, and 365 days after initiation of heat diffusion. At time 0=t the temperature change was equal to C T 00100=. For 0>t on the upper surface

02=x the temperature change is reduced to zero. The computational results obtained using the ABAQUS code are very close to the analytical and COMSOL results, and, thus, are not shown here.

Figure 2 shows the distribution of pore fluid pressure with depth within the column subjected

to the axial stress 0σ, aforementioned temperature change, and zero pressure at the upper sur-

face. In Figure 2, the results obtained using ABAQUS are shown as circles. As expected, with time, the pressure dissipates inside the geomaterial. The maximum pressure is attained here at time 0

=t , for the case of an incompressible fluid. Note that the initial fluid pressure in the ab-

sence of the temperature change is equal to 10 MPa (which is consistent with undrained re-sponse of a saturated geomaterial) but with the temperature increase included, the pressure reaches the value 36.3 MPa. This value can be obtained from the result (26). The positive value of the initial pressure caused by temperature change alone (10

3.36?=26.3 MPa) can be ex-

plained in the following way: Thermal expansion of the solid phase and zero thermal expansion of the fluid would lead to pore fluid tension, and thus negative pressures, if the pores were free to deform in the lateral direction. However, due to constraint on lateral displace-ments,031==u u , the resulting fluid pressure is positive, i.e., the fluid is still in compression.

Figure 3 shows the absolute value of the surface displacement. The displacement is a maxi-

mum at time 0

=t and at that time it is caused entirely by heating. Then the displacement is re-

duced due to the heat dissipation and the permanently applied compressive stress. Note that the heating (positive temperature change) causes the upward displacement, while the applied com-

pressive stress leads to the downward displacement. Figure 4 shows the pressure distribution versus time at depth 10 m, where the pressure takes

the maximum value. The pressure is shown for two values of compressibility: zero (incompress-ible fluid) and 4.54e-10 1/Pa. Note that the pressure gets smaller for larger values of compressi-bility, which is the expected result. Similarly, Figure 5 shows the surface displacement versus time for the porous medium saturated with an incompressible fluid and a fluid with compressi-bility 4.54e-10 1/Pa.

Figure 1. Temperature distribution within a one-dimensional element subjected to initial temperature change 100o C and subsequent heat dissipation due to reduction of temperature at the upper surface to ze-ro.

Figure 2. Pore fluid pressure distribution within a one-dimensional element subjected to the temperature change in Figure 1, and a compressive load 10 MPa at the upper surface. Pore fluid pressure at the upper surface is zero, and the fluid velocity is zero at the bottom surface.

Figure 3. Displacement distribution within the one-dimensional element subjected to the temperature change shown in Figure 1, and compressive load 10 MPa at the upper surface. Displacement is zero at the base.

Figure 4. Pore fluid pressure distribution at a 10 m depth in a one-dimensional element subjected to the temperature change of Figure 1, and compressive load 10 MPa at the upper surface.

Figure 5. Surface displacement of a one-dimensional element subjected to the temperature change shown in Figure 1, and compressive load 10 MPa at the upper surface.

6CONCLUSIONS

In the present paper we have examined the effect of heating on the deformation of a fluid-saturated porous medium. The solution for the one-dimensional problem of a geomaterial col-umn initially at a uniform temperature and pore fluid pressure subjected to subsequent heat dis-sipation, is obtained analytically in the form of a power series expansion. In addition, the au-thors demonstrate the applicability of two commercial finite element codes COMSOL and ABAQUS to solve thermo-hydro-mechanical problems. The computational results for a one-dimensional problem are validated through comparison with an analytical solution and satisfac-tory agreement is observed.

Acknowledgements

The work described in this paper was supported in part through a Nuclear Waste Management Organization Research Contract and in part through a NSERC Discovery Grant awarded to A.P.S. Selvadurai.

7REFERENCES

Abousleiman, Y., Cheng, A.H.-D.& Ulm, J.-F. (Eds.) 2005. Poromechanics III, Proceedings of the 3rd Biot Conference in Poromechanics, Norman, OK, USA, A.A. Balkema, The Netherlands. Auriault, J.-L., Geindreau, C., Royer, P. Bloch, J.-F., Boutin, C.& Lewandowska, J. (Eds.) 2002. Poro-mechanics II, Proceedings of the 2nd Biot Conference in Poromechanics, Grenoble, France, A.A.

Balkema, The Netherlands.

Barenblatt, G.I., Entov, V.M. & Ryzhik, V.M. 1990. Theory of Fluid Flows Through Natural Rocks, Kluwer Academic Publ., Dordrecht.

Biot, M.A. 1941. General theory of three-dimensional consolidation, Journal of Applied Physics 12: 155-164.

Biot, M.A. 1956. Theory of deformation of a porous viscoelastic anisotropic solid, Journal of Applied Physics 21: 452-467.

Booker J.R. & Savvidou C. 1985. Consolidation around a point heat source, International Journal for Numerical and Analytical Methods in Geomechanics 9: 173-184.

Booker J.R. & Savvidou C. 1989. Consolidation around a heat source buried deep in a porous thermoe-lastic medium with anisotropic flow properties, International Journal for Numerical and Analytical Methods in Geomechanics 13: 75-90.

Coussy, O. 2004. Poromechanics, John Wiley and Sons, New York.

Hueckel, T., Borsetto M. & Peano, A. 1987. Modelling of coupled thermo-elastoplastic-hydraulic re-sponse of clays subjected to nuclear waste heat. In Numerical Methods in Transient and Coupled Problems: (R.W. Lewis, E. Hinton, P. Bettess and B.A. Schrefler, Eds.),Wiley, Chichester, pp. 213-235.

Lewis, R.W., Majorana, C.E. & Schrefler, B.A. 1986. A coupled finite element model for consolidation of nonisothermal elastoplastic media, Transport in Porous Media: 1: 155-178.

Nguyen, T.S. & Selvadurai, A.P.S. 1995. Coupled thermal-mechanical hydrological behavior of sparsely fractured rock : Implications for nuclear fuel waste disposal, International Journal of Rock Mechanics and Mining Sciences 32(5): 465-479.

Rice, J. R. & Cleary, M.P. 1976. Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents, Reviews of Geophysics and Space Physics 14: 227-241. Rutqvist, J., Borgesson L., Chijimatsu M., Kobayashi A., Jing L., Nguyen T.S., Noorishad J., &Tsang,

C.F. 2001. Thermodynamics of partially saturated geological media: governing equations and formu-

lation of four finite element models, International Journal of Rock Mechanics and Mining Sciences 38: 105-127.

Selvadurai, A.P.S. 2009. Influence of residual hydraulic gradients on decay curves for one-dimensional pulse tests, Geophysical Journal International (in press)

Selvadurai, A.P.S. 1996. Mechanics of Poroelastic Media, Kluwer Academic Publ., The Netherlands. Selvadurai A.P.S. & Nguyen, T.S. 1995. Computational modeling of isothermal consolidation of frac-tured porous media, Computers and Geotechnics 17: 39-73.

Selvadurai, A.P.S. & Nguyen, T.S. 1996. Scoping analysis of the coupled thermal-hydrological-mechanical behaviour of the rock mass around a nuclear fuel waste repository, Engineering Geology, 47: 379-400.

Selvadurai, A.P.S., Boulon, M.J. & Nguyen, T.S. 2005. Permeability of intact granite, Pure and Applied Geophysics 162: 373-407.

Wang, H.F. 2000. Theory of Linear Poroelasticity with applications to Geomechanics and Hydrogeolo-gy, Princeton Univ. Press, Princeton.

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

高中英语每日一题第3周playapartin含解析新人教版必修120171011143

play a part (in) 重要程度:★☆☆☆☆难易程度:★★☆☆☆ Have you realized the part computers have ___________ in the daily life? A. made B. given C. caused D. played 【参考答案】D 【拓展延伸】 1. play a part (in) 在……中扮演一个角色;参与;在……中起作用 2. play the role of 扮演……的角色 play an important role / part in...在……中起重要作用 play the leading role / part主演;起带头作用 3. take part in 参加 for the most part多半;在很大程度上 for one’s part就某人而言,对某人来说 1. Colors play an important ___________ in the way you look. A. part B. form C. effect D. pride 2. Mr. Huang will ___________ in the movement. A. play a leading part B. take parts C. play leading part D. take a part 3. __________ part that women ___________ in society is great. A. The; plays B. A; takes C. A; plays

playapartin的用法

play a part in的用法 Do you know this pretty girl Right! She is Audrey Hepburn who played many classic roles in a great many famous films. For example, < Roman Holiday> is the one of the films which earned Hepburn her first Academy Award for Best Actress. Audrey Hepburn played the part/role of Princess Ann in this film. play the part/role of…扮演……角色

Audrey Hepburn played a leading part in directed by Steven Spielberg.( Always 直到永远/天长地久) play a part in…在……中扮演角色,在……中起作用

Audrey Hepburn also played leading roles in < Funny Face>and < My Fair Lady〉.( My Fair Lady 窈窕淑女影片讲述下层卖花女被语言学教授改造成优雅贵妇的故事,从头至尾洋溢着幽默和雅趣 .Funny Face 甜姐儿) Play a role in…在……中扮演角色,在……中起作用 play a part/role in doing sth. 在做某事方面起作用,参与做某事 We can?all?play?a?role/part?in?reducing?our?dependence?on?plastic, if we started to?take some small?steps?in?our?everyday?lives?to?be

植物体叶绿素荧光测定仪的原理与使用方法

植物体叶绿素荧光测定仪的原理与使用方法 【实验目的】 ?了解目前在光合作用研究中先进的叶绿素荧光技术,了解便携式叶绿素荧光仪测定 植物光合作用叶绿素荧光参数的基本原理和仪器的使用方法。 ?老师演示和学生分组利用便携式叶绿素荧光仪(PAM2100)测定实验植物的叶绿素荧 光基本参数(Fo, Fm, Fv/Fm, Fm’, Fo’, Yield, ETR, PAR, qP, qN等)。 ?了解荧光仪的广泛应用 【实验原理】 仪器介绍和工作原理 叶绿素荧光(Chlorophyll Fluorescence)的产生 ?传统的光合作用测定是通过测量植物光合作用时CO2的消耗或干物质积累计算出 来。叶绿素荧光分析技术通过测量叶绿素荧光量准确获得光合作用量及相关的植物生长潜能数据。 ?叶绿素荧光动力学技术在测定叶片光合作用过程中光系统对光能的吸收、传递、耗 散、分配等方面具有独特的作用,与“表观性”的气体交换指标相比,叶绿素荧光参数更具有反映“内在性”特点。 ?本实验以调制式叶绿素荧光仪PAM-2100(W ALZ)为例,测定植物叶绿素荧光主 要参数。植物叶片的生长状况不同,所处位置的不同,光照不同,叶绿素荧光参数数值也会有所不同,所以不同叶片之间叶绿素荧光产量存在着一定的差异。 【实验内容与步骤】 一、仪器使用步骤讲解 1. 仪器安装连接 将光纤和主控单元和叶夹2030-8相连接。光纤的一端必须通过位于前面板的三孔光纤连接器连接到主控单元,光纤的另一端固定到叶夹2030-B上。同时,叶夹2030-B还应通过LEAF CLIP插孔连接到主控单元。 2. 开机 按“POWER ON”键打开内置电脑后,绿色指示灯开始闪烁,说明仪器工作正常。随后在主控单元的显示器中会出现PAM-2100的表示。从仪器启动到进入主控单元界面大概要40秒。 3. PAM-2100的键盘 PAM-2100主控单元上有20个按键,现分别简要介绍主要按键的功能。

Unit 7 Will people have robots-知识点整理

Unit 7 Will people have robots?知识 点整理 Unit7willpeoplehaverobots?知识点整理 一、词组、短语: 、oncomputers在电脑上, 2、onpaper在纸上, 3、livetobe200yearsold活到200岁, 4、freetime空闲时间, 5、indanger 在危险中, 6、ontheearth在世界上 7、playapartinsth在某方面出力/做贡献, 8、spacestation太空站, 8、lookfor寻找, 9、computerprogrammer电脑程序师, 10、inthefuture 在将来, 11、hundredsof成百上千的, 12、thesame…as与…一样, 13、overandoveragain反复, 14、getbored 无聊,

15、wakeup醒来/唤醒, 16、looklike 看起来像, 17、falldown倒下/落下 二、重要句子(语法) 、will+动词原形 将要做 2、fewer/more+可数名词复数更少/更多… 3、less/more+不可数名词 更少/更多 4、trytodosth. 尽力做某事 5、havetodosth 不得不做某事 6、agreewithsb. 同意某人的意见 7、such+名词(词组) 如此

8、playapartindoingsth 参与做某事 9、makesbdosth 让某人做某事 10、helpsbwithsth 帮助某人做某事 11、Therewillbe+主语+其他 将会有…. 12、Thereis/are+sb.+doingsth 有…正在做… 13、Itis +形容词+forsb+todosth 做某事对某人来说… 语法: whatwillthefuturebelike? citieswillbemorepolluted.Andtherewillbefewertrees. willpeopleusemoneyin100years?

【K12学习】人教版八年级英语上册Unit7知识点归纳整理

人教版八年级英语上册Unit7知识点归纳整 理 Unit7illpeoplehaverobots? 短语归纳 onputer在电脑上2.onpaper在纸上3.aeup醒 livetodo200yearsold活动200岁5.freetie空闲时间indanger处于危险之中7.ontheearth在地球上 playapartinsth.参与某事9.inthefuture在未 0spacestation太空站11.puterprograer电脑编程员 loofor寻找13.hundredsof许多;成百上千 thesae…as…与……一样15.getbored感到厌烦的 overandoveragain多次;反复地17.falldon倒塌 ill+动词原形将要做…… feer/ore+可数名词复数更少/更多…… 0.less/ore+不可数名词更少/更多…… 1.havetodosth.不得不做某事 2.agreeithsb.同意某人的意见 3.such+名词如此…… playapartindoingsth.参与做某事 Thereillbe+主语+其他将会有…… Thereis/are+sb./sth.+doingsth.有……正在做某事

aesb.dosth.helpsb.ithsth.帮助某人做某事 trytodosth.尽力做某事 It’s+ad+forsb.todosth.对某人来说,做某事……的。 语法讲解 Boosillonlybeonputers,notonpaper.书将只在电脑里,而不是在纸上。 Thereillbeorepollution.将会有更多的污染。 ).Thereillbe+n=Thereis/aregoingtobe+n将会有…ThereisgoingtobeafootballatchthisFriday. ).pollution:污染;公害pollute:污染;弄脏polluted:受污染的 Everyoneshouldplayapartinsavingtheearth.每个人应该参与挽救地球。 Todaytherearealreadyrobotsoringinfactories.现在已经有机器人在工厂里工作了。 Therebesb.doingsth.有某人正在做…Thereisabirdsinginginthetree. Theyagreeitaytaehundredsofyears.他们同意这可能花费几百年的时间。 Ittaes+时间+todosth.某人花费时间区做某事。 Ittooehalfanhourtofinishyhoeor. agreetodosth.eagreetoeetuplaterandtalthingsover

XX九年级英语上册Unit13教案(新版人教版)

XX九年级英语上册Unit13教案(新版人教 版) 学科English年级9班级 课型fresh课时1/6媒体ataperecorder,cAI 课题Unit13e’retryingtosavetheearth!SectionA1a~1c 话题Protectingtheenvironent 功能Talaboutpollutionandenvironentalprotection 教 学 目 标 知识 技能1.Targetlanguage: e’retryingtosavetheearth. Peoplearethroinglitterintotheriver. Theriverusedtobesoclean. Everyoneshouldhelptocleanuptheriver. Graar: Presentprogressive,usedto,odalverbs ordsandexpressions;

curriculuords:litter,botto,fisheran Usefulexpressions:befullof,put…into,thro…into,cleanup,playapartin,closedon 过程 方法Accordingtodesigningsoetass,totrainstudents’listeningabilityandtotrainstudents’unicativepetence. 情感 态度Everyoneshouldeepourriversclean. 学习策略Listeningforeyords,transforinginforation. 重点TargetLanguage 难点1.Hototrainstudents’listeningability. .Hototrainstudents’unicativepetence. 教学内容及问题情境学生活动设计意图 a.TointroduceSstotheunitgoal,talaboutpollutionanden vironentalprotection. Picture: Thefourpicturesshodifferentforsofenvironentalpollut

人教版八年级英语上册单元知识点归纳

八年级上册英语单元知识点归纳 Unit1Wheredidyougoonvacation? 短语归纳 1.goonvacation去度假 2.stayathome待在家里 3.gotothemountains去爬山 4.gotothebeach去海滩 5.visitmuseums参观博物馆 6.gotosummercamp去参加夏令营 7.quiteafew相当多 8.studyfortests为测验而学习 9.goout出去10.mostofthetime大部分时间11.haveagoodtimedoing=havefundoing=enjoyoneself玩得高兴 去购 物because+句子 查明22.goon上上下下 用法: 3.nothing 4.seem+ 13.dislikedoingsth.不喜欢做某事 14.keepdoingsth.继续做某事keepondoingsth不停做某事 15.Whynotdo.sth.=whydon’tyoudosth为什么不做……呢? 16.so+adj.+that+从句如此……以至于…… 17.tellsb.(not)todosth.告诉某人(不要)做某事 18.enough+名词,形容词+enough 19.notreally.真的没有。 20.seemtodosth似乎好像做某事 21.Byefornow!到这该说再见了。

22.Howdoyoulike…=Whatdoyouthinkof…=Whatdoyouthinkabout… Unit2Howoftendoyouexercise? 短语 1.helpwithhousework帮助做家务 2.onweekends=ontheweekend在周末 3.howoften多久 一次howsoon多久(回答in10years)4.hardlyever几乎从不 5.onceaweek每周一次twiceamonth每月两次everyday每天three/four…timesaweek每周三四…次 6.befree=beavailable有空 7.gotothemovies去看电影 https://www.360docs.net/doc/012641558.html,etheInternet用互联网ontheInternet在网上surftheInternet 上网 9.swingdance摇摆舞10.playtennis打网球play+ 球类/棋类/中国乐器playthe+西洋乐器11.stayuplate熬夜;睡得很晚12.atleast至少atmost最多 擅长 根本firstofall 21.suchas看牙医 用法 少…? 5.主语 7.It’ 10.What Unit3I 短语 和……相同;与……一致bedifferentfrom与……不同5.careabout关心;介意takecareof=lookafter照顾6.belikeamirror像一面镜子7.themostimportant最重要的8.aslongas只要;既然 9.bringout使显现;使表现出10.getbettergrades取得更好的成绩11.reachfor伸手取12.infact 事实上;实际上13.makefriends交朋友14.one…,theother…一个…,另一个15.touchone’sheart 感动某人16.betalentedinmusic有音乐天赋 17.shareeverything分享一切18.talkabout谈论19.primaryschoolstudents小学生middleschoolstudent中学生https://www.360docs.net/doc/012641558.html,rmation是不可数名词,一则消息:apieceofinformation 21.theEnglishstudycenter英语学习中心 用法

XX八年级英语上册第七单元导学案(人教版)

XX八年级英语上册第七单元导学案(人 教版) 本资料为woRD文档,请点击下载地址下载全文下载地址Unit7 willpeoplehaverobots? Period8 SectionBSelfcheck 教师复备栏或 学生笔记栏 【学习目标】 .熟练掌握本单元词汇: 2.熟练掌握本单元句型: 5) In20years,IthinkI’llbeanewspaperreporter. ontheweekend,I’lllooklesssmartbutIwillbemorecomfortable. whatwillyour…belike? 【学习重点 难点】 本单元的单词、短语、语法 【学法指导】 及时练习与巩固

【教学过程】 一、 导入(启发探究 3分钟) 对话复习: Nick:whatareyoureading,jill? jill:It’sbookaboutfuture. Nick:Soundscool.Sowhatwillthefuturebelike? jill:well,citieswillbemorecrowdedandpolluted.Therew illbefewertreesandtheenvironmentwillbeingreatdanger. Nick:Thatsoundsbad!willwehavetomovetootherplanets. jill:maybe.ButIwanttoliveontheearth. Nick:me,too.Thenwhatcanwedo? jill:wecanuselesswaterandplantsmoretrees.Everyonesh ouldplayapartinsavingtheearth. 二、自学(自主探究 6分钟) 用法:

对叶绿素荧光仪各参数的说明

对叶绿素荧光仪各参数的说明 各参数顺序按照数据传输软件上传出数据的顺序 SL(T):饱和脉冲强度。 AL(T):光化光强度。 Total T:测量总时长。 FR T:远红光时长。 Dark T:黑暗时长。 Fo:固定荧光,初始荧光(minimalfluorescence),也称基础荧光,0水平荧光,是光系统Ⅱ(PS Ⅱ) 反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。 Fj:在O-J-I-P 荧光诱导曲线j点处的荧光强度 Fi:在O-J-I-P 荧光诱导曲线i 点处的荧光强度 Fm:荧光产量(maximal fluorescence) ,是PS Ⅱ反应中心处于完全关闭时的荧光产量。可反映通过PSⅡ的电子传递情况。通常叶片经暗适应20 min 后测得。 Fv = Fm - Fo,为可变荧光(variable fluorescence) ,反映了QA 的还原情况(许大全等,1992) 。 Fv/Fm:是PSⅡ光化学量子产量(optimal/ maximal photochemical efficiency of PSⅡin the dark) 或(optimal/ maximal quantum yield of PS Ⅱ) ,反映PSⅡ反应中心内禀光能转换效率(intrinsicPSⅡefficiency)或称PSⅡ的光能转换效率(optimal/ maximal PS Ⅱefficiency) ,叶暗适应20 min 后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降(许大全等,1992) 。 Fo':光下荧光,在光适应状态下全部PSⅡ中心都开放时的荧光强度,qP=1,qN≥0。为了使照光后所有的PSⅡ中心都迅速开放,一般在照光后和测定前应用一束远红光(波长大于680nm,几秒钟)。 Fm':光下荧光,在光适应状态下全部PSⅡ中心都关闭时的荧光强度,qP=0,qN≥0。Fm'受非光化学猝灭的影响,而不受光化学猝灭的影响。 Fs:稳态荧光产量。响应光合作用在光反应与暗反应达到平衡时的荧光产量。

八年级英语上册Unit7 Will people have robots-知识点归纳

八年级英语上册Unit7 Will people have robots?知识点归纳 课 件www.5y https://www.360docs.net/doc/012641558.html,八年级英语上册Unit7willpeoplehaverobots?知识点归纳 八年级上Unit7willpeoplehaverobots? oncomputer在电脑上 onpaper在纸上 livetodo200yearsold活动200岁 freetime空闲时间 indanger处于危险之中 ontheearth在地球上 playapartinsth.参与某事 spacestation太空站 lookfor寻找 computerprogrammer电脑编程员 inthefuture在未来 hundredsof许多;成百上千 thesame…as…与……一样 overandoveragain多次;反复地 getbored感到厌烦的

wakeup醒来 falldown倒塌will+动词原形 将要做…… fewer/more+可数名词复数 更少/更多……less/more+不可数名词 更少/更多…… havetodosth.不得不做某事 agreewithsb.同意某人的意见 such+名词(词组) 如此…… playapartindoingsth.参与做某事 Therewillbe+主语+其他 将会有…… Thereis/are+sb./sth.+doingsth.有……正在做某事makesb.dosth.使某人做某事 helpsb.withsth.帮助某人做某事 trytodosth.尽力做某事 It’s+adj.+forsb.todosth. 对某人来说,做某事……的。 1.ThestudentsinourschoollearnEnglish computers. A.at

八年级英语上册Unit7Willpeoplehaverobots-知识点归纳

八年级英语上册Unit7Willpeoplehaverobots?知识点归纳puters在电脑上, 2、onpaper在纸上, 3、livetobe200yearsold活到200岁, 4、freetime空闲时间, 5、indanger在危险中, 6、ontheearth在世界上 7、playapartinsth在某方面出力/做贡献, 8、spacestation太空站, 8、lookfor寻找, 9、computerprogrammer电脑程序师, 10、inthefuture在将来, 11、hundredsof成百上千的, 12、thesame…as与…一样, 13、overandoveragain反复, 14、getbored无聊, 15、wakeup醒来/唤醒, 16、looklike看起来像, 17、falldown倒下/落下 二、重要句子(语法) 1、will+动词原形将要做

2、fewer/more+可数名词复数更少/更多… 3、less/more+不可数名词更少/更多 4、trytodosth.尽力做某事 5、havetodosth不得不做某事 6、agreewithsb.同意某人的意见 7、such+名词(词组)如此 8、playapartindoingsth参与做某事 9、makesbdosth让某人做某事 10、helpsbwithsth帮助某人做某事 11、Therewillbe+主语+其他将会有…. 12、Thereis/are+sb.+doingsth有…正在做… 13、Itis+形容词+forsb+todosth做某事对某人来说…语法: Whatwillthefuturebelike? Citieswillbemorepolluted.Andtherewillbefewertrees. Willpeopleusemoneyin100years? No,theywon’t.Everythingwillbefree. Willtherebeworldpeace? Yes,Ihopeso. Kidswillstuffyathomeoncomputers. Theywon’tgotoschool.

便携式调制叶绿素荧光仪技术参数

便携式调制叶绿素荧光仪技术参数 用途:采用独特的调制技术和饱和脉冲技术,通过测量活体叶绿素荧光来研究植物的光合作用变化: l 可测荧光诱导曲线的快速上升动力学O-I-D-P相和O-J-I-P相 l 可测荧光诱导曲线的慢速下降动力学并进行淬灭分析(Fo、Fm、F、Fo’、Fm’、Fv/Fm、Y(II)( ΔF/Fm’)、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶温等) l 可测光响应曲线和快速光曲线(RLC) l 利用超便携式个人电脑(UMPC)进行操作,操作更简单 1. 工作条件: 1.1 环境温度:-5~+40℃ 1.3 适用电源:内置铅酸电池,12 V/2 Ah;可连外置12 V电池;外接交流电 2. 技术指标: 2.1 *测量光:红色LED,630 cnm,FWHM 20 nm;调制频率测量Fo时5-5000 Hz 可选,打开光化光时1-100 kHz可选,测量荧光诱导动力学的快相时200 kHz;20级可调。 2.2 光化光源:两种不同颜色的LED。蓝色LED,455 nm,FWHM 20 nm,光强范围0-800 μmol m-2 s-1 PAR,20级可调;红色LED,630 nm,FWHM 15 nm,光强范围0-5000 μmol m-2 s-1 PAR,20级可调。 2.3 饱和脉冲:红色LED,630 nm,FWHM 15 nm,最大PAR 25 000 μmol m-2 s-1,持续时间0.1-0.8 s可调,光强20级可调。 2.4 远红光:LED,750 nm,FWHM 25 nm,20级可调。 2.5 *单周转饱和闪光:红色LED,630 nm,FWHM 15 nm,最大PAR 125 000 μmol m-2 s-1,持续时间5-50 μs可调。 2.6 *多周转饱和闪光:红色LED,630 nm,FWHM 15 nm,最大PAR 25 000 μmol m-2 s-1,持续时间1-300 ms可调,光强20级可调。 2.7 信号检测:PIN-光电二极管,带长通滤光片(T(50%)=715 nm),带选择性锁相放大器。 2.8 *测量参数:Fo、Fm、F、Fo’、Fm’、Fv/Fm、Y(II)、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶温等。 2.9 工作软件:操作简单、功能强大,完全免费升级。 2.10 *测量程序:必须带荧光诱导曲线、光响应曲线、快速光曲线、荧光诱导加暗弛豫、光响应曲线加暗弛豫、快速荧光诱导动力学(OIDP或OJIP)等程序测量功能,必须能够测量qL、Y(NO)和Y(NPQ)等参数。 2.11 *曲线拟合:必须能够利用两种方程对光响应曲线进行非线性拟合并自动计算出拟合参数 2.12 耗电:基础操作1.6 W,内置光源(测量光、红色和蓝色光化光、远红光)为最大输出时8 W,饱和脉冲最大输出时37 W。 2.13 充电时间:关机状态下约需6 h。 2.14 光强测量:测量光合有效辐射(PAR),测量范围0~20000 μmol m-2 s-1。传感器与叶片之间的距离不超过1 mm。 2.15 叶温测量:Ni-CrNi热电耦,直径0.1 mm,测量范围-20~+60℃ 2.16 相对湿度测量:20%-95%(防止结露) 2.17 数据通讯:USB;蓝牙v2.0+EDR Class 2 3. 基本配置:

八上英语复习重点总结

八上英语复习重点总结 Unit1Wheredidyougoonvacation? 单元重点: 1)一般过去时 2)不定代词的用法: a)不定代词作主语,谓语动词用单三 b)形容词修饰不定代词要放在其后 c)something一般用在肯定句中,anything一般用在否定句和疑问句中重点词组: goonvacation去度假stayathome待在家里gotothemountains去爬山gotothebeach去海滩visitmuseums参观博物馆gotosummercamp去参观夏令营quiteafew相当多 studyfor为……而学习 goout出去 mostofthetime大部分时间tastegood尝起来很好吃ofcourse当然 feellike给……的感觉/想要inthepast在过去walkaround四处走走becauseof因为onebowlof…一碗……thenextday第二天 drinktea喝茶 findout找出;查明 goon继续 takephotos照相somethingimportant重要的事upanddown上上下下 comeup出来

用法集锦: 1)buysth.forsb./buysb.sth.为某人买某物 2)taste+adj.尝起来……look+adj.看起来…… 3)nothing…but+动词原形除了……之外什么都没有 4)seem+(tobe)+adj.看起来…… 你还能想到seem的什么用法? 5)arrivein+大地点/arriveat+小地点到达某地 6)decidetodosth.决定去做某事 7)try的用法: 作动词:trydoingsth.尝试做某事/trytodosth.尽力去做某事tryone’sbesttodosth. 作名词:haveatry 8)forgetdoingsth.忘记做过某事/forgettodosth.忘记做某事 9)enjoydoingsth.喜欢做某事 10)dislikedoingsth.不喜欢做某事 11)Whynotdo.sth.?为什么不做……呢? 12)So+adj.+that+从句如此……以至于…… 13)tellsb.(not)todosth.告诉某人(不要)做某事 14)总结keep的用法 Unit2Howoftendoyouexercise? 单元重点: 1)关于how的词组 2)频率副词的位置:放在be动词、助动词、情态动词之后,实意动词之前 3)Howoften与Howman ytimes的区别? 重点词组: helpwithhousework帮助做家务onweekends/ontheweekend在周末

调制叶绿素荧光仪原理简介

调制叶绿素荧光仪调制叶绿素荧光仪原理简介 原理简介刘君华 (河北先河环保科技股份有限公司,河北,石家庄,050035ljh51@https://www.360docs.net/doc/012641558.html,) 1)调制叶绿素荧光 调制叶绿素荧光全称脉冲-振幅-调制 (Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。 调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的三大技术。由于其测量快速、简单、可靠、且测量过程对样品生长基本无影响,目前已成为光合作用领域发表文献最多的技术。 2)调制叶绿素荧光仪的工作原理 1983年,WALZ 公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber 博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。 所谓调制技术,就是说用于激发荧光的测量光具有一定的调制(开/关)频率,检测器只记录与测量光同频的荧光,因此调制荧光仪允许测量所有生理状态下的荧光,包括背景光很强时。正是由于调制技术的出现,才使得叶绿素荧光由传统的“黑匣子”(避免环境光)测量走向了野外环境光下测量,由生理学走向了生态学。 所谓饱和脉冲技术,就是打开一个持续时间很短(一般小于1s)的强光关闭所有的电子门(光合作用被暂时抑制),从而使叶绿素荧光达到最大。饱和脉冲(Saturation Pulse,SP)可被看作是光化光的一个特例。光化光越强,PS II 释放的电子越多,PQ 处累积的电子越多,也就是说关闭态的电子门越多,F 越高。当光化光达到使所有的电子门都关闭(不能进行光合作用)的强度时,就称之为饱和脉冲。 打开饱和脉冲时,本来处于开放态的电子门将该用于光合作用的能量转化为了叶绿素荧光和热,F 达到最大值。

6400-40叶绿素荧光使用简易手册N

6400-40叶绿素荧光叶室 简易使用手册 (基因有限公司农业环境科学部,2004,北京) 本手册是在总结了美国LI-COR公司6400-40使用手册的基础上,简明扼要地论述了荧光叶室的使用方法,仅供参考。限于作者的理论水平和应用经验,本文还存在许多不足之处,详细使用请参见厂家原版英文说明书,本人及本公司不承担由本手册引起的任何责任。另外需要提醒您的是,请在使用本仪器和阅读本手册之前阅读我们为您准备的叶绿素荧光测量技术的背景知识综述,这对您最后理解我们的仪器使用和准备实验设计来说是必须的。 1.前言: 植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。三个过程之间存在竞争,任一效率增加都将造成另外两个产量下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。 调制荧光仪的出现是荧光研究技术的创新。在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议您选择调制荧光仪。 叶绿素荧光可以说明光系统II利用叶绿素吸收能量的程度和过量光线破坏的程度。光系统II电子流动可以表现总体光合速率特征。它提供我们在其他方法无法实现的情况下,快速估计植物光合能力的潜在能力。光系统II也被认为是光合机构中对光诱导破坏反应最为灵敏和最为脆弱的组分,光系统II的破坏是植物叶片胁迫的最早表现。当然,荧光技术本身也不是没有局限的,荧光最强有力的应用不是单独使用这一技术本身,而是结合其他技术,尤其是气体交换从而获得植物对环境响应的完整解释。6400-40就是在这一应用需求的背景下推出的,是目前唯一可以同时同步测量叶绿素荧光与气体交换的仪器。

叶绿素荧光

叶绿素荧光叶绿素荧光作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物体,因此通过研究叶绿素荧光来间接研究光合作用的变化是一种简便、快捷、可靠的方法。目前,叶绿素荧光在光合作用、植物胁迫生理学、水生生物学、海洋学和遥感等方面得到了广泛的应用。 1叶绿素荧光的研究历史 叶绿素荧光现象是由传教士Brewster首次发现的。1834年Brewster发现,当一束强太阳光穿过月桂叶子的乙醇提取液时,溶液的颜色变成了绿色的互补色¬¬——红色,而且颜色随溶液的厚度而变化,这是历史上对叶绿素荧光及其重吸收现象的首次记载。后来,Stokes(1852)认识到这是一种光发射现象,并使用了“fluorescence”一词。 1874年,Müller发现叶绿素溶液稀释后,荧光强度比活体叶子的荧光强得多。尽管Müller提出叶绿素荧光和光合作用之间可能存在相反的关系,但由于他的实验没有对照,实验条件控制不严格,因此人们并没有将叶绿素荧光诱导(瞬变)现象的发现归功于Müller。 Kautsky是公认的叶绿素荧光诱导现象的发现者。1931年,Kautsky和Hirsch用肉眼观察并记录了叶绿素荧光诱导现象(Lichtenthaler,1992;Govindjee,1995)。他们将暗适应的叶子照光后,发现叶绿素荧光强度随时间而变化,并与CO2的固定有关。他们得到的主要结论如下:1)叶绿素荧光迅速升高到最高点,然后下降,最终达到一稳定状态,整个过程在几分钟内完成。2)曲线的上升反映了光合作用的原初光化学反应,不受温度(0℃和30℃)和HCN处理的影响。若在最高点时关掉光,则荧光迅速下降。3)荧光强度的变化与CO2的固定呈相反的关系,若荧光强度下降,则CO2固定增加。这说明当荧光强度降低时,较多的光能用于转变成化学能。4)奇怪的是(照光后)CO2的固定有一个延滞期,似乎说明“光依赖”的过程对CO2固定过程的进行是必需的。另一个未得到解释的现象是若在荧光诱导结束后关掉光,则荧光水平的恢复需要很长时间。在Kautsky的发现之后,人们对叶绿素荧光诱导现象进行了广泛而深入的研究,并逐步形成了光合作用荧光诱导理论,被广泛应用于光合作用研究。由于Kautsky的杰出贡献,叶绿素荧光诱导现象也被称为Kautsky效应(Kautsky Effect)。 2叶绿素荧光的产生及其量子产量 细胞内的叶绿素分子通过直接吸收光量子或间接通过捕光色素吸收光量子得到能量后,从基态(低能态)跃迁到激发态(高能态)。由于波长越短能量越高,故叶绿素分子吸收红光后,电子跃迁到最低激发态;吸收蓝光后,电子跃迁到比吸收红光更高的能级(较高激发态)。处于较高激发态的叶绿素分子很不稳定,在几百飞秒(fs,1fs=10-15s)内,通过振动弛豫向周围环境辐射热量,回到最低激发态。最低激发态的叶绿素分子可以稳定存在几纳秒(ns,1ns=10-9s)。 处于较低激发态的叶绿素分子可以通过几种途径释放能量回到稳定的基态。能量的释放方式有如下几种(图3.3)(Campbell et al.,1998;Roháček & Barták,1999;Malkin & Niyogi,2000):1)重新放出一个光子,回到基态,即产生荧光。由于部分激发能在放出荧光光子之前以热的形式逸散掉了,因此荧光的波长比吸收光的波长长,叶绿素荧光一般位于红光区。2)不放出光子,直接以热的形式耗散掉(非辐射能量耗散)。3)将能量从一个叶绿素分子传递到邻近的另一个叶绿素分子,能量在一系列叶绿素分子之间传递,最后到达反应中心,反应中心叶绿素分子通过电荷分离将能量传递给电子受体,从而进行光化学反应。以上这3个过程是相互竞争的,往往是具有最大速率的过程处于支配地位。对许多色素分子来说,荧光发生在纳秒级,而光化学发生在ps级,因此当光合生物处于正常的生理状态时,天线色素吸收的光能绝大部分用来进行光化学反应,荧光只占很小的一部分。

第4章第1节_叶绿素荧光参数及意义-v2

第四章 叶绿素荧光技术应用 第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统 II 的叶绿素 a ,而光系统 II 处于整个光合作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统 II ,进而引起叶绿素 a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图 1)。而最低激发态的叶绿素分 子可以稳定存在几纳秒(ns ,1 ns=10-9 s )。 A 较高激发态 B 热耗散 吸收蓝 光 吸收红光 最低激发态 能量 荧光 基态 蓝 波长 红 荧光 图 1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图 2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素 a ,用于进行光化学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用于进行光化学反应,荧光只占约 3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素 b 到叶绿素 a 的传递几乎达到 100%的效率,因此基本检测不到叶绿素 b 荧光。在常温常压下,光系统 I 的叶绿素 a 发出的荧光很弱,基本可以忽略不计,对光系统 I 叶绿素 a 荧光的研究要在 77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系统 II 的叶绿素 a 发出的荧光。

相关文档
最新文档