专题二 从高次代数方程和求根公式到伽罗华理论

专题二 从高次代数方程和求根公式到伽罗华理论
专题二 从高次代数方程和求根公式到伽罗华理论

一元二次方程的知识点梳理

一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: 1、方程782=x 的一次项系数是 ,常数项是 。 2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) =n=2 =2,n=1 =2,m=1 =n=1 考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: 1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 2、已知关于x 的方程022=-+kx x 的一个解与方程 31 1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。 3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。 4、已知a 是0132=+-x x 的根,则=-a a 622 。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 6、若=?=-+y x 则y x 324,0352 。 考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次 类型一、直接开方法:()m x m m x ±=?≥=,02

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

(完整版)一元二次方程归纳总结

一元二次方程归纳总结 1、一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。 2、一元二次方程的解法 (1)直接开平方法 (也可以使用因式分解法) ①2 (0)x a a =≥ 解为:x = ②2 ()(0)x a b b +=≥ 解为:x a += ③2 ()(0)ax b c c +=≥ 解为:ax b += ④2 2() ()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+ (2)因式分解法:提公因式分,平方公式,平方差,十字相乘法 (3)公式法:一元二次方程2 0 (0)ax bx c a ++=≠,用配方法将其变形为:222 4()24b b ac x a a -+= ①当2 40b ac ?=-> 时,右端是正数.因此,方程有两个不相等的实根:1,22b x a -=② 当2 40b ac ?=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =- ③ 当2 40b ac ?=-<时,右端是负数.因此,方程没有实根。 注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。 备注:公式法解方程的步骤: ①把方程化成一般形式:一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,并确定出a 、b 、c ②求出2 4b ac ?=-,并判断方程解的情况。 ③代公式:1,2x = 3、一元二次方程的根与系数的关系 法1:一元二次方程2 0 (0)ax bx c a ++=≠的两个根为: 1222b b x x a a -+-== 所以:12b x x a += +=-, 221222()422(2)4b b b ac c x x a a a a a -+----?=?===

高次方程求根公式的故事

高次方程求根公式的故事 1545年意大利学者卡丹将一元三次方程ax3 +bx2+cx+d=0的求根公式公开发表,后来人们就把它叫做“卡丹公式(也有人译作“卡尔丹公式”)。事实上,发现公式的人并不是卡丹本人,而是塔尔塔利亚。 塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。 后来,意大利医生兼数学家卡丹请求塔尔塔利亚把解方程的方法告诉他,但遭到了拒绝。尽管卡丹千方百计地想探听塔尔塔利亚的秘密,但是在很长时间中塔尔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且说要推荐他去当西班牙炮兵顾问,还发誓对此保守秘密,于是塔尔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 六年后,卡丹不顾原来的信约,在他的著作中将经过改进的三次方程的解法公开发表。他在书中写道:“这一解法来自于一位最值得尊敬的朋友——布里西亚的塔尔塔利亚。塔尔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为“卡丹公式”,而塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。 卡丹没有遵守誓言,因而受到塔尔塔利亚及许多文献资料的指责。但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔尔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔尔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程根式解法的进程。 一元三次方程应有三个根。塔尔塔利亚公式给出的只是一个实根。又过了大

三次方程的一般解法

一元三次方程的求根公式称为“卡尔丹诺公式” 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x. 除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3

一元二次方程解法讲义

龙文教育学科教师辅导讲义 课 题 一元二次方程的解法 教学目标 1. 理解一元二次方程及其有关概念 2. 会解一元二次方程,并能熟练运用四种方法去解 重点、难点 1. 一元二次方程的判定,求根公式 2. 一元二次方程的解法与应用 考点及考试要求 1. 一元二次方程的定义,一般形式,配方式 2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去 3. 一元二次方程在实际问题中的综合应用 教学内容 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③ 整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax 注:当b=0时可化为02=+c ax 这是一元二次方程的配方式 (3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式: 2 =++c bx ax 时,应满足(a≠0) (4)难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112 =-+ x x C 0 2 =++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元四次方程的解法

一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p3 = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。 费拉里发现的一元四次方程的解法和三次方程中的做法一样,可以用一个坐标平移来消去四次方程一般形式中的三次项。所以只要考虑下面形式的一元四次方程:x4=px2+qx+r 关键在于要利用参数把等式的两边配成完全平方形式。考虑一个参数 a,我们有(x2+a)2 = (p+2a)x2+qx+r+a2 等式右边是完全平方式当且仅当它的判别式为0,即 q2 = 4(p+2a)(r+a2) 这是一个关于a的三次方程,利用上面一元三次方程的解法,我们可以 解出参数a。这样原方程两边都是完全平方式,开方后就是一个关于x 的一元二次方程,于是就可以解出原方程的根x。最后,对于5次及以上的一元高次方程没有通用的代数 解法(即通过各项系数经过有限次四则运算和乘方和开 方运算),这称为阿贝耳定理 一元四次求根公式 对于一般一元四次方程: ax4+bx3+cx2+dx+e=0 设方程的四根分别为: x1=(-b+A+B+K)/(4a) x2=(-b-A+B-K)/(4a) x3=(-b+A-B-K)/(4a) x4=(-b-A-B+K)/(4a) (A,B,K三个字母足以表示任意三个复数,根据韦达定理: 方程四根之和为-b/a,所以当x1,x2,x3的代数式为原 方程的三根时,那么x4形式的代数式必是方程的第四个 根。) 将这四个代数式代入到韦达定理中可整理得: x1+ x2+ x3+ x4= -b/a x1x2 +x1x3+ x1x4+ x 2 x3 + x2x4+ x3 x4=(1/8a2)(3b2-A2-B2-K2)=c/a x1x2x3 +x1x2x4+ x1 x3 x4+ x2 x3 x4= (1/16a3)(-b3+bA2+bB2+Bk2+2ABK)= -d/a x1x2 x3 x4=(1/256a4)(b4+ A4+B4+K4-2b2A2-2b2B2-2b2K2-2A2B2-2A2K2-2B2K2-8bA BK)=e/a 整理后为: A2+B2+K2=3b2-8ac———————————————— 记为p A2B2+A2K2+B2K2=3b4+16a2c2-16ab2c+16a2bd-64a3e— —记为q A2B2K2=(b3-4abc+8a2d)2————————————— —记为r 由此可知:A2,B2,K2是关于一元三次方程 y3-py2+qy-r=0的三根 从而可解得±y11/2,±y21/2,±y31/2是A,B,K的解。 若y11/2, y21/2, y31/2是A,B,K的一组解(A,B,K 具有轮换性,所以在代入时无须按照顺序) 那么另外三组为 ( y11/2,- y21/2,- y31/2 (- y11/2, y21/2, -y31/2 (-y11/2,- y21/2, y31/2 从而将以上任意一组解代入到所设代数式中,均可解得 原四次方程的四根。 由这种方法来解一元四次方程,只需求界一个一元三次 方程即可,而费拉里的公式则需先解一个三次方程,再 转化成两个复杂的一元二次方程,并且若要以其系数来 表示它的求根公式的话,其形式也是相当复杂的。我的 求解方法尽管在推导公式的过程中有一定的计算量,但 如果要运用于实际求根,尽用结论在计算上绝对要比费 拉里公式简便。那么我下面再介绍一下有关一元三次方 程的改进公式: 对于一般三次方程: ax3+bx2+cx+d=0 设方程的三根分别为: x1=(-b+A+B)/(3a) x2=(-b+wA+w2B)/(3a) x3=(-b+w2A+wB)/(3a) 则 A3+B3=-2b3+9abc-27a2d————记为p A3B3=(b2-3ac)2————— ———记为q 则A3,B3是关于一元二次方程: y2-py+q=0的两根

复系数一元二次方程求根公式教学浅议

复系数一元二次方程求根公式教学浅议 文/哈瀛东 在初中《代数》课本中,运用配方法推导了实系数一元二次方程ax2+bx+c=0在Δ=b2-4ac≥0时的求根公式 在高中《代数》下册“复数”一章中,运用配方法推导出实系数一元二次方程ax2+bx+c=0在Δ=b2-4ac<0时的求根公式 之后,结束了中学数学对一元二次方程求根公式的研究.由于中学数学未研究复系数一元二次方程的求根公式,学生在复数集中解一元二次方程方面未形成完整的知识框架;在解与复系数一元二次方程的根有关的问题时,往往用复数相等的定义解复系数一元二次方程,运算繁冗.教学中,学生也常常提出“实系数一元二次方程求根公式能否向复系数一元二次方程推广”,“是否存在复系数一元二次方程求根公式”等疑问.在多年的教学实践中,笔者认识到,在结束实系数一元二次方程求根公式的研究后,趁热打铁,安排一二个课时,以练习课的形式,引导学生推导复系数一元二次方程求根公式,明确实系数与复系数这两类一元二次方程求根公式的内在联系,在复数运算的复习中,使学生形成完整的认知结构,加深实数集扩展到复数集的合理性的理解,提高对实数集与复数集之间的辩证关系的认识.既有利于中学数学教学,又有利于学生智力的发展和创新能力的培养. 在具体教学时,笔者是这样安排的. 一、创设情境,激发求知欲 笔者对复数运算法则及实系数一元二次方程求根公式进行简单复习之后,让学生做练习: 1.求证:任一复数z的平方根都可表示成±u(u∈C)的形式. 解:设z=r(cosθ+isinθ),其平方根为 (其中n=0,1), 即 或 =- 命题成立. 2.解方程:x2+(2-i)x+1-i=0. 解:设x=a+bi(a,b∈R),代入方程并整理,得 a2-b2+2a+b+1+(2ab-a+2b-1)i=0. 由复数相等的定义,得 面对此二元二次方程组,学生束手无策,欲进无路,欲退不愿,企盼教师指点迷津. 二、适时点拨,引导学生探求新公式

元高次方程求解方法

一元高次方程的漫漫求解路 若有人问你:“你会解一元二次方程吗?”你会很轻松地告诉他:会的,而且非常熟练!任给一个一元二次方程 20,0,ax bx c a ++=≠ ① 由韦达定理,①的根可以表示为x =. 若进一步问你,会解一元三次方程或更高次数的方程吗?你可能要犹豫一会儿说,只会一些简单的方程.于是你就会想:一元三次方程或更高次数的方程,是否也像一元二次方程的情形一样,有一个公式,它可以用方程的系数,经过反复使用加减乘除和开方运算,把方程的根表示出来? 数学家们当然应当给出完美的理论来解决高次方程的求解问题.有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠.当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式.如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一 个根,或称为n 次多项式()f x 的一个根. 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根. 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算.这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积.” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法. 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++= ② 的求解公式,如二次方程①的求根公式那样.众所周知,方程①的解早在古代的巴比伦、埃

一元方程求根公式

solve ax+b=0 for x Isolate terms with x to the left hand side. Solve for x. solve ax^2+bx+c=0 for x Write the quadratic equation in standard form.

2 Solve the quadratic equation by completing the square. Take one half of the coefficient of x and square it,then add it to both sides. Factor the left hand side. Eliminate the exponent on the left hand side. Look at the first equation:Solve for x.

Look at the second equation:Solve for x. solve ax^3+bx^2+cx+d=0 for x Look for a simple substitution that eliminates the quadratic term of a x3 b x2 c x d. Write the cubic polynomial on the left hand side in standard

Write the cubic equation in standard form. Change coordinates by substituting y z Κ z ,where Κis a constant value that will be determined later. Transform the rational equation into a polynomial equation Find an appropriate value forΚ in order to make the coefficients of z2and z4both 4

一元二次方程的概念及解法

一元二次方程的概念及解法

一、 考点突破 1. 理解一元二次方程的定义、解,食+版& = 0 (在0), a 、b 、c 均为常数,尤其。不为零要切记。 2. 熟练掌握一元二次方程的几种解法,如因 式分解法、公式法等,弄清化一元二次方程为一 元一次方程的转化思想。 二、 重难点提示 熟练掌握一元二次方程的几种解法。 一、知识结构 厂一元一次方程O 壬二元一次方程组 整式方程一 A 去分母 二、解题策略与方法 解一元二次方程的基本策略是:降次。降次 的主要方法是因式分解法和开平方法。 1. 一元二次方程的概念 只含有一个未知数,且未知数的最高次数是 2的整式方程叫做一元二次方程. 一般形式: 杯+Zxr + c = O 是常数,且 "0). 2. 一元二次方程的解法 (1)直接开平方法 降次 「解法 —元二次方程- _______ L 根的判别式 W 方程一 分式方程

形如(mx + n)2= /? (r > 0) 的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法. (2)配方法 把一元二次方程通过配方化成如+ 〃)2=,(房0)的形式,再用直接开平方法解,这种方法叫做配方法. 用配方法解一元二次方程次& + ”0 (^0)的一般步骤是:① 化二次项系数为1,即方程两边同除以二次项系数〃;②移项,也就是使方程的左边为二次项和一次项,右边为常数项;③ 配方,即方程两边都加上一次项系数一半的平方;④ 化原方程为(》+〃?)、〃的形式;⑤ 如果,20就可通过两边开平方来求出方程的解;如果〃V0,则原方程无解. (3)公式法 通过配方法可求得二元二次方程ax2 + bx + c = 0(。n 0)的求根公式:x=-b土尸,用求根公式解一元二次方程的方法叫做本'式法. 兀—次方程ar2 + + c = 0 ( a,b,c是常数,且心0)的根的判别式是屏-4必.利用根的判别式可以判定方程实根的个数;利用根的判别式也可以建立等式、不等式,求方程中的参数的值或取值范围; 通过根的判别式可证明与方程有关的代数问题,也可运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题等。

元次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。 因此,只需研究此类方的特殊形式即公式化为均可经过移轴 三次方程由于任一个一般的一元0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(032323221''3333233232323=?<+=?=?=+=?=?>+=?--==- ===<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 2332323233 232332313223 2132323 2333333333333333333333332332332323212811210861128112108610)1281(81 1)27(41281121086112811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 10)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ???+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根,,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有,若判别式的两根。为一元二次方程,易知,。,即可令, 对比。 即有, 故, 由于。 ,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导: 有三个实数根。 时,方程有两个实数根。 时,方程有唯一实数根。 时,方程,则有以下结论:。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

九年级化学必背公式定理

二元一次方程的定义 把两个含有不同未知数的一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。 有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。 二元一次方程定义:一个方程含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程。 二元一次方程组定义:两个结合在一起的,且共含有两个未知数的一次方程,叫二元一次方程组。 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 二元一次方程组的解:一般的,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。 一般解法,代入消元法:将方程组中的未知数个数由多化少,逐一解决。解法 消元的方法有两种

代入消元法 用代入消元法的一般步骤是: 【1】选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式; 【2】将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程; 【3】解这个一元一次方程,求出 x 或 y 值; 【4】将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数; 【5】把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。[1] 例:解方程组: x+y=5① 6x+13y=89② 解:由①得 x=5-y③ 把③代入②,得 6(5-y)+13y=89 即 y=59/7 把y=59/7代入③,得 x=5-59/7 即 x=-24/7 ∴ x=-24/7 y=59/7 为方程组的解 我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。 加减消元法 用加减法消元的一般步骤为: ①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数; ②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程; ③解这个一元一次方程; ④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值; ⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。

一元高次方程的求解

一元高次方程的求解 求解一元高次方程曾是数学史上的难题。让你去求解一个一元一次,二次方程方程也许是简单的,但三次,四次或者更高次的方程呢?为了解决这一问题,数学家们奋斗了几个世纪。让我们一起来看一下数学努力的成果。 n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式。如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一个根,或称为n 次多项式()f x 的一个根。 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根。 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算。这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积。” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法。 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++=① 的求解公式,如二次方程20(0)ax bx c a ++=≠②的求根公式那样。众所周知,方程②的解早在古代的巴比伦、埃及、中国、印度、希腊等国的数学著作中,都有不同的表述方式。一个n 次方程①的求根公式是指,①的根通过其系数经由加、减、乘、除以及乘方、开方的表示式,也称这种情况为方程有根式解。

一般实系数四次方程的谢国芳公式-绝对准确可靠又最简明快捷的求根公式

一般实系数四次方程的谢国芳求根公式 作者:谢国芳(Roy Xie ) Email: roixie@https://www.360docs.net/doc/017258483.html, 【摘要】本文给出了一个绝对准确可靠又最简明快捷的一般实系数四次方程的求根公式,其中涉及的运算全部为实数运算,可以在普通的科学计算器上进行。 以下把一般四次方程的形式设为 432 4640ax bx cx dx e ++++= 在系数中引入数字因子4, 6, 4是为了使后面各参数的表达式尽可能地简洁,注意五个系数的数字因子1, 4, 6, 4, 1恰好是二项式系数( 4432(1)4641x x x x x +=++++ ). 一般实系数四次方程的谢国芳求根公式 对于实系数四次方程 432 4640a x b x c x d x e ++++= (0)a > , 定义参数 2 H b ac =-, 2 43I ae bd c =-+, 23 32G a d abc b =-+, 3 2 2 3 4H a H I G J a --= , 3 2 27I J ?=-, 称0G ≠,220I J +≠(即, I J 不同时为0)的情形为一般情形,又可以分为下面这两种情况[1]:

(一)一般情形的求根公式Ⅰ 当32 270 I J ?=-<时,方程的四个根为 1,2 3,4 (sgn(/ (sgn(/ x b G a x b G a ?=-- ? ? ?=-+ ? 其中sgn() G为G的符号(sign), 1 (0) sgn() 1 (0) G G G > ? =? -< ? 2 a t H =+. (二)一般情形的求根公式Ⅱ 当32 270 I J ?=-≥时,方程的四个根为 1 2 3 4 (/ (/ (/ (/ x b a x b a x b a x b a ?=-+++ ? ?=-+ ? ? =--+- ? ? =---+ ?? 其中 1 ) 3 y H θ =+ , 2,3 2 ) 33 y H θπ =±+, 1 cos J θ- - =. s是一个符号因子(sign factor),等于1或1-,视实数 123 ,, y y y的符号 而定:当 123 ,, y y y全为正数时sgn() G s=-,否则sgn() G s=. (三)特殊情形的求根公式

一元二次方程题型分类的总结

一元二次方程题型分类总结 知识梳理 一元二次方程?? ???*?韦达定理根的判别解与解法 考点类型一 概念 只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程.... 就是一元二次方程。 )0(02≠=++a c bx “未知数的最高次数是2”: ①该项系数不为“ 0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨 论。 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值 为 。 ★1、方程782=x 的一次项系数是 ,常数项是 。 ★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围

是 。 ★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=3,n=1 C.n=2,m=1 D.m=n=1 考点类型二 方程的解 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值 为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则 此方程 必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两 个根, 则m 的值为 。 ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 31 1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。 ★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。 ★★4、已知a 是0132=+-x x 的根,则=-a a 622 。 ★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - ★★★6、若=?=-+y x 则y x 324,0352 。

相关文档
最新文档