cd4011水位控制器原理

cd4011水位控制器原理

cd4011 水位控制器原理

本电路能自动控制水泵电动机,当水箱中的水低于下限水位时,电动机自动接通电源而工作;当水灌满水箱时,电动机自动断开电源。该控制电路只用一只四组双输入与非门集成电路(CD4011),因而控制电路简单,结构紧凑而经济。供电电路采用12V 直流电源,功耗非常小。

控制器电路如图1 所示。指示器电路如图2 所示。

图1 是控制器电路图,在水箱中有两只检测探头A 和B,其中A 是下限水位探头,B 是上限水位探头,12V 直流电源接到探头C,它是水箱中储存水的最低水位。

汽化锅炉水位全自动控制系统

汽化锅炉水位全自动控制系统 本文结合国内各钢厂汽化冷却系统的实际应用,阐述在炼钢转炉生产中自动上水系统的控制过程。 标签:汽包水位三冲量单冲量 汽化锅炉是炼钢工业生产的重要动力能源设备。在汽化锅炉的正常运行中,汽包水位值是它最重要的工艺参数指标。随着现代工艺的不断改进提高,对汽化锅炉而言,允许的汽包水位波动范围也随之减小,将液位控制在一定范围内是保证汽化锅炉安全、正常运行及蒸汽质量的必要条件,同时也是转炉炼钢工业正常生产的首要条件。理论概述:现在在国内炼钢工业的汽化冷却水位控制,一般都采用三冲量控制方式。转炉汽化锅炉可采用工艺时序与单冲量与三冲量交叉控制的方式来对汽化锅炉液位进行全自动调节。即当转炉停止吹炼时,采用单冲量的控制方式进行对锅炉水位的调节。在转炉开始吹炼一定时间后,采用三冲量的控制方式进行对锅炉水位的调节(如图1所示)。 由于转炉是间歇生产,所以汽化锅炉产生的蒸汽也是断续的,热负荷波动极大,汽包水位急剧变化,系统操作时间短。因此对对汽化锅炉来讲,必须是汽化锅炉给水根上其负荷的变化,如果给水量跟不上负荷的变化,就会造成设备烧损,严重时会引起爆炸事故,如果给水量太大,会使汽包水位过高,造成蒸汽带水,影响蒸汽质量。转炉汽化锅炉液位控制,采用工艺时序与单冲量与三冲量交叉控制的方式可以保证在转炉冶炼过程中锅炉液位的稳定。应用:我们可以根据转炉冶炼过程将汽化锅炉运行分为六个阶段,即未吹炼阶段、吹炼开始过程、补水过程、产汽过程、停吹初期过程、停止吹炼过程。并且在整个的补水过程中,除氧水箱均保持自动上水状态,即根据除氧水箱和软水箱水位的高低来确定软水泵的启/停,将除氧水箱水位控制在正常的范围内。在未吹炼过程,要采用单冲量控制的方式给汽包补水。单冲量调节是只采集汽包的水位一个量作为DCS或PLC 中PID调节器的输入值,再通过PID运算后得到的值作为DCS或PLC的输出值,作用于给水调节阀(如图2所示)。 使给水调节阀作出相应的动作,补水完成后锅炉水位和锅炉压力是稳定的,也没有蒸汽的外送,这个过程给锅炉给水流量及锅炉蒸汽流量均为零。 吹炼开始过程,转炉吹氧点火后,随着热负荷不断增加,使锅炉汽包内水中的气泡量增大,此时锅炉汽包水位将会迅速上升,形成假水位。为了避免假水位过高,要使DCS或PID调节的水位设定值稳定,避免上水调节阀打开。补水过程,这时汽包中的假水位已经下降,产汽量增加,用水量也随之增加。这时要给汽包补水。如果此时的DCS或PID调节的水位设定值不变的话,那么锅炉的给水调节阀开启的就相对滞后一段时间,所以这时一定要提高锅炉水位的给定值。也就是说,我们通过DCS或PLC采集信号,当吹炼开始后由DCS或PLC进行计时,在一定时间后由DCS或PLC自动提高PID调节的水位给定值,同时也要投入三冲量自动调节程序。三冲量调节是根据汽包水位、汽包出口蒸汽流量、汽

锅炉汽包水位控制系统设计-毕业论文

摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC 广泛应用于过程控制领域并极提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位、三冲量控制、PLC、PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words:Steam drum water level、Three impulses control、PLC、PID control

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

锅炉水位PLC电气控制系统设计

锅炉水位PLC电气控制系统设计 发表时间:2019-05-05T15:21:28.417Z 来源:《基层建设》2019年第4期作者:章航伟 [导读] 摘要:在锅炉运行中,水位是一个很重要的参数。 杭州富尔顿热能设备有限公司浙江杭州 310018 摘要:在锅炉运行中,水位是一个很重要的参数。若水位过高,则会影响汽水分离的效果,使用电气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。同时高性能的锅炉产生的蒸汽流量很大,而汽包的体积相对来说较小所以锅炉水位控制显得非常重要。锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡维持汽包内水位在允许的范围内变化。 关键词:锅炉水位;PLC电气控制;系统设计 1锅炉的基本构成 1.1气锅 由上下锅炉和沸水管组成。水在管内受外部烟气加热,因而管簇内发生自然的循环流动,并逐渐汽化,产生的饱和蒸汽聚集在锅筒里面。下锅筒起着连接沸水管的作用,同时储水。 1.2 炉膛 是使燃料充分燃烧并放出热能的设备。燃料(煤,燃油或煤气)由传送设备直接送入炉内燃烧。所需的空气由鼓风机送入,燃尽的灰渣被炉排带到除灰口。落入灰斗中,得到的高温烟气依次经过各个受热面,将热量传递给水以后,由烟囱排到大气中。 1.3 过热器 是将锅炉所产生的饱和蒸汽继续加热为过热蒸汽的换热器。 1.4 省煤器 利用烟气余热加热锅炉给水,以降低排出烟气温度的换热器。 1.5 空气预热器 是继续利用离开省煤器后的烟气余热,加热燃料燃烧所需要的空气的换热器。通常,大、中型锅炉中均设有空气预热器。 2锅炉水位控制系统在锅炉生产控制系统中的重要性 锅炉是一种受压又直接受火的特种设备,是工业生产中的常用设备。对锅炉生产如果操作不合理,管理不善,处理不当,往往会引起事故,轻则停炉影响生产,重则造成爆炸,造成人身伤亡,损坏厂房、设备,后果十分严重。因此,锅炉的安全问题是一项非常重要的问题,必须引起高度重视。 工业锅炉中最常见的事故有:锅内缺水,锅炉超压,锅内满水,汽水共腾,炉管爆破,炉膛爆破,二次燃烧,锅炉灭火等。其中以锅炉缺水事故比例最高。这些事故中的大部分是由于锅炉水位控制不当引起的,可见锅炉汽包水位控制在锅炉设备控制系统中的重要性。 3锅炉控制系统的设计 3.1 系统硬件设计 本系统PLC基本配置要求有9点开关量输入,10点开关量输出;3路模拟量输入,1路模拟量输出。其中SB0锅炉运行开关,SB1、SB2水位控制开关,SB3空气压力开关,SB4燃油压力开关,SB5鼓风压力开关,SB6、SB7蒸汽压力保护开关,SB8火焰检测器开关,KM1燃烧器鼓风机接触器,KM2油泵接触器,KM3空压机接触器,FM报警蜂鸣器,Kv1点火喷油电磁阀,TR点火线圈继电器,Kv2燃油电磁阀。 3.2 系统软件设计 锅炉控制系统全自动起动、停炉和故障事件处理,按照要求在PLC中编制用户程序,实现:给水、扫气、点火、燃烧等过程的全自动起、停控制。 锅炉水位自动控制,蒸汽压力自动控制,燃烧程序自动控制,保护与报警功能的实现。根据控制要求自动起停风机、开闭风门和控制风门的大小,完成扫气工序。 3.3 PLC输入输出控制系统 PLC具有可靠性高、抗干扰能力强,建造工作量小、维护方便,体积小、质量轻,能耗低等显著特点,运用PLC控制锅炉已越来越成为一种趋势。 (1)锅炉PLC控制过程 首先确定PLC输入、输出信号,确定哪些机床信号(如按钮、行程开关、继电器触点、无触点开关的信号等)需要输入给PLC,哪些信号(如继电器线圈、指示灯及其他的执行电路)需要从PLC输出给锅炉,从而计算出对PLC的输入、输出线数目以及IO地址分配。(2)PLC输入输出信号 PLC系统输入输出信号。利用系统输入输出IO分配,控制相应动作。输入信号包括刀具换刀、刀具夹紧、气压报警、坐标轴回零、坐标轴正负限位信号、主轴速度到达信号、外部运行允许信号等。根据程序控制输出信号,也可以按照控制需要对程序进行修改,改变输出信号或IO分配。输出信号包括刀具正反转、刀具换刀位、主轴使能、冷却开、伺服使能、伺服强电允许、主轴松紧等,输出信号也可以扩展。 4基于PLC的锅炉自动控制系统设计过程 实现锅炉自动控制系统设计,首先我们需要对锅炉的整体结构有一个大致的了解:锅炉,顾名思义,由锅和炉组成,简单来说,锅是用来加热水的,炉是用来燃烧燃料的;前者涉及的是蒸汽输送系统和送水系统,后者涉及的是送煤系统和燃料燃烧系统。 控制系统可以通过这一系列的控制信号和控制点对燃料供应系统、热水循环系统、燃烧系统以及热水锅炉机组控制系统进行及时有效的控制,从而保证系统能够对燃气是否泄漏做出判断,防止安全事故的发生、能够在水量不足的时候及时补充水、对锅炉水位进行监测,以保证锅炉不会因为水位过高或过低而发生事故、对锅炉压力进行监测,防止锅炉在超压时运行以及对炉水温度进行实时跟踪,防止炉水温度超过安全设定,保证机组安全运行。总而言之,用PLC实现的自动控制可以让锅炉更为安全、稳定并经济合理的运行。 5 PLC在系统中的应用 针对锅炉控制对象的特点,周边环境的特殊性及运行周期的连续性,选用SIEMENS公司的S7-200系列PLC控制锅炉汽包系统。S7-

锅炉水位控制器

河南科技学院新科学院 单片机课程设计报告题目:基于单片机的锅炉水位控制器 专业班级:电气工程及其自动化104 姓名: _ 时间:2012.12.03~2012.12.21 指导教师:邵峰、徐君鹏、张素君 2012年12月20日

基于单片机控制的锅炉水位控制器设计任务书 一. 设计要求 (一) 基本功能 1.具有手动和自动两种操作模式 2.能够实现多点水位数据采集,并实时进行水位状态显示 3.具有多种连锁保护和报警功能 具体工作过程如下: 控制器上电后,首先处于自动工作模式,程序开始扫描当前锅炉的水位和压力状态,如果水位低于正常水位,发出报警信后,同时启动水泵上水,经过一定时间后,如水位到达正常水位,报警将自冻结除,同时如果压力为低压状态则马上启动鼓风机和引风机,否则控制器自动关闭鼓风机和引风机。如果水位达到最高水位和压力超过设定压力时自动报警,同时关闭水泵和风机。系统时刻跟踪显示水位和压力状态。如果你想手动操作,你可以通过手动/自动转换键把系统置为手动工作模式,此时可由人工控制水泵和风机的运行,水位和压力检测由控制器自动完成,且当水位过低时不能手动停止水泵,过高时不能启动水泵,压力过低不能停止风机,过高不能启动风机,从而实现安全联锁保护控制。 (二)扩展功能 1.系统具备一定的硬件抗干扰能力 2.系统增加软件看门狗功能 二.计划完成时间三周 1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。 2.第二周完成软件的具体设计和硬件的制作。 3.第三周完成软件和硬件的联合调试。

目录 1引言 (1) 2总体设计方案.............................................................................. 1 2.1设计思路.............................................................................. 2 2.2设计方框图 (2) 3设计组成及原理分析..................................................................... 3 3.1水位检测电路设计..................................................................... 3 3.2驱动电路设计 (4) 3.3报警电路设计 (4) 3.4复位电路 (5) 3.5振荡电路 (5) 3.6水位指示电路 (6) 3.7手动自动路 (6) 4总结与体会 (7) 参考文献…………………………………………………………………………… 8附录1 …………………………………………………………………………… 9附录 2 …………………………………………………………………………… 10附录 3 …………………………………………………………………………… 11附录 4 (12)

锅炉水位三冲量控制及调节

汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上, 即三个被控变量对应一个调节器。 工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰, 使调节过程稳定,起到稳定给水流量的作用。 锅炉汽包水位三冲量调节系统是火电厂锅炉核心控制之一。汽包水位三冲量调节系统的给水调节阀动作频繁,锅炉水位对给水调节阀执行机构的动作比较敏感,稍有不慎就可能出现严重的危险情况,汽包水位三冲量调节系统关系到整个机组的安全运行:若汽包水位过高,会造成蒸汽带水;若汽包水位过低,会造成锅炉“干锅”,可能严重烧坏锅炉设备。汽包水位三冲量调节系统的重要性由此可见一斑,所以汽包水位的相关保护要完善可靠、汽包水位自动调节系统运行要平稳。 目前,汽包水位三冲量自动调节控制策略已经相当成熟,但在实际锅炉运行中会各种原因导致水位自动调节系统投入困难,甚至自动不能投入。这种现象让人对串级三冲量调节系统的调节能力和控制策略产生疑问。为此云润与大家交流运用心得,对级三冲量调节系统进行定性分析,并对一些异常情况的处理办法进行探讨。 1、水位三冲量调节控制策略 汽包水位三冲量调节系统使用的三个冲量分别是汽包水位、给水流量和蒸汽流量。 汽包水位作为主调(PID调节器)的输入信号,去抑制水位本身的偏差。副调(外给定调节器)使用了一个反馈信号(给水流量)和一个前馈信号(蒸汽流量),以消除扰动和虚假水位。各种介绍汽包水位三冲量调节系统的书籍中,都有对传递函数的计算,这些计算对系统设计很重要。如果用经验调节法对于系统维护,则完全可以抛开理论计算。在此只对其物理意义进行定性思考和作一番揣测。 1.1?反馈信号 反馈信号指给水流量信号,也叫内扰。 水位三冲量调节系统中被调量发生变化的时候,PID 经过运算,去控制执行机构进行合理的动作,执行机构改变给水调节阀的开度,阀门控制介质变化,达到控制给水流量的目的。可是给水调节阀执行机构特性、水位三冲量调节系统的运行状况存在很多差异,这些差异主要有: (1)执行机构线性:执行机构改变开度后,流量随之改变的大小。 (2)执行机构死区:PID 输出每变化多少,执行机构才能动作一次。 (3)执行机构空行程:执行机构在改变动作方向的时候,改变多少开度,给水流量才发生变化(减去死区的值)。 (4)执行机构回差:执行机构进行开、关两个方向的动作的时候,流量变化不相等,这个流量变化绝对值的差叫回差。 (5)执行机构及阀门的特性曲线改变:阀门线性改变,阀门每变化1%,流量变化量与以往不同。 (6)水位三冲量调节系统软故障:偶尔发生的系统故障使得给水流量变化不均匀,或者时有停顿。 (7)系统介质参数发生变化:指因给水压力、蒸汽压力变化导致给水流量变化。

霍尔电流传感器工作原理

霍尔电流传感器工作原理 1、直放式(开环)电流传感器(CS系列) 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列)

霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

锅炉液位控制系统的设计

锅炉液位控制系统的设计 摘要:设计了一种数字式锅炉液位控制系统,并给出了硬件原理图和软件流程图。该控制系统主要由8051单片机、传感器、L E D显示、声光报警、电机驱动、键盘输入等相关硬件来实现,利用传感器(干簧管阵列)监测锅炉液位、CPU循环检测传感器的输出状态,并用光柱和数码管L E D指示液位高度。当液位达到设定值时,系统自动关闭水泵停止上水。当水位处于危险高水位和危险低水位时,单片机发出信号,触发蜂鸣器报警装置,蜂鸣器发出响声。同时,和它并联的发光二极管发光,提醒工作人员采取相应措施,进而避免危险事故发生。该系统结构简单,性能可靠、具有很好的容错能力,简化了系统安装和维护,具有较高的性价比,能很好地完成锅炉液位控制的要求。 关键词;锅炉液位;单片机;传感器;干簧管;报警 0引言 锅炉的液位监控是锅炉运行过程中的一个重要环节。在锅炉运行中,要同时控制锅炉的液位、流量按一定规律变化,才能保证锅炉的正常运行。 目前常用的液位传感器有:旋转编码浮子式传感器(机械式和光电式)、非接触式超声波传感器、压力式传感器、磁浮子接点式传感器(连续式和液位开关式)等。其分辨率从毫米级到厘米级不等,测量范围从几十厘米到几十米。除磁浮子接点式传感器外,其余传感器均比较适合测量范较宽的应用场合。一般压力式和超声波传感器均带有变送部分,即将液位信号转换成标准电流信号(4~20mA)。旋转编码浮子式传感器分为机械式和光电式两种,光电式又分为绝对型和增量型。除智能型一体化传感器外(压力式或超声波),其他传感器一般没有就地显示和数字通信功能,控制和使用都很不方便。 为此,设计了一种数字式锅炉液位控制系统,该系统采用干簧管阵列作为传感器,利用单片机循环检测其输出状态,从而控制锅炉液位达到用户预先设定的高度。当水位超过最高水位或低于最低水位时,系统报警,同时控制停炉。

霍尔电流传感器的种类及工作原理

霍尔电流传感器的种类及工作原理 1.简介 霍尔电流传感器可以分为很多种,如果按照原理可以分为开环霍尔电流传感器(Open Loop Hall Effect)和闭环霍尔电流传感器(Close Loop Hall Effect)。基于开环原理的电流传感器结构简单,可靠性好,过载能力强,体积较小,但也有很多缺点,如温度影响大,精度低,反应时间不够快,频带宽度窄等。而闭环霍尔电流传感器等特点是精度高,响应快,频带宽,但同时也有缺点,即过载能力差,体积较大,工艺比较复杂,同时价格也偏高。 1原理图如下: 开环原理霍尔电流传感器示意图 闭环原理霍尔电流传感器示意图 2 霍尔电流传感器的工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。 1图片来自PAS 网站

2.1 电流传感 器的输出信号 2当原边导线经过电 流传感器时,原边电流IP 会产生磁力线,原边磁力 线集中在磁芯气隙周围, 内置在磁芯气隙中的霍尔 电片可产生和原边磁力线 成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS*NS= IP*NP。其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS —副边圈匝数;NP / NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2.2 电流传感器供电电压V A V A指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低。另外,传感器的供电电压V A又分为正极供电电压V A+和负极 供电电压V A-。要注意单相供电的传感器,其供电电压V Amin是双相供电电压V Amin 的2倍,所以其测量范围要高于双相供电的传感器。 2.3 测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围 一般高于标准额定值I 。 2.4霍尔电流传感器工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。它有两种工作方式,即磁平衡式和直式。霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。 直放式电流传感器(开环式):当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。 磁平衡式电流传感器(闭环式):磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP。(其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。)磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip 2董高峰《浅析霍尔电流传感器的应用》

锅炉温度控制系统的设计

齐鲁理工学院 课程设计说明书 题目基于PID的锅炉温度控制系统的设计 课程名称过程控制系统与仪表 二级学院机电工程学院 专业自动化 班级2014级自动化二班 学生姓名金高翔 学号201410532019 指导教师黄丽丽 设计起止时间:2016年12月5日至2016年12月18日

? 目录 摘要 .................................................... 错误!未定义书签。 1 绪论?错误!未定义书签。 1.1 课程设计的背景: ................................. 错误!未定义书签。 1.2 课程设计的任务:?错误!未定义书签。 1.3 课程设计的基本要求:?错误!未定义书签。 2 PLC和组态软件介绍?错误!未定义书签。 2.1 可编程控制器?错误!未定义书签。 2.1.1 可编程控制器的工作原理 .................. 错误!未定义书签。 2.2 组态软件?错误!未定义书签。 2.2.1 组态的定义 .............................. 错误!未定义书签。 2.2.2组态王软件的特点?错误!未定义书签。 2.2.3组态王软件仿真的基本方法.................. 错误!未定义书签。 3 PID控制及参数整定?错误!未定义书签。 3.1.PID控制器的组成?错误!未定义书签。 3.2.采样周期的分析................................... 错误!未定义书签。 4 被控对象的建模?错误!未定义书签。 5 PLC控制系统的软件设计................................. 错误!未定义书签。 5.1.程序编写........................................ 错误!未定义书签。 5.2用指令向导编写PID控制程序?错误!未定义书签。 6 组态的设计 ............................................ 错误!未定义书签。 7 系统测试?错误!未定义书签。 7.1 启动组态王...................................... 错误!未定义书签。 7.2实时曲线界面?错误!未定义书签。 7.3历史曲线界面 ..................................... 错误!未定义书签。8结论 ................................................. 错误!未定义书签。参考文献: ............................................... 错误!未定义书签。致谢: ................................................... 错误!未定义书签。

锅炉水位控制系统的研究与设计

摘要 随着我国经济的发展,资源和环境矛盾日趋尖锐,使我国的现代化建设面临严峻挑战。作为供热系统重要能源转换设备的燃煤锅炉能耗巨大,占我国原煤产量的三分之一左右。然而,我国目前运行的很多锅炉控制系统的自动化水平不高、安全性低,工作效率和环境污染普遍低于国家标准,因此实现锅炉的计算机自动控制具有重要的意义。 锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工业锅炉安全、稳定运行的重要指标,保证水位控制在给定范围内,对于提高蒸汽品质、减少设备损耗和运行损耗、确保整个网络安全运行具有重要意义。 本文分析了汽包水位对象的动态特性,介绍传统的控制方式。由于锅炉水位控制系统的调节器输入端常加有三个输入量,极易引起水位控制偏差,本文提出了两种消除水位偏差的方法:(1)辅助信号自消方法(2)辅助信号对消方法。根据三冲量水位调节系统控制水位误差,设计采用了三冲量PID串级控制方式采用辅助信号蒸汽流量和给水流量对消方法消除水位偏差。 关键词:汽包水位;三冲量;串级系统;PID控制;

目录 摘要...................................................... I 第1章引言.............................. 错误!未定义书签。第2章工业锅炉的基础理论 2.1 锅炉工艺流程简介 (1) 2.2 课题背景及本文研究内容 (3) 第3章汽包水位特性 (4) 3.1 汽包水位在给水流量作用下的动态特性 (5) 3.2 汽包水位在蒸汽流量干扰下的动态特性 (8) 第4章汽包水位的控制 (12) 4.1单冲量水位控制系统 (12) 4.2 双冲量水位控制系统 (13) 4.3 三冲量水位控制系统 (16) 4.4.1 三冲量控制方案一 (17) 4.4.2 三冲量控制方案二 (18) 4.4.3 三冲量控制方案三 (19) 4.4 锅炉水位控制原理图 (21) 结论 (23) 致谢 (24) 参考文献 (25)

电流传感器的工作原理

电流传感器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电流传感器工作原理 电流传感器是传感器的一种分类,其主要信号源是采集信号的电流大小!主要参数为其电流大小!检测方法一般是检测电流特性的器件,一般有电流表之类的! 工作原理主要是霍尔效应原理. 一、以零磁通闭环产品原理为例: 1、当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP 其中,IS—副边电流; IP—原边电流; NP—原边线圈匝数; NS—副边线圈匝数; NP/NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比, IS一般很小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2、传感器供电电压VA VA指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低,另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。要注意单相供电的传感器,其供电电压VAmin是双相供电电压VAmin的2倍,所以其测量范围要相供高于双电的传感器。 3、测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值IPN。 二、电流传感器主要特性参数 1、标准额定值IPN和额定输出电流ISN

锅炉汽包水位控制系统的设计

/ 过程控制系统实验报告( 专业 xxxxxx 班级 xxxxxxxxx 学生姓名 xxxxxx < 学号 xxxxxxxx

锅炉汽包水位控制系统设计 < 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.】 5.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 6.说明单回路控制系统4个环节的工作形式对控制过程 7.对控制进行PID控制说明其参数整定理论 8.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 9.总结实验课程设计的经验和收获 (

* 过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -概述............................................ - 3 -! 锅炉生产蒸汽工艺简述 ............................ - 3 - 锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 -对被控对象进行特性分析 ............................... - 5 -汽包水位控制系统方框图和流程图......................... - 5 -液位控制系统的方框图.................................. - 5 - 液位控制系统的方案图.................................. - 6 -选择被控参数和被控变量 ................................ - 6 -; 选择检测仪表,说明其选择原则和仪表性能指标............. - 7 -传感器、变送器选择........................................... - 7 -执行器的选择................................................. - 8 -关于给水调节阀的气开气关的选择。............................. - 8 - 关于给水调节阀型号的选择。.................................. - 8 -

(完整版)基于PLC的锅炉汽包水位控制系统设计毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC广泛应用于过程控制领域并极大地提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位三冲量控制PLC PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both widely be applied to the process control domain and enhances the performance of control system enormously. PLC automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words: Steam drum water level Three impulses control PLC PID control

电极式锅炉水位自动控制器说明书UDK220

电极式锅炉水位自动控制器说明书 一:概述 电极式锅炉水位自动控制报警器,符合(GB/T13638—92)工业锅炉水位控制装置国家标准。本仪表推出的功能更多,性能更强,运行更稳定,是性价比更高的新产品;它采用高性能微电脑与电子集成电路组成具有独特的抗干扰技术。广泛适用于石油、化工、纺织、彩印、工业制造等锅炉水位及各种水箱水位的监视、控制、报警、连锁以及其他装置的液位监控,也可用于污水监控、自动排水等液位控制。本仪表是在分析国内外同类产品的基础上由专业工程师设计而成的,具有功耗低、寿命长、灵敏度高、导电率适应范围宽、功能齐全、使用范围广及免维护等特点。 我厂郑重承诺:本产品在正常使用情况下,属质量问题,终生免费回厂保修,免费培训技术人员。根据用户要求,我厂可提供有偿现场安装、调试、配套等服务。 二:技术参数 1、电压: AC85V—AC264V 2、触电容量: 220V / 0.3A阻性负载、寿命更长。 3、介质:各种可导电的无腐蚀性液体。 4、适配传感器:电极式、电接点、浮球、干簧管、开关型传感器等。 5、体积:160×120×80(mm)(长×宽×厚) 6、开孔尺寸:152×76(mm) 三、性能 液位显示控制器是由两部分组成,包括显示部分、控制部分组成,采用五芯信号电缆作为导线与控制器连接。分别与控制器的1-4号端子按顺序连接,12号端子为公用端、1号端子接超高液位、2号端子接液位上限、3号端子接液位下限、 4号端子接超低液位。23、24端子接220V电源,13、14为控制水泵端子,15、16,17、18, 19、20为连锁控制端子,可分别与锅炉的炉排、鼓风、引风控制系统连接,20、21为电铃常开接线端子。 四、控制 首次工作且锅炉内无水,须手动按下∧键才能正常工作。当超低、超高、超温、超压指示灯之一点亮时,报警功能启动联锁,控制部分断开。报警指示灯点亮、报警器蜂鸣;此时按下SET键报警器消音,故障排除后按∧键控制器再次启动控制器开始工作。按下“SET”键(长按3秒),屏幕显示“00”,输入自检代码默认为01,仪器进入自检状态,8个指示灯从上到下依次点亮,同时4个开关也一次接通,数码管显示总体进度,如果没有异常即告完成。 自动检测功能可以对显示条、指示灯、开关等进行一次自动的测试,检测时间大约30秒,在此时间仪器将停止工作,为了不对设备产生影响,请在适当的工作条件下进行。 五、接线方式:,信号线应用屏蔽线,屏蔽层接仪表的12号端子,传感器一端屏蔽层悬空。

相关文档
最新文档