数学建模竞赛题

合集下载

中学生数学建模竞赛题目

中学生数学建模竞赛题目

中学生数学建模竞赛题目
题目:中学生数学建模竞赛题目
背景:小明是一名中学生,对数学建模很感兴趣。

最近,他参加了一场中学生数学建模竞赛。

竞赛有三个题目,分别是:
题目一:平均数的计算
小明班级共有30名同学,升学率是80%。

假设这30名同学的期末考试总成绩平均分为85分,小明想知道升学同学的平均成绩是多少?
题目二:几何图形的面积计算
小明看到一个园林设计图,其中有一个不规则图形,小明想计算其面积。

可是,这个图形没有标明具体的尺寸。

请问小明该如何计算这个图形的面积?
题目三:概率的计算
小明是一名篮球爱好者,他参加了10次的投篮练习,每次投篮成功的概率为60%。

小明想知道他至少投中5次的概率是多少?
要求:
对于题目一,小明需要通过给出数据和计算方法,得出升学同学的平均成绩的具体数值。

对于题目二,小明需要通过解释几何图形的特点和常用的几何公式,得出计算该图形面积的方法。

对于题目三,小明需要用概率的计算公式和相关知识,得出至
少投中5次的概率的数值,并给出计算过程。

注意:
题目的目的是考察中学生的数学建模能力和解决实际问题的能力,因此要求考生能够认真分析题目,并运用合适的数学知识进行建模和计算。

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞
赛历年赛题
Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
全国大学生数学建模竞赛历年赛题
2009:AB
CD
2010:A储油罐的变位识别与罐容表标定
B2010年上海世博会影响力的定量评估
C输油管的布置
D对学生宿舍设计方案的评价
2011:A城市表层土壤重金属污染分析
B交巡警服务平台的设置与调度
C企业退休职工养老金制度的改革
D天然肠衣搭配问题
2012:A葡萄酒的评价
B太阳能小屋的设计
C脑卒中发病环境因素分析及干预
D机器人避障问题
2013:A车道被占用对城市道路通行能力的影响
B碎纸片的拼接复原
C古塔的变形
D公共自行车服务系统
2014:A嫦娥三号软着陆轨道设计与控制策略B创意平板折叠桌
C生猪养殖场的经营管理
D储药柜的设计
2015:A太阳影子定位
B“互联网+”时代的出租车资源配置
C月上柳梢头
D众筹筑屋规划方案设计。

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国高校生数学建模竞赛题目(四套ABCD)当我第一遍读一本好书的时候,我仿佛觉得找到了一个伴侣;当我再一次读这本书的时候,仿佛又和老伴侣重逢。

我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。

让我们一起到学习啦一起学习吧!2021年高教社杯全国高校生数学建模竞赛题目A题 CT系统参数标定及成像CT(Computed Tomography)可以在不破坏样品的状况下,利用样品对射线能量的吸取特性对生物组织和工程材料的样品进行断层成像,由此猎取样品内部的结构信息。

一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。

X射线的放射器和探测器相对位置固定不变,整个放射-接收系统绕某固定的旋转中心逆时针旋转180次。

对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸取衰减后的射线能量,并经过增益等处理后得到180组接收信息。

CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。

请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸取强度,这里称为“吸取率”。

对应于该模板的接收信息见附件2。

请依据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。

(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。

利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何样子和吸取率等信息。

另外,请具体给出图3所给的10个位置处的吸取率,相应的数据文件见附件4。

中国研究生数学建模竞赛试题

中国研究生数学建模竞赛试题

中国研究生数学建模竞赛试题
假设一个线性回归模型的系数为β0=3, β1=2,则该模型的截距和斜率分别为:
A. 截距为3,斜率为2
B. 截距为2,斜率为3
C. 截距为3,斜率为-2
D. 截距为-2,斜率为3
在假设检验中,如果p值小于显著性水平α,则我们:
A. 接受原假设
B. 拒绝原假设
C. 不能确定是否接受或拒绝原假设
D. 以上都不对
下列哪一项不是聚类分析的主要目标?
A. 发现数据中的潜在结构
B. 对数据进行分类
C. 预测未来的数据点
D. 可视化数据的分布
对于一个随机变量X,如果其期望E(X)存在,则下列性质正确的是:
A. E(aX + b) = aE(X) + b,其中a和b是常数
B. E(X^2) = [E(X)]^2
C. E(X^2) ≥ [E(X)]^2
D. E(X) = E(-X)
在时间序列分析中,如果时间序列是平稳的,则:
A. 它的均值和方差都是常数
B. 它的均值随时间变化
C. 它的方差随时间变化
D. 以上都不对
对于二元正态分布,下列说法正确的是:
A. 边缘分布一定是一元正态分布
B. 条件分布一定不是正态分布
C. 协方差矩阵一定是正定的
D. 相关系数一定是1或-1
在多元线性回归模型中,如果增加一个解释变量,则模型的:
A. R平方一定增加
B. 调整R平方一定增加
C. F统计量一定增加
D. 以上都不对
假设检验中第一类错误的概率通常表示为:
A. α
B. β
C. 1-α
D. 1-β。

2023数学建模竞赛e题

2023数学建模竞赛e题

数学建模竞赛e 题一、单选题1.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位2.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤3.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.124.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .56 5.tan 3π=( )A .3B .3C .1D 36.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( )A.[)(]0,11,2B.[)(]0,11,4C.[0,1)D.(1,4]7.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120°8.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,310.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=-11.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .100二、填空题12.定义在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为( )。

数学建模作业题目

数学建模作业题目

数学建模作业题目1、深圳杯数学建模夏令营题目(3)A题计划生育政策调整对人口数量、结构及其影响的研究B题基因组组装C题垃圾焚烧厂的经济补偿问题2、吉林省第五届数学建模竞赛试题(2)E题汽车租赁调度问题F题:阶梯电价的效用分析3、西北工业大学校数模竞赛试题(2)A题西安市经开区公共自行车服务系统设计B题食品价格变动分析4、浙江大学城市学院第八届数学建模竞赛题目(2)A题:外汇交易策略算法设计B题:雾霾时空分布研究5、井冈山大学第七届“井冈杯”数学建模竞赛试题(2)A题:课表编排问题B题:客房预定的价格和数量问题6、第十一届五一数学建模联赛(原苏北) (1)B题:能源总量控制问题7、第七届华中数学建模邀请赛赛题发布(2)A题:加速度检测仪数据校正B题:互联网搜索引擎的排名与设计8、第十六届华东杯大学生数学建模邀请赛试题(3)A电力网络出租车打车模式的现状和未来污水排放问题9、南京信息工程大学第八届数学建模竞赛赛题(2)A 污染气体的传播扩散B 乳腺癌病因分析10、北京交通大学数学建模校赛赛题(1)电梯运输策略问题11、武汉科技大学(2)A题:装配线平衡问题的随机算例生成B题:研究生研究水平的成因分析12、广州六校数学建模联赛题目(2)A题:中国GDP是否超过美国B题:反服贸团体游行的人数13、同济大学数学建模竞赛本科组赛题(2)A题经济金三角C题基因重排14、甘肃农业大学第十届数学建模竞赛试题(1)B题石油资源的开发与储备15江西理工大学数学建模竞赛题目(1)高层建筑火灾中的烟雾扩散建模与仿真以上为2014年各校试题。

从以上题目或者自行收集2014各高校的数学建模比赛试题(与我院数学建模选拔赛相同的不算,自己收集以上题目的信息)中选一作一篇不少于15页的论文。

论文格式如下●论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从上面装订。

●论文第一页为搜索的高校姓名与学号、班级。

●论文题目和摘要写在论文第二页上,从第三页开始是论文题目内容与论文正文。

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1992A 施肥效果分析1992B 实验数据分解1993A 非线性交调的频率设计1993B 足球队排名次1994A 逢山开路1994B 锁具装箱1995A 一个飞行管理问题1995B 天车与冶炼炉的作业调度1996A 最优捕鱼策略1996B 节水洗衣机1997A 零件参数1997B 截断切割1998A 投资的收益和风险1998B 灾情巡视路线1999A 自动化车床管理1999B 钻井布局1999C 煤矸石堆积1999D 钻井布局2000A DNA序列分类2000B 钢管购运2000C 飞越北极2000D 空洞探测2001A 血管三维重建2001B 公交车调度2001C 基金使用2001D 公交车调度2002A 车灯线光源2002B 彩票中数学2002C 车灯线光源2002D 赛程安排2003A SARS的传播2003B 露天矿生产2003C SARS的传播2003D 抢渡长江2004A 奥运会临时超市网点设计2004A 赛题使用数据2004B 电力市场的输电阻塞管理2004C 饮酒驾车2004D 公务员招聘2005A 长江水质的评价和预测2005B DVD在线租赁2005C 雨量预报方法的评价2005D DVD在线租赁2005D 数据2006A 出版社的资源配置2006A 数据2006B 艾滋病疗法的评价及疗效的预测2006B 数据2006C 易拉罐形状和尺寸的最优设计2006D 煤矿瓦斯和煤尘的监测与控制2006D 数据2007A 中国人口增长预测2007A 数据2007B 乘公交,看奥运2007B 数据2007C 手机“套餐”优惠几何2007C 数据2007D 体能测试时间安排2008A 数码相机定位2008B 高等教育学费标准探讨2008C 地面搜索2008D NBA赛程的分析与评价2008D 数据2009A 制动器试验台的控制方法分析2009A 数据2009B 眼科病床的合理安排2009C 卫星和飞船的跟踪测控2009D 会议筹备2010A 储油罐的变位识别与罐容表标定2010B 2010年上海世博会影响力的定量评估2010C 输油管的布置2010D 对学生宿舍设计方案的评价。

中国研究生数学建模竞赛题目

中国研究生数学建模竞赛题目

中国研究生数学建模竞赛题目
以下是中国研究生数学建模竞赛的一些题目示例:
1. 非线性规划问题:给定某工厂的生产和成本数据,要求优化产量和成本之间的关系,使得产量最大化同时成本最小化。

2. 最优调度问题:某电力公司需要安排多个发电机组的启动和停止时间,以满足不同时间段的电力需求和节约燃料成本等条件。

3. 网络流问题:某物流中心需要将多个物品从供应商通过不同的物流通道送达多个目的地,要求建立一个最优的运输方案,使得总运输时间最短。

4. 高等数学问题:给定一个复杂函数模型,要求推导该函数的极值点、驻点和拐点,并分析函数在不同区间的增减性和凹凸性。

5. 随机过程问题:某金融交易市场的交易量数据呈现随机波动,要求建立一个合适的随机模型,进行交易风险评估和预测。

6. 图论问题:某城市的交通网络由多个节点和边组成,要求分析城市中的交通拥堵情况,找到最短路径和最少换乘的出行方案。

以上只是一些示例题目,实际的竞赛题目会根据具体的考查内
容和难度设置。

每年竞赛的题目都会有所变化,考察的内容也会涵盖数学的不同领域和应用实践。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东华大学2006年运筹学模型竞赛题
注意:
1. 论文正文要求控制在4~8页;
2. 论文连同计算程序做成一个WinZip或WinRAR压缩文件必须在10月24日23:00前
3.评分标准:模型40%,结果20%,程序20%,写作10%,创见10%。

A 易拉罐下料问题
某公司采用一套柔性制造系统生产一种容量为255毫升的易拉罐,这种易拉罐是用镀锡板冲压制成的。

易拉罐为圆柱形,罐身高13厘米,上盖和下底直径为5厘米。

加工原料为60厘米50厘米的镀锡板.
(1)200张镀锡板最多可以生产多少只易拉罐怎样安排生产
(2)现在可以1元的市场价格购得最多2万张镀锡板,每种不同的加工模式需要付出100元生产准备费。

每张镀锡板加工费元,而加工余料可以1元/米2价格出售。

每只易拉罐加工费元,收益为元。

产量至少达到怎样规模公司才可以盈利怎样安排生产,可以使总利润达到最大
(3)如果允许改变易拉罐的形状,怎样可以进一步节省材料和提高利润对于变形后的易拉罐回答(1)(2)中的问题。

B 市场分配问题
某大型公司有D1 和D2 两个分公司。

该公司向零售商供应油和酒。

公司打算将每位零售商分配给分公司D1 或分公司D2;由分公司向他供应货物。

根据两个分公司的情况,这种分配应尽可能使分公司Dl 控制40% 销售量,D2 控制其余的60% 销售量。

这些零售商的编号见下面给出M1 至M24, 每位零售商有个预计的油和酒的销售量,销售量单位是100万公升。

编号M1 至M8 的零售商在I 区, 编号M9 至M18 的在Ⅱ区, 编号M19 至M24 的在Ⅲ区。

被认为有发展前途的一些零售商分在 A 组, 其余分在 B 组。

每位零售商有如下表给出的一些供应点。

现希望将如下各项尽可能按40/60 之比分给D1 和D2:
●油销售量的控制;
●零售商总数;
●供应点总数;
●酒销售量的控制;
●I 区油销售量的控制;●Ⅱ区油销售量的控制;
●Ⅲ区油销售量的控制;
● A 组零售商总数;
● B 组零售商总数。

这里有某些灵活性, 任何分配可以变化5%。

就是说, 每种分配可在35/65 至45/65 之间变动。

(1)试建立模型, 确定最佳分配方案。

并分析哪些零售商酒的销售量有10%的变化时不会影响分配方案。

(2)如果公司重组以后成了三个同等规模的分公司D1、D2和D3, 怎样修改模型及分配方案。

相关文档
最新文档