第6讲:正弦与余弦(1)
第6讲 正余弦函数图像及其性质(讲义)解析版

第6讲 正余弦函数图像及其性质知识梳理1、用五点法作正弦函数的简图(描点法):正弦函数x y sin =,]2,0[π∈x 的图象中,五个关键点是:)0,0( )1,2(π )0,(π )1,23(-π)0,2(π2、正弦函数R x x y ∈=,sin 的图像:把x y sin =,]2,0[π∈x 的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为π2,就得到R x x y ∈=,sin 的图像,此曲线叫做正弦曲线。
由正弦函数图像可知: (1)定义域:R(2)值域:[]1,1- ; 正弦线的长度小于或等于单位圆的半径的长度,所以1|sin |≤x , 即 1sin 1≤≤-x ,也就是说,正弦函数的值域是1,1[-亦可由正弦图像直接得出。
(3)奇偶性:奇函数由x x sin )sin(-=-可知:x y sin =为奇函数,正弦曲线关于原点O 对称(4)单调递增区间:z k k k ∈⎥⎦⎤⎢⎣⎡+-,22,22ππππ;(5)单调递减区间:z k k k ∈⎥⎦⎤⎢⎣⎡++,232,22ππππ; (6)对称中心:(0,πk );(7)对称轴:2ππ+=k x(8)最值:当且仅当,22ππ+=k x y 取最大值1max =y ;当且仅当,232ππ+=k x y 取最小值1min -=y 。
(9)最小正周期:π2=T一般地,对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f 就叫做周期函数,非零常数T 叫做这个函数的周期由此可知)0(2,,4,2,2,4,≠∈--k z k k 且πππππ 都是这两个函数的周期对于一个周期函数)(x f ,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期根据上述定义,可知:正弦函数、余弦函数都是周期函数,)0(2≠∈k z k k 且π都是它的周期,最小正周期是π2注意:1.周期函数定义域M x ∈,则必有M T x ∈+, 且若0>T ,则定义域无上界;0<T 则定义域无下界;2.“每一个值”只要有一个反例,则)(x f 就不为周期函数;3.T 往往是多值的(如x y sin =中 ,4,2,2,4,ππππ--都是周期)周期T 中最小的正数叫做)(x f 的最小正周期(有些周期函数没有最小正周期)5、余弦函数R x x y ∈=,cos 的图像:(1)定义域:R (2)值域:[]1,1- (3)奇偶性:偶函数(4)单调递增区间:[]πππk k 2,2-,Z k ∈ (5)单调递减区间:[]Z k k k ∈+,2,2πππ(6)对称中心:(0,2ππ+k )(7)对称轴:πk x =(8)最值:当且仅当,2πk x =y 取最大值1max =y ; 当且仅当,2ππ+=k x y 取最小值1min -=y 。
正弦和余弦

正弦和余弦导读:本文正弦和余弦,仅供参考,如果觉得很不错,欢迎点评和分享。
教学建议1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.2.重点、难点分析(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:∽ ∽ ∽ ……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号.应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:很显然,这些表达式提供给我们丰富的边与角间的数量关系.5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.根据定义,有另一方面,可以想像,当时,边与AC重合(即),所以当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有把以上结果可以集中列出下面的表:116.教法建议:(1)联系实际,提出问题通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.(2) 动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.(3)加强数形结合思想的教学“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.第一课时一、教学目标1. 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。
第4章第6讲 正弦定理和余弦定理

第6讲 正弦定理和余弦定理基础知识整合1.正弦定理a sin A =01b sin B =02csin C =2R , 其中2R 为△ABC 外接圆的直径.变式:a =032R sin A ,b =042R sin B ,c =052R sin C . a ∶b ∶c =06sin A ∶07sin B ∶08sin C . 2.余弦定理a 2=09b 2+c 2-2bc cos A ;b 2=10a 2+c 2-2ac cos B ; c 2=11a 2+b 2-2ab cos C .变式:cos A =12b 2+c 2-a 22bc ;cos B =13a 2+c 2-b 22ac ;cos C =14a 2+b 2-c 22ab . sin 2A =sin 2B +sin 2C -2sin B sin C cos A .3.在△ABC 中,已知a ,b 和A 时,三角形解的情况图形关系式 解的个数 A 为锐角a <b sin A15无解a =b sin A16一解b sin A <a <b 17两解a ≥b18一解 A 为钝角a >b19一解或直角a ≤b 20无解4.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =2112ac sin B =2212ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .1.(2019·北京西城模拟)已知△ABC 中,a =1,b =2,B =45°,则A 等于( ) A .150° B .90° C .60° D .30°答案 D解析 由正弦定理,得1sin A =2sin45°,得sin A =12.又a <b ,∴A <B =45°.∴A =30°.故选D.2.(2019·安徽马鞍山一模)△ABC的内角A,B,C的对边分别为a,b,c.已知a=3,b=2,A=60°,则c=()A.12B.1C. 3 D.2答案 B解析∵a=3,b=2,A=60°,∴由余弦定理a2=b2+c2-2bc cos A,得3=4+c2-2×2×c×12,整理得c2-2c+1=0,解得c=1.故选B.3.(2019·安徽合肥模拟)在△ABC中,A=60°,AB=2,且△ABC的面积为3 2,则BC的长为()A.32B. 3C.2 3 D.2 答案 B解析因为S=12AB·AC sin A=12×2×32AC=32,所以AC=1,所以BC2=AB2+AC2-2AB·AC cos60°=3.所以BC= 3.4.(2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=()A.6 B.5C.4 D.3答案 A解析∵a sin A-b sin B=4c sin C,∴由正弦定理,得a2-b2=4c2,即a2=4c2+b2.由余弦定理,得cos A=b 2+c2-a22bc=b2+c2-(4c2+b2)2bc=-3c22bc=-14,∴bc=6.故选A.5.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=-1 4,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4.6.在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 答案 2解析 因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin45°=6sin60°,解得AC =2.核心考向突破考向一 利用正、余弦定理解三角形 例1 (1)(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30 C.29 D .2 5答案 A解析 因为cos C =2cos 2C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35,所以AB 2=BC 2+AC 2-2BC ·AC ·cos C =1+25-2×1×5×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.选A.(2)(2019·沧州七校联考)已知在△ABC 中,a =5,b =15,∠A =30°,则c =( )A .2 5B . 5C .25或 5D .均不正确 答案 C解析 ∵a sin A =bsin B ,∴sin B =b sin A a =155·sin30°=32.∵b >a ,∴B =60°或120°.若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍.②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.[即时训练] 1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理,得b sin B =csin C , ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.2.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.答案1225 7210解析 如图, 易知sin ∠C =45, cos ∠C =35.在△BDC 中,由正弦定理可得 BD sin ∠C =BCsin ∠BDC, ∴BD =BC ·sin ∠C sin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )] =sin(∠C +∠BDC )=sin ∠C ·cos ∠BDC +cos ∠C ·sin ∠BDC =45×22+35×22=7210.考向二 利用正、余弦定理判断三角形形状例2(1)设△ABC的内角A,B,C所对的边分别为a,b,c,若a2+b2-c2=ab,且2cos A sin B=sin C,则△ABC的形状为()A.等边三角形B.直角三角形C.钝角三角形D.不确定答案 A解析∵a2+b2-c2=ab,∴cos C=a 2+b2-c22ab=12,又0<C<π,∴C=π3,又由2cos A sin B=sin C,得sin(B-A)=0,∴A=B,故△ABC为等边三角形.(2)在△ABC中,a,b,c分别表示三个内角A,B,C的对边,如果(a2+b2)sin(A -B)=(a2-b2)sin(A+B),则该三角形的形状为()A.直角三角形B.等边三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 C解析∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),∴(a2+b2)(sin A cos B-cos A sin B)=(a2-b2)(sin A cos B+cos A sin B),∴a2cos A sin B=b2sin A cos B,∴sin2A cos A sin B=sin2B sin A cos B,∴sin A cos A=sin B cos B,∴sin2A=sin2B,∴A=B或A+B=π2,即△ABC是等腰三角形或直角三角形.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a=2R sin A,a2+b2-c2=2ab cos C等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A=sin B⇔A=B;sin(A-B)=0⇔A=B;sin2A=sin2B⇔A=B或A+B=π2等.(2)利用正弦定理、余弦定理化角为边,如sin A=a2R,cos A=b2+c2-a22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.提醒:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A,B,C的范围对三角函数值的影响.[即时训练] 3.(2019·陕西安康模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B解析∵b cos C+c cos B=a sin A,∴由正弦定理,得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.又sin A>0,∴sin A=1,又A∈(0,π),∴A=π2,故△ABC为直角三角形.4.在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC 为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形答案 A解析根据正弦定理得cb =sin Csin B<cos A,即sin C<sin B cos A,∵A+B+C=π,∴sin C=sin(A+B)<sin B cos A,整理得sin A cos B<0,又三角形中sin A>0,∴cos B<0,∴π2<B<π.∴△ABC为钝角三角形.精准设计考向,多角度探究突破考向三正、余弦定理的综合应用角度1三角形面积问题例3(1)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=223,a=3,S△ABC=22,则b的值为()A.6 B.4C.2 D.2或3答案 D解析因为S△ABC=22=12bc sin A,sin A=223,且A∈⎝⎛⎭⎪⎫0,π2,所以bc=6,cos A=13,又因为a=3,由余弦定理,得9=b2+c2-2bc cos A=b2+c2-4,所以b2+c2=13,可得b=2或b=3.(2)(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a =2c,B=π3,则△ABC的面积为________.答案6 3解析由余弦定理,得b2=a2+c2-2ac cos B.又b=6,a=2c,B=π3,∴36=4c2+c2-2×2c2×12,∴c=23,∴a=43,∴S△ABC=12ac sin B=12×43×23×32=6 3.(3)(2020·合肥八中模拟)在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长分别为a,b ,c ,则其面积S =p (p -a )(p -b )(p -c ),这里p =12(a +b +c ).已知在△ABC 中,BC =6,AB =2AC ,则其面积取最大值时,sin A =________.答案 35解析 已知在△ABC 中,BC =6,AB =2AC , 所以a =6,c =2b ,所以p =12(6+b +2b )=3+3b2, △ABC 的面积S =p (p -a )(p -b )(p -c ) =⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫3b 2+3-b ⎝ ⎛⎭⎪⎫3+3b 2-2b =⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫b 2+3⎝ ⎛⎭⎪⎫3-b 2 =⎝ ⎛⎭⎪⎫9b 24-9⎝ ⎛⎭⎪⎫9-b 24 =3-116(b 2-20)2+16.故当b 2=20时,S 有最大值, 所以b =25,c =45, cos A =b 2+c 2-a 22bc =45, 所以sin A =35.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.[即时训练] 5.(2018·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知b sin C+c sin B=4a sin B sin C,b2+c2-a2=8,则△ABC的面积为________.答案233解析根据题意,结合正弦定理可得sin B sin C+sin C sin B=4sin A sin B sin C,所以sin A=12,结合余弦定理可得2bc cos A=8,所以A为锐角,所以cos A=32,所以bc=833,所以△ABC的面积为S=12bc sin A=12×833×12=233.6.(2020·福建三明质量检查)△ABC的内角A,B,C所对的边分别是a,b,c,且b=3(a cos B+b cos A),b+c=8.(1)求b,c;(2)若BC边上的中线AD=72,求△ABC的面积.解(1)由正弦定理,得sin B=3(sin A cos B+sin B cos A),所以sin B=3sin(A+B),因为A+B+C=π,所以sin(A+B)=sin(π-C)=sin C,所以sin B=3sin C,所以b=3c,又b+c=8,所以b=6,c=2.(2)在△ABD和△ACD中,由余弦定理,得c2=AD2+BD2-2AD·BD·cos∠ADB,b2=AD2+CD2-2AD·CD·cos∠ADC.因为∠ADB+∠ADC=π,所以cos∠ADB=-cos∠ADC,又因为b=6,c=2,BD=DC=a2,AD=72,所以a2=31,所以cos ∠BAC =b 2+c 2-a 22bc =38,又因为∠BAC ∈(0,π),所以sin ∠BAC =558. 所以△ABC 的面积S △ABC =12bc sin ∠BAC =3554. 角度2 三角形中的范围问题例4 (1)(2019·江西赣州模拟)在锐角△ABC 中,若B =2A ,则ba 的取值范围是( )A .(2,6)B .(1,2)C .(2,3)D .(3,6)答案 C解析 ∵B =2A ,∴b a =sin Bsin A =2cos A . 又△ABC 为锐角三角形,∴A +B =3A >π2,B =2A <π2,∴π6<A <π4,∴22<cos A <32,∴2<ba < 3.故选C.(2)(2018·北京高考)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;ca 的取值范围是________.答案 π3 (2,+∞)解析 依题意有12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,则tan B =3, ∵0<∠B <π,∴∠B =π3.c a =sin C sin A =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =12+3cos A 2sin A =12+32·1tan A , ∵∠C 为钝角,∴2π3-∠A >π2,又∠A >0,∴0<∠A <π6,则0<tan A <33, ∴1tan A >3,故c a >12+32×3=2. ∴ca 的取值范围为(2,+∞).解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是:要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.[即时训练] 7.(2019·山东实验中学等四校联考)如图所示,边长为1的正三角形ABC 中,点M ,N 分别在线段AB ,AC 上,将△AMN 沿线段MN 进行翻折,得到右图所示的图形,翻折后的点A 在线段BC 上,则线段AM 的最小值为________.答案 23-3解析 设AM =x ,∠AMN =α,则BM =1-x , ∠AMB =180°-2α,∴∠BAM =2α-60°, 在△ABM 中,由正弦定理可得AM sin ∠ABM =BM sin ∠BAM ,即x32=1-x sin (2α-60°),∴x =3232+sin (2α-60°),∴当2α-60°=90°,即α=75°时,x 取得最小值为3232+1=23-3,即线段AM 的最小值为23-3.8.(2019·陕西第三次教学质量检测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且(a +b +c )(a +b -c )=3ab .(1)求角C 的值;(2)若c =2,且△ABC 为锐角三角形,求a +b 的取值范围. 解 (1)由题意知(a +b +c )(a +b -c )=3ab , ∴a 2+b 2-c 2=ab ,由余弦定理可知, cos C =a 2+b 2-c 22ab =12, 又C ∈(0,π),∴C =π3. (2)由正弦定理可知, a sin A =b sin B =2sin π3=433,即a =433sin A ,b =433sin B , ∴a +b =433(sin A +sin B ) =433⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫2π3-A=23sin A +2cos A =4sin ⎝ ⎛⎭⎪⎫A +π6,又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<A <π2,0<B =2π3-A <π2,即π6<A <π2,则π3<A +π6<2π3,∴23<4sin ⎝ ⎛⎭⎪⎫A +π6≤4,综上a +b 的取值范围为(23,4]. 角度3 正、余弦定理解决平面几何问题例5 (2019·南宁模拟)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解 (1)由cos ∠ADC =17知sin ∠ADC =437, 于是sin ∠BAD =sin(∠ADC -∠B ) =sin ∠ADC ·cos π3-cos ∠ADC ·sin π3 =437×12-17×32=3314. (2)在△ABD 中,由正弦定理,得BD =AB ·sin ∠BAD sin ∠ADB =AB ·sin ∠BAD sin (π-∠ADC )=8×3314437=3.在△ABC 中,由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49.所以AC =7.平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.[即时训练]9.(2020·河北唐山期末)如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.(1)若∠AMB=60°,求BC的长;(2)设∠DCM=θ,若MB=4MC,求tanθ.解(1)由∠BMC=60°,∠AMB=60°,得∠CMD=60°.在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2.在△MBC中,由余弦定理,得BC2=MB2+MC2-2MB·MC·cos∠BMC=12,所以BC=2 3.(2)因为∠DCM=θ,所以∠ABM=60°-θ,0°<θ<60°.在Rt△MCD中,MC=1,sinθ,在Rt△MAB中,MB=2sin(60°-θ)由MB =4MC ,得2sin(60°-θ)=sin θ, 所以3cos θ-sin θ=sin θ,即2sin θ=3cos θ, 整理可得tan θ=32.学科素养培优(八) 利用基本不等式破解三角形中的最值问题(2018·江苏高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9解析 依题意画出图形,如图所示. 易知S △ABD +S △BCD =S △ABC , 即12c sin60°+12a sin60°=12ac sin120°, ∴c +a =ac ,∴1a +1c =1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.答题启示利用基本不等式破解三角形中的最值问题时,当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.对点训练(2019·山东烟台模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=tan A cos B +tan Bcos A .(1)证明:a +b =2c ; (2)求cos C 的最小值.解 (1)证明:由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C .由正弦定理,得a +b =2c .(2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab=38⎝ ⎛⎭⎪⎫a b +b a -14≥34-14=12,当且仅当a =b 时,等号成立. 故cos C 的最小值为12.课时作业1.(2020·广东广雅中学模拟)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .2∶3B .4∶3C .3∶1D .3∶2答案 C解析 由正弦定理得3sin B cos C =sin C -3sin C cos B,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,故选C.2.(2019·南昌模拟)在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27B .7C .2 2D .2 3答案 D解析 由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C =12,故c =2 3.3.(2019·兰州市实战考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34 D .-34答案 B解析 由题意得,b 2=ac =2a 2,所以b =2a ,所以cos C =a 2+b 2-c22ab=a 2+2a 2-4a 22a ×2a=-24,故选B.4.(2019·广西南宁模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12 B .32C .1D .34答案 A解析 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC 的面积S =12ac sin B =12×3×13=12.故选A.5.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c22ab <0,故C 是钝角.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( )A.π6 B .π4 C.π3 D .3π4答案 C解析 因为c -b c -a =sin A sin C +sin B ,所以c -b c -a =ac +b ,即(c -b )(c +b )=a (c -a ),所以a 2+c 2-b 2=ac ,所以cos B =12,又B ∈(0,π),所以B =π3.7.(2019·大连双基测试)△ABC 中,AB =2,AC =3,B =60°,则cos C =( ) A.33 B .±63 C .-63 D .63 答案 D解析 由正弦定理得AC sin B =AB sin C ,∴sin C =AB ·sin B AC =2×sin60°3=33,又AB <AC ,∴0<C <B =60°,∴cos C =1-sin 2C =63.故选D.8.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2 B .π3 C.π4 D .π6 答案 C解析 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C .由余弦定理得a 2+b 2-c 2=2ab cos C ,∴sin C =cos C .∵C ∈(0,π),∴C =π4.故选C.9.(2019·江西新八校第二次联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222,若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.32 B .3 C.12 D .1答案 A解析 因为a 2sin C =2sin A ,所以a 2c =2a ,所以ac =2, 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2, 所以a 2+c 2-b 2=6-2ac =6-4=2, 从而△ABC 的面积为S △ABC =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32,故选A. 10.(2019·南阳模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C =( )A.π3 B .3π4 C.5π6 D .2π3答案 D解析 因为3sin A =5sin B ,所以由正弦定理可得:3a =5b ,所以a =5b3. 又b +c =2a ,所以c =2a -b =7b3, 不妨取b =3,则a =5,c =7,所以cos C=a 2+b2-c22ab=52+32-722×5×3=-12.因为C∈(0,π),所以C=2π3.11.已知△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C +c cos A,b=2,则△ABC的面积的最大值是()A.1 B. 3C.2 D.4答案 B解析∵2b cos B=a cos C+c cos A,∴2sin B cos B=sin A cos C+sin C cos A=sin(A+C)=sin B.∵0<B<π,∴cos B=12,∴B=π3.∵cos B=a 2+c2-b22ac=12,b=2,∴a2+c2-4=ac.∵a2+c2≥2ac,∴2ac-4≤ac,即ac≤4,当且仅当a=c时等号成立,∴S△ABC =12ac sin B≤12×4×32=3,故△ABC的面积的最大值为 3.12.在△ABC中,角A,B,C的对边分别为a,b,c,若2(b cos A+a cos B)=c2,b=3,3cos A=1,则a=()A. 5 B.3C.10 D.4答案 B解析由正弦定理可得2(sin B cos A+sin A cos B)=c sin C,∵2(sin B cos A+sin A cos B)=2sin(A+B)=2sin C,∴2sin C=c sin C,∵sin C>0,∴c=2,由余弦定理得a2=b2+c2-2bc cos A=32+22-2×3×2×13=9,∴a=3.故选B.13.(2020·北京海淀模拟)在△ABC中,A=2π3,a=3c,则bc=________.答案 1解析由题意知sin2π3=3sin C,∴sin C=12,又0<C<π3,∴C=π6,从而B=π6,∴b=c,故bc=1.14.△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,则B=________.答案π3解析解法一:由2b cos B=a cos C+c cos A及正弦定理,得2sin B cos B=sin A cos C+sin C cos A.∴2sin B cos B=sin(A+C).又A+B+C=π,∴A+C=π-B.∴2sin B cos B=sin(π-B)=sin B.又sin B≠0,∴cos B=12.∴B=π3.解法二:∵在△ABC中,a cos C+c cos A=b,∴条件等式变为2b cos B=b,∴cos B=12.又0<B<π,∴B=π3.15.(2019·杭州模拟)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)·sin C,则△ABC的面积的最大值为________.答案 3解析因为a=2,(2+b)(sin A-sin B)=(c-b)sin C,所以根据正弦定理,得(a +b)(a-b)=(c-b)c,所以a2-b2=c2-bc,所以b2+c2-a2=bc,根据余弦定理,得cos A=b 2+c2-a22bc=12,因为A∈(0,π),故A=π3.因为b2+c2-bc=4,所以4=b2+c2-bc≥2bc-bc=bc(当且仅当b=c=2时取等号),所以△ABC的面积S△ABC =12bc sin A=34bc≤34×4=3,所以△ABC的面积的最大值为 3.16.已知在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示, 则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin ∠ABC =154,cos ∠ABC =14. 所以S △BDC =12BC ·BD ·sin ∠DBC =12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104.17.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C , 故由正弦定理得b 2+c 2-a 2=bc . 由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理,得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C , 可得cos(C +60°)=-22.因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24.18.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝ ⎛⎭⎪⎫2B +π6的值.解 (1)在△ABC 中,由正弦定理b sin B =csin C , 得b sin C =c sin B .由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a ,所以b =43a . 因为b +c =2a ,所以c =23a .由余弦定理可得 cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78,故sin ⎝ ⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716.19.(2019·河南安阳一模)如图,在圆内接四边形ABCD 中,AB =2,AD =1,3BC =3BD cos α+CD sin β.(1)求角β的大小;(2)求四边形ABCD 周长的取值范围. 解 (1)∵3BC =3BD cos α+CD sin β, ∴3sin ∠BDC =3sin βcos α+sin αsin β, ∴3sin(α+β)=3sin βcos α+sin αsin β, ∴3(sin αcos β+sin βcos α) =3sin βcos α+sin αsin β,∴3sin αcos β=sin αsin β,∴tan β=3, 又β∈(0,π),∴β=π3.(2)根据题意,得∠BAD =2π3,由余弦定理,得 BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =4+1-2×2×1×cos 2π3=7, 又BD 2=CB 2+CD 2-2CB ·CD cos β =(CB +CD )2-3CB ·CD≥(CB +CD )2-3(CB +CD )24=(CB +CD )24,∴CB +CD ≤27,又CB +CD >7,∴四边形ABCD 的周长AB +BC +CD +DA 的取值范围为(3+7,3+27]. 20.(2019·河南联考)如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,已知c=4,b=2,2c cos C=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解(1)因为c=4,b=2,2c cos C=b,所以cos C=b2c=14.由余弦定理得cos C=a2+b2-c22ab=a2+4-164a=14,所以a=4,即BC=4.在△ACD中,CD=2,AC=2,所以AD2=AC2+CD2-2AC·CD·cos∠ACD=6,所以AD= 6.(2)因为AE是∠BAC的平分线,所以S△ABES△ACE=12AB·AE·sin∠BAE12AC·AE·sin∠CAE=ABAC=2,又S△ABES△ACE=BEEC,所以BEEC=2,所以EC=13BC=43,DE=2-43=23.又cos C=14,所以sin C=1-cos2C=154.所以S△ADE=12DE·AC·sin C=156.。
第6讲正弦定理和余弦定理

第6讲正弦定理和余弦定理[最新考纲]掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则正弦定理余弦定理内容常见变形(1)(2)(3)cos A=cos B=cos C=解决的问题(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角2.在△ABC中,已知a,b和A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ab sin C=12ac sin B.(3)S=12r(a+b+c)(r为△ABC内切圆半径).考点一利用正弦、余弦定理解三角形【例1】(1)(2013·湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3 b,则角A等于().A.π3 B.π4 C.π6 D.π12(2)(2014·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=42,B =45°,则sin C=______.【训练1】(1)在△ABC中,a=23,c=22,A=60°,则C=().A.30°B.45°C.45°或135°D.60°(2)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=().A.30°B.60°C.120°D.150°考点二判断三角形的形状【例2】(2014·临沂一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b -c)sin B+(2c-b)sin C.(1)求角A的大小;(2)若sin B+sin C=3,试判断△ABC的形状.【训练2】(1)(2013·山东省实验中学诊断)在△ABC中,内角A,B,C的对边分别为a,b,c,且2c2=2a2+2b2+ab,则△ABC是().A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sin C,则△ABC的形状是 ().A.锐角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形考点三与三角形面积有关的问题【例3】(2013·新课标全国Ⅱ卷)△ABC的内角A,B,C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.【训练3】(2013·湖北卷)在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B +C)=1.(1)求角A的大小;(2)若△ABC的面积S=53,b=5,求sin B sin C的值.答题模板6——解三角形问题【典例】(12分)(2013·山东卷)设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cos B=7 9.(1)求a,c的值;(2)求sin(A-B)的值.【自主体验】已知a,b,c分别为△ABC三个内角A,B,C的对边,c=3a sin C-c cos A.(1)求A;(2)若a=2,△ABC的面积为3,求b,c.参考答案考点一【例1】解析 (1)在△ABC 中,由正弦定理及已知得2sin A ·sin B =3sin B , ∵B 为△ABC 的内角,∴sin B ≠0.∴sin A =32.又∵△ABC 为锐角三角形,∴A ∈⎝ ⎛⎭⎪⎫0,π2,∴A =π3. (2)由余弦定理,得b 2=a 2+c 2-2ac cos B =1+32-82×22=25,即b =5. 所以sin C =c ·sin B b =42×225=45.【训练1】解析 (1)由正弦定理,得23sin 60°=22sin C , 解得:sin C =22,又c <a ,所以C <60°,所以C =45°. (2)∵sin C =23sin B ,由正弦定理,得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.考点二【例2】解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°. 由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,B =60°.∴A =B =C =60°,△ABC 为等边三角形.【训练2】解析 (1)由2c 2=2a 2+2b 2+ab ,得a 2+b 2-c 2=-12ab ,所以cos C =a 2+b 2-c 22ab =-12ab2ab =-14<0,所以90°<C <180°,即△ABC 为钝角三角形. (2)由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b2[sin(A-B)+sin C]=a2[sin C-sin(A-B)],即b2sin A cos B=a2cos A sin B,即sin2B sin A cos B=sin2A cos A sin B,所以sin 2B=sin 2A,由于A,B是三角形的内角,故0<2A<2π,0<2B<2π.故只可能2A=2B或2A=π-2B,即A=B或A+B=π2.故△ABC为等腰三角形或直角三角形.答案(1)A(2)D 考点三【例3】解(1)由已知及正弦定理,得sin A=sin B cos C+sin C sin B.①又A=π-(B+C),故sin A=sin(B+C)=sin B cos C+cos B sin C.②由①,②和C∈(0,π)得sin B=cos B.又B∈(0,π),所以B=π4.(2)△ABC的面积S=12ac sin B=24ac.由已知及余弦定理,得4=a2+c2-2ac cos π4.又a2+c2≥2ac,故ac≤42-2,当且仅当a=c时,等号成立.因此△ABC面积的最大值为2+1.【训练3】解(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=12或cos A=-2(舍去).因为0<A<π,所以A=π3.(2)由S=12bc sin A=12bc·32=34bc=53,得bc=20.又b=5,所以c=4.由余弦定理,得a2=b2+c2-2bc cos A=25+16-20=21,故a=21.又由正弦定理,得sin B sin C=ba sin A·ca sin A=bca2sin2A=2021×34=57.【典例】[规范解答](1)由余弦定理b2=a2+c2-2ac cos B,得b2=(a+c)2-2ac(1+cos B),又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3, (6分) (2)在△ABC 中,sin B =1-cos 2B =429,(7分)由正弦定理得sin A =a sin B b =223.(9分)因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13. (10分)因此sin(A -B )=sin A cos B -cos A sin B =10227. (12分) 【自主体验】解 (1)由c =3a sin C -c cos A 及正弦定理,得 3sin A sin C -cos A ·sin C -sin C =0,由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,又0<A <π,所以-π6<A -π6<5π6,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.基础巩固题组 (建议用时:40分钟)一、选择题1.(2013·绍兴模拟)在△ABC 中,若a 2-c 2+b 2=3ab ,则C =( ). A .30° B .45° C .60° D .120°解析 由a 2-c 2+b 2=3ab ,得cos C =a 2+b 2-c 22ab =3ab 2ab =32,所以C =30°.答案 A2.(2014·合肥模拟)在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ).A.32 B.3 C .2 3 D .2解析 S =12×AB ·AC sin 60°=12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,所以BC = 3. 答案 B3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( ).A .23+2 B.3+1 C .23-2 D.3-1 解析 由正弦定理b sinB =csin C 及已知条件得c =22, 又sin A =sin(B +C )=12×22+32×22=2+64. 从而S △ABC =12bc sin A =12×2×22×2+64=3+1. 答案 B4.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ). A .2 3 B .2 C. 2 D .1解析 由a sin A =b sin B ,得a sin A =b sin 2A ,所以1sin A =32sin A cos A ,故cos A =32,又A ∈(0,π),所以A =π6,B =π3,C =π2,c =a 2+b 2=12+(3)2=2. 答案 B5.(2013·陕西卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ). A .直角三角形 B .锐角三角形 C .钝角三角形 D .不确定解析 由正弦定理及已知条件可知sin B cos C +cos B sin C =sin 2 A ,即sin(B +C )=sin 2 A ,而B +C =π-A ,所以sin(B +C )=sin A ,所以sin 2 A =sin A ,又0<A <π,sin A >0,∴sin A =1,即A =π2. 答案 A 二、填空题6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由题意知,sin B +cos B =2,所以2sin ⎝ ⎛⎭⎪⎫B +π4=2,所以B =π4,根据正弦定理可知a sin A =b sin B ,可得2sin A =2sin π4,所以sin A =12,又a <b ,故A =π6.答案 π67.(2014·惠州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32,∴sin B =32,∴B =π3或2π3. 答案 π3或2π38.(2013·烟台一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B 等于________.解析 由余弦定理,得c 2=a 2+b 2-2ab cos C =4,即c =2.由cos C =14得sin C =154.由正弦定理b sin B =c sin C ,得sin B =b sin C c =22×154=154(或者因为c =2,所以b =c =2,即三角形为等腰三角形,所以sin B =sin C =154). 答案154三、解答题9.(2014·宜山质检)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且a =12c +b cos C . (1)求角B 的大小;(2)若S △ABC =3,b =13,求a +c 的值. 解 (1)由正弦定理,得sin A =12sin C +sin B cos C , 又因为A =π-(B +C ),所以sin A =sin(B +C ),可得sin B cos C +cos B sin C =12sin C +sin B cos C , 即cos B =12,又B ∈(0,π),所以B =π3.(2)因为S △ABC =3,所以12ac sin π3=3,所以ac =4, 由余弦定理可知b 2=a 2+c 2-ac ,所以(a +c )2=b 2+3ac =13+12=25,即a +c =5.10.(2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)求c 的值.解 (1)因为a =3,b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理,得3sin A =26sin 2A , 所以2sin A cos A sin A =263,故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B =2∠A ,所以cos B =2cos 2A -1=13,所以sin B =1-cos 2B =223.在△ABC 中,sin C =sin(A +B ) =sin A cos B +cos A sin B =539. 所以c =a sin Csin A =5.能力提升题组 (建议用时:25分钟)一、选择题1.(2014·温岭中学模拟)在锐角△ABC 中,若BC =2,sin A =223,则AB →·AC →的最大值为( ). A.13 B.45 C .1 D .3解析 由余弦定理,得a 2=b 2+c 2-2bc ×13=4,由基本不等式可得4≥43bc ,即bc ≤3,所以AB →·AC →=bc cos A =13bc ≤1.答案 C2.(2013·青岛一中调研)在△ABC 中,三边长a ,b ,c 满足a 3+b 3=c 3,那么△ABC 的形状为( ).A .锐角三角形B .钝角三角形C .直角三角形D .以上均有可能解析 由题意可知c >a ,c >b ,即角C 最大,所以a 3+b 3=a ·a 2+b ·b 2<ca 2+cb 2,即c 3<ca 2+cb 2,所以c 2<a 2+b 2.根据余弦定理,得cos C =a 2+b 2-c 22ab >0,所以0<C <π2,即三角形为锐角三角形.答案 A二、填空题3.(2013·浙江卷)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC=________.解析 如图,令∠BAM =β,∠BAC =α,故|CM |=|AM |sin(α-β),∵M 为BC 的中点,∴|BM |=|AM |sin(α-β).在△AMB 中,由正弦定理知,|AM |sin B =|BM |sin β,即|AM |sin ⎝ ⎛⎭⎪⎫π2-α=|AM |·sin (α-β)sin β, ∵sin β=13,∴cos β=223,∴13=cos α·⎝ ⎛⎭⎪⎫223sin α-13cos α =223sin αcos α-13cos 2α,整理得1=22sin αcos α-cos 2α,所以22tan α-1tan 2 α+1=1, 解得tan α=2,故sin α=63.答案 63三、解答题4.(2013·长沙模拟)在△ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足b cos C =(3a -c )cos B .(1)求cos B ; (2)若BC →·BA →=4,b =42,求边a ,c 的值.解 (1)由正弦定理和b cos C =(3a -c )cos B ,得sin B cos C =(3sin A -sin C )cos B ,化简,得sin B cos C +sin C cos B =3sin A cos B ,即sin(B +C )=3sin A cos B , 故sin A =3sin A cos B ,所以cos B =13.(2)因为BC →·BA →=4,所以BC →·BA →=|BC →|·|BA →|·cos B =4,所以|BC →|·|BA →|=12,即ac =12.① 又因为cos B =a 2+c 2-b 22ac =13,整理得,a 2+c 2=40.②联立①②⎩⎨⎧ a 2+c 2=40,ac =12,解得⎩⎨⎧ a =2,c =6或⎩⎨⎧ a =6,c =2. 学生用书第65页。
正弦定理、余弦定理及解三角形

第15页
返回目录
结束放映
考点突破 考点四 正、余弦定理在实际问题中的应用
训练 4 (2015·湖北卷)如图,一辆汽车在一条水平的公路上向 正西行驶,到 A 处时测得公路北侧一山顶 D 在西偏北 30°的方向 上,行驶 600 m 后到达 B 处,测得此山顶在西偏北 75°的方向上, 仰角为 30°,则此山的高度 CD=________m.
∴sin B= 1-cos2B
=2 3
2×79-13×4
9
2=1027
2 .
第3页
返回目录
结束放映
考点突破 考点一 利用正、余弦定理解三角形
规律方法
(1)解三角形时,如果式子中含有角的余弦或边的二次式,要 考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则 考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有 可能用到.
=sin∠6(海AB里C)=.ACsBinC120°=2×623= 22. ∴∠ABC=45°,易知 CB 方向与正北方向垂直,
从而∠CBD=90°+30°=120°.在△BCD 中,根据正弦定理,可得 sin∠BCD=BDsinC∠D CBD=10t·1s0in31t20°=12, ∴∠BCD=30°,∠BDC=30°,∴BD=BC= 6(海里),
则有 10t= 6,t=106≈0.245 小时=14.7 分钟.
故缉私船沿北偏东 60°方向,需 14.7 分钟才能追上走私船.
第14页
返回目录
结束放映
考点突破 考点三 和三角形面积有关的问题
规律方法
解三角形应用题的两种情形: (1)实际问题经抽象概括后,已知量与未知量全部集中在一 个三角形中,可用正弦定理或余弦定理求解; (2)实际问题经抽象概括后,已知量与未知量涉及到两个或 两个以上的三角形,这时需作出这些三角形,先解够条件的三角 形,然后逐步求解其他三角形,有时需设出未知量,从几个三角 形中列出方程(组),解方程(组)得出所要求的解.
2020高考数学一轮复习第三章三角函数、解三角形第6讲正弦定理、余弦定理课件

( C)
A.π3
B.23π
C.π3或23π
D.π6
(3)(2018·河南南阳期中)在△ABC 中,a=8,b=10,A=45°,则此三角形解
的情况是
( B)
A.一解
B.两解
C.一解或两解
D.无解
[解析] (1)△ABC 中,A∶B∶C=1∶1∶4,所以 A=π6,B=π6,C=23π,a∶
b∶c=sinA∶sinB∶sinC=12∶12∶ 23=1∶1∶ 3.
△ABC为
(A)
A.钝角三角形
B.直角三角形
C.锐角三角形
D.等边三角形
[解析] 依题意得sinC<sinBcosA,所以sin(A+B)<sinBcosA,即sinBcosA+
cosBsinA-sinBcosA<0,所以cosBsinA<0.又sinA>0,于是有cosB<0,B为钝角,
△ABC是钝角三角形.
(2)正、余弦定理可将三角形边的关系转化为角的关系,也可将角(三角函数) 的关系转化为边的关系.
(3)在三角形的判断中注意应用“大边对大角”. (4)已知边多优先考虑余弦定理,角多优先考虑正弦定理.
考点2 利用正、余弦定理判定三角形的形状——师生共研
例 3 (1)(2018·北京东城期中)设△ABC 的内角 A,B,C 所对的边分别为
边;
角;
(2)已知两边和其中一边的对角,求另一边和 (2)已知两边一角,求
其他两角
第三边和其他两个角
2.在△ABC中,已知a,b和A时,解的情况如下 A 为锐角
A 为钝角或直角
图形
关系式 解的个数
a<bsinA 无解
第6讲 正弦定理和余弦定理

第6讲 正弦定理和余弦定理【复习指导】1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:asin A =bsin B =csin C =a +b sin A +sin B =b +c sin B +sin C =sin sin c aC A++=a +b +csin A +sin B +sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:⑴.a :b :c =sin A :sin B :sin C ; ⑵.a =2R sin A ,b =2R sin B ,c =2R sin C ;⑶.sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ah a =12bh b =12ch c =12ab sin C =12bc sin A =12ca sin B =abc 4R =12r (a +b +c )(R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .221(||||)()2OAB S OA OB OA OB ∆=⋅−⋅一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .判断一解、两解的依据为“大边对大角”.两类问题在解三角形时,正弦定理可解决两类问题:⑴.已知两角及任一边,求其它边或角;⑵.已知两边及一边的对角,求其它边或角.情况⑵中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:⑴.已知两边及夹角求第三边和其他两角;⑵.已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:⑴.化边为角;⑵.化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.在△ABC 中,A =π3,B =5π12,a =10,则c =__________.【解】由A +B +C =π知,C =π4,由正弦定理a sin A =c sin C 得,c =1036.2.在△ABC 中,若sin A a =cos Bb,则B =__________.【解】由正弦定理知:sin A sin A =cos B sin B B ,故sin B =cos B ,即tan B =1,又0<B <π,则B =π4.3.在△ABC 中,a =3,b =1,c =2,则A =__________.【解】由余弦定理得:cos A =b 2+c 2-a 22bc =12,又0<A <π,故A =π3.4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为__________.【解】因cos C =13,又0<C <π,故sin C =223,故S △ABC =12ab sin C =43.5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________.【解】因a 2+b 2=c 2-3ab ,故cos C =a 2+b 2-c 22ab =-32,故C =5π6为三角形的最大内角.知识及思想方法小结1.正弦定理和余弦定理的应用条件?如:⑴.[11北京理]在△ABC 中,若b =5,B =π4,tan A =2,则sin A =______;a =_____.【解】因△ABC 中,tan A =2,故A 是锐角,故sin A cos A =2,又sin 2A +cos 2A =1,联立得,sin A =255,再由正弦定理得a sin A =bsin B,代入得,a =210.⑵.在ABC ∆中,已知a =2,cos B =817,tan C =2,求b ,c ,A .⑶.在ABC ∆中,已知a =10,b =17,sin C =817,求B ,c ,A .2.与其它知识的结合点⑴.边:代数公式;如:[12北京理]在△ABC 中,已知a =2,b +c =7,cos B =-14,求b .⑵.角:如同角三角函数的基本关系、诱导公式、两角和与差的三角函数、二倍角的三角函数、半角的三角函数;如:[13福建理]①.如图△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD =___________.【解】因sin ∠BAC =sin(π2+∠BAD )=cos ∠BAD =223,故由余弦定理得,BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =18+9-2×2×32×223=3,故BD =3. ②.如图,在Rt △ABC 中,AC ⊥BC ,D 在边AC 上,已知BC =2,CD =1,∠ABD =π4,则AD = .【解】易知,cos ∠CBD =255,sin ∠CBD =55,则cos ∠ABC =cos(π4+∠CBD )= cos π4cos ∠CBD -sin π4sin ∠CBD =1010=2/AB ,故AB =210,故AC =6,故AD =5.③.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =2,C =π4,cos B 2=255,求△ABC 的面积.【解】由cos B 2=255得,cos B =35,sin B =45,则sin A =sin(B +C )=7210,由正弦定理a sin A =c sin C 得,c =107,故S △ABC =12ac sin B =87. ⑶.边与角:向量.如:若|AB →|2+AB →·BC →=0,则△ABC 是___________.【解一】[角化边]由已知得,c =a cos B ,由余弦定理得,c =a •a 2+c 2-b 22ac,化简得,a 2=b 2+c 2,即A 为直角,故△ABC 是直角三角形.【解二】[边化角]由已知得,c =a cos B ,由正弦定理得,sin C =sin A cos B ,又A +B +C =π,sin C ==sin(A +B ) =sin A cos B ,即sin A cos B +cos A sin B =sin A cos B ,化简得,cos A sin B =0,因0<B <π,则sin B >0,故cos A =0,则A =π2,故△ABC 是直角三角形.【解三】由已知可知,c =a cos B ,又由射影定理得,c =a cos B +b cos A ,故b cos A =0,即cos A =0,又0<A <π,故A =π2,故△ABC 是直角三角形.【解四】由|AB →|2+AB →·BC →=0得,AB →·(AB →+BC →)=0,即AB →·AC →=0,即AB ⊥AC ,故△ABC 是直角三角形.考点一 利用正余弦定理解三角形【例1】在△ABC 中,a =3,b =2,B =π4.求角A ,C 和边c .[审题视点]已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.【解】由正弦定理a sin A =b sin B ,即3/sin A =2/sin π4,故sin A =32.因a >b ,故A =π3或A =2π3.当A =π3时,C =5π12,c =b sin C sinB =12(6+2);当A =2π3时,C =π12,c =b sin Csin B =6-22.一.正弦定理的应用条件:⑴.已知两角和任意一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可. ⑵.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.二.情况⑴只有一解,而情况⑵是有可能出现两解的情况,判断一解、两解的依据为“大边对大角”.D CBA【练习1】在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c.⑴.求角B 的大小;⑵.若b =13,a +c =4,求△ABC 的面积.[审题视点]由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解.【解一】⑴.由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c ,整理得:a 2+c 2-b 2=-ac .故cos B =a 2+c 2-b 22ac =-ac 2ac =-12.因B 为三角形的内角,故B =2π3. 【解二】由cos B cos C =-b 2a +c及正弦定理知,cos Bcos C =-sin B /(2sin A +sin C ),2sin A cos B +sin C cos B =-sin B cos C ,故2sin A cos B =-sin B cos C -cos B sin C ,即2sin A cos B =-sin(B +C ),即2sin A cos B =-sin A ,由0<A <π知,0<sin A <1,故cos B =-12,由0<B <π,故B =2π3.⑵.将b =13,a +c =4,B =2π3代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,故13=16-2ac ×12,故ac =3.故S △ABC =12ac sin B =334.⑴.根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. ⑵.熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【例2】在△ABC 中,a =4,b +c =5,tan A +tan B =-3(1-tan A tan B ),求sin A .【解】由tan A +tan B =-3(1-tan A tan B )知,tan C =3,又0<C <π,故C =π3,又c 2=a 2+b 2-2ab cos C=16+b 2-4b ,又由b +c =5得,c =5-b ,代入上式得,b =32,故c =72,由a sin A =csin C 得,sin A=437. 【练习2】[11南通四星八校联考10.11]如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =π2,BD 交AC 于E ,AB =2.⑴.求cos ∠CBE 的值;⑵.求AE .【解】⑴.因∠BCD =π2+π3=5π6,CB =AC =CD ,故∠CBE =π12.故cos ∠CBE =cos(π4-π6)=6+24. BACDE⑵.在ΔABE 中,AB =2,由正弦定理AE /sin π6=2/sin 7π12.故AE =6-2.考点二 利用正、余弦定理判断三角形形状【例3】在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点]首先边化角或角化边,再整理化简即可判断.【解】由(a 2+b 2)sin(A -B )=(a 2-b 2)sin C 得,b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )],即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos A sin B ,即sin2B =sin2A ,由于A ,B 是三角形的内角.故0<2A <2π,0<2B <2π.故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【练习3】在△ABC 中,AB →=c ,BC →=a ,CA →=b ,且a ·b =b ·c =c ·a ,则△ABC 的形状为 .【解一】由数量积的定义可知,BC →•CA →=CA →•AB →,即ab cos(π-C )=bc cos(π-A ),即a cos C =c cos A ,过点B 作BE ⊥AC 与点E ,则AE =EC ,故BC =AB ,同理,BC =AC ,AB =AC ,故△ABC 为正三角形.【解二】由数量积的定义可知,BC →•CA →=CA →•AB →,即ab cos(π-C )=bc cos(π-A ),即a cos C =c cos A ,由余弦定理得,a a 2+b 2-c 22ab =c b 2+c 2-a 22bc ,化简得,a 2-c 2=0,故a =c ,同理,a =b ,c =b ,故△ABC为正三角形.【解三】由数量积的定义可知,BC →•CA →=CA →•AB →,即ab cos(π-C )=bc cos(π-A ),即a cos C =c cos A ,由正弦定理得,sin A cos C =sin C cos A ,化简得,sin(A -C )=0,又-π<A -C <π,故A -C =0,即A =C ,同理,A =B ,B =C ,故△ABC 为正三角形.【解四】由a •b =b •c 知,(a -c )•b =0,延长AB 至点D ,使得BD =AB ,连接DC ,则DC →=a -c ,故DC ⊥AC ,即ΔACD 为直角三角形,BC 为直角ΔACD 斜边上的中线,故BC =AB ,即a =c ,同理,a =b ,b =c ,故△ABC 为正三角形.考点三 三角形中的恒等变换【例4】在△ABC 中,若tan A =2tan B ,a 2-b 2=c ,则c = . 【解】由tan A =2tan B 知,sin A cos A =2sin Bcos B,即sin A cos B =2cos A sin B ,由正弦定理及余弦定理得,a a 2+c 2-b 22ac =2b a 2+b 2-c 22ab ,化简得,a 2-b 2=13c 2,又a 2-b 2=c ,故13c 2=c ,因c 为△ABC 的边长,故c >0,故c =3.【练习4】[海安13-14上学期高三期中]12.在△ABC 中,若tan A =2tan B =3tan C ,则cos A = .【解】tan A +tan B +tan C =116tan A =tan A tan B tan C =16tan 3A ,故tan A =11,故cos A =36. 【例5】在ΔABC 中,已知sin A =13sin B sin C ,cos A =13cos B cos C ,则tan A +tan B +tan C 的值为_________.【解】由cos A =13cos B cos C 得,tan B tan C =14,又tan A =tan B tan C =14,故tan A +tan B +tan C =tan A tan B tan C =196.【练习5】[天一、海门、盐城中学11届调研11.02]在斜△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若tan C tan A +tan Ctan B=1,则(a 2+b 2)/c 2= .【解】由tan C tan A +tan Ctan B =1知,c 2=ab cos C ,又c 2=a 2+b 2-2ab cos C =a 2+b 2-2c 2得,a 2+b 2=3c 2,(a 2+b 2)/c 2=3.【例6】[盐城中学10高三第三次模拟10.06]16.在ΔABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,且cos B =34.⑴.若BA →·BC →=32,求a +c 的值;⑵.求1tan A +1tan C的值.【解】⑴.由BA →·BC →=32得,ac cos B =32.因cos B =34,故b 2=ac =2.由余弦定理b 2=a 2+c 2-2ac ·cos B得,a 2+c 2=b 2+2ac ·cos B =5,则(a +c )2=a 2+c 2+2ac =9,故a +c =3.⑵.由cos B =34得,sin B =74.由b 2=ac 及正弦定理得,sin 2B =sin A sin C ,于是1tan A +1tan C =cos Asin A +cos C sin C =sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B =sin B sin 2B =1sin B =477. 【练习6】[常州教育学会学业水平监测11.1]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos2C =1-8b 2a2.⑴.求1tan A +1tan C的值;⑵.若tan B =815,求tan A 及tan C 的值.【解】⑴.因cos2C =1-8b 2a 2,故sin 2C =4b 2a 2.因C 为三角形内角,故sin C >0,故sin C =2b a .因a sin A =b sin B ,故sin B sin A =ba.故2sin B =sin A sin C ,因A +B +C =π,故sin B =sin(A +C )=sin A cos C +cos A sin C .故2sin A cos C +2cos A sin C =sin A sin C .因sin A sin C ≠0,故1tan A +1tan C =12;⑵.因1tan A +1tan C =12,故tan A =2tan C /(tan C -2).因A +B +C =π,故tan B =-tan(A +C )=-(tan A+tan C )/(1-tan A tan C )=tan 2C /(2tan 2C -tan C +2).故815=tan 2C /(2tan 2C -tan C +2),整理得tan 2C -8tan C +16=0,解得,tan C =4,tan A =4.练习1.[11江苏高考预测⑴]已知a ,b ,c 为ΔABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则B = .【解】由m ⊥n 得,3cos A -sin A =0,故A =π3,由a cos B +b cos A =c sin C 得,sin A cos B +sin B cos A=sin C •sin C ,即sin(A +B )=sin C =sin 2C ,故C =π2,故B =π6.另:a cos B +b cos A =c sin C ,即c =c sin C ,即sin C =1,下略.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =(cos 32A ,sin 32A ),n =(cos 12A ,sin 12A ),且满足|m +n |=3. ⑴.求角A 的大小;⑵.若b +c =3a ,试判断△ABC 的形状.【解】⑴.由|m +n |=3得,2+2(cos 32A cos 12A +sin 32A sin 12A )=3,故cos A =12,又0<A <π,故A=π3; ⑵.因b +c =3a ,故sin B +sin C =3sin A ,即sin B +sin(2π3-B )=3×32,即sin(B +π6)=32,又0<B <2π3,故B +π6=π3或2π3,则B =π6或π2,当B =π6时,C =π2;B =π2时,C =π6,故△ABC 为直角三角形.3.[10-11上学期南通六所省重点高中联考11.1]已知向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin2C ,其中A ,B ,C 为△ABC 的内角.⑴.求角C 的大小;⑵.若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求AB 的长.【解】⑴.m ·n =sin(A +B ) ,又在△ABC 中, A +B =π-C ,0<C <π,故sin(A +B )=sin C ,故m ·n =sin C ,又m ·n =sin2C ,故sin2C =sin C ,故cos C =12,故C =π3;⑵.由sin A ,sin C ,sin B 成等差数列得,2sin C =sin A +sin B ,由正弦定理得,2c =a +b ,由CA →·(AB →-AC →)=18得,CA →·CB →=18,即ab cos C =18,即ab =36,由余弦定理c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,故c 2=4c 2-3×36,即c 2=36,故c =6.4.设O 是△ABC 的外心,已知△BOC ,△AOC ,△AOB 的面积依次成等差数列,试判断tan A tan C 是否为定值?说明理由.【解】由△BOC ,△AOC ,△AOB 的面积依次成等差数列知,2sin2B =sin2A +sin2C ,故cos(A -C )=2cos B ,即cos(A -C )=-2cos(A +C ),故sin A sin C =3cos A cos C ,故tan A tan C =3,故tan A tan C为定值.5.已知钝角△ABC 的最长边的长为2,其余两边长为a ,b ,则集合P ={(x ,y )|x =a ,y =b }所表示的平面图形的面积是_______.π-26.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知a ,b ,c 成等比数列,且cos B =35.⑴.求cos A cos C 的值; ⑵.求tan A +tan C 值.【解】⑴.因a ,b ,c 成等差数列,故b 2=ac ,故由正弦定理得,sin 2B =sin A sin C ,因cos B =35,故sin B =45,故sin A sin C =1625,又cos(A +C )=-cos B ,故cos(A +C )=-35,cos A cos C -sin A sin C =-35,故cos A cos C =125; ⑵.tan A +tan C =sin B /(cos A cos C )=20.7.[苏大16考前指导卷⑵]12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,A =2C ,c =2,a 2=4b -4,则a = .【解一】在△ABC 中,由余弦定理得,a 2=4b -4=b 2+4-4b cos2C ,即b 2-4b (1+cos2C )+8=0,故b 2-8b cos 2C +8=0,由正弦定理得,2(b -1)12(1sin C )=2(1sin C ),即cos C =12(b -1)12,故b 2-12b (b-1)+8=0,解得,b =4,故a 2=4b -4,故a =23.【解二】由A =2C 得,sin A =sin2C ,由正弦定理得,a =2ca cos C =4cos C =4a 2+b 2-c 22ab ,即a 2+b 2-c 2=12a 2b ,即12a 2b =12(4b -4)b =4b -4+b 2-4,即b 2-6b +8=0,故b =2或b =4,若b =2,则a 2=4b -4=4,故a =2与A =2C 矛盾,故b =4,则a 2=4b -4=12,故a =23.8.[11苏锡常镇高三调研⑵]15.在△ABC 中,AC =5,AD 为∠BAC 的平分线,点D 在BC 上,且DC =42,cos ∠DAC =35.⑴.求AD 的长; ⑵.求cos B 的值.【解】⑴.设AD =x ,则32=x 2+25-10x ·35,解得x =7或x =-1,则AD =7;⑵.在ΔADC 中,由cos ∠DAC =35得,sin ∠DAC =sin ∠DAB =45,故5/sin ∠ADC =42/45,则sin∠ADC = 2 2,因AD >AC ,故∠ADC 为锐角,故∠ADC =π4,∠ADB =3π4,故cos B =cos(π4-∠BAD )=7210. 9.[南京淮安13高三二模]在△ABC 中,已知角A ,B ,C 所对的边分别是a ,b ,c ,cos C cos B =2a -cb.⑴.求B ;⑵.若tan(A +π4)=7,求cos C 的值.【解】⑴.因cos C cos B =2a -c b ,由正弦定理得,cos C cos B =1sin B (2sin A -sin C ),故sin B cos C +cos B sin C =2sin A cos B .即sin(B +C )=2sin A cos B ,因B +C =π-A ,故sin A =2sin A cos B ,因A ∈(0,π),故sin A ≠0,故cos B =12,又B ∈(0,π),故B =π3;⑵.因tan(A +π4)=7,故(tan A +1)/(1-tan A )=7,解得,tan A =34,因A ∈(0,π),故A 为锐角,故cos A =45,sin A =35,故cos C =-cos(A +B )=-cos(A +π3)=-cos A cos π3+sin A sin π3=110(-4+33).10.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且1a +b +1c +a =3a +b +c.⑴.求角A 的大小;⑵.若c b =12+3,a =15,求b 的值.【解】⑴.由题意,(a +b +c )(1a +b +1c +a )=3,即c a +b +bc +a =1,整理得:b 2+c 2﹣a 2=bc ,由余弦定理知cos A =b 2+c 2-a 22bc =12,因在△ABC 中,0<A <π,故A =π3;⑵.由正弦定理得:c b =sin C sin B =1sin B (sin A cos B +cos A sin B ),故sin A •1tan B +cos A =32•1tan B +12=12+3,解得tan B =12,则cos 2B =45,又B ∈(0,π),故sin B =55,又a =15,sin A =32,由正弦定理得b=a sin Bsin A=2. 11.[江苏13高三高考压轴]在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3132.⑴.求sin B 的值; ⑵.求cos C 的值.【解】⑴.在△ABC 中,因a >b ,故A >B ,又cos(A -B )=3132>0,故A -B 为锐角,且sin(A -B )=3327,由正弦定理得,sin A sin B =a b =54,于是54sin B =sin A =sin[(A -B )+B ]=sin(A -B )cos B +cos(A -B )sin B ,故tan B =73,故sin B =74; ⑵.由B <A 及sin B =74知,cos B =34,故cos A =cos[(A -B )+B ]=cos(A -B )cos B -sin(A -B )sin B =916,故sin A =5716,故cos(A +B )=cos A cos B -sin A sin B =-18,故cos C =cos[π-(A +B )]=-cos(A +B )=18.12.[盐城11-12高三摸底]如图,在△ABC 中,BC 边上的中线AD 长为3,且cos B =10/8,cos ∠ADC =-14.⑴.求sin ∠BAD 的值; ⑵.求AC 边的长.【解】⑴.因cos B =10/8,故sin B =386,又cos ∠ADC =-14,故sin∠ADC =154,故sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =64; ⑵.在ΔABD 中,由正弦定理得,AD /sin B =BD /sin ∠BAD ,即3/386=BD /64,解得BD =2,故CD =2,从而在ΔACD 中,由余弦定理得,AC 2=AD 2+CD 2-2AD •CD cos ∠ADC =9+4-2•2•3(-14)=16,故AC =4. 13.[南京14高三综合题]三角形ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,且2sin B =3cos B . ⑴.若cos A =13,求sin C 的值;⑵.若b =7,sin A =3sin C ,求三角形ABC 的面积.【解】⑴.由2sin B =3cos B ,两边平方得2sin 2B =3cos B ,即2(1-cos 2B )=3cos B ,解得cos B =12或cos B =-2(舍).又B 为三角形内角,则B =π3.因cos A =13,且A 为三角形内角,则sin A =223,故sin C =sin(B +A )=sin(π3+A )=32cos A +12sin A =3+226.⑵.[解一]因sin A =3sin C ,由正弦定理得,a =3c .由余弦定理知:b 2=a 2+c 2-2ac cos B ,则7=9c 2+c 2-3c 2,解得c =1,则a =3.面积S =12ac sin B =334.[解二]由sin A =3sin C 得sin(C +B )=3sin C ,即sin(C +π3)=3sin C ,则12sin C +32cos C =3sin C ,即32cos C =52sin C ,故可得tan C =35.又C 为三角形的内角,则sin C =2114.由正弦定理知b sin B =csin C ,则c =1.又sin A =3sin C =32114,故面积S =12bc sin A =334.14.[南师13高三综合题]在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .⑴.设向量x =(sin B ,sin C ),y =(cos B ,cos C ),z =(cos B ,-cos C ),若z //(x +y ),求tan B +tan C 的值;⑵.已知a 2-c 2=8b ,且sin A cos C +3cos A sin C =0,求b .【解】⑴.由z //(x +y )得,(cos B sin C +cos B cos C )-(-cos C sin B -cos B cos C )=cos B sin C +cos C sin B +2cos B cos C =0,两边同除以cos B cos C 得,tan B +tan C +2=0,故tan B +tan C =-2; ⑵.由sin A cos C +3cos A sin C =0得,a 2-c 2=2b 2,又a 2-c 2=8b ,故2b 2=8b ,故b =4. 15.在△ABC 中,角A ,B ,C 的对边为a ,b ,c ,且△ABC 为锐角三角形,且b 2-a 2=ac ,则1tan AA D BC第16题第11页 共11页 -1tan B的取值范围为 . 【解一】1tan A -1tan B =cos A sin A -cos B sin B =1sin A (b 2+c 2-a 22bc )-1sin B (a 2+c 2-b 22ac)=(b 2+c 2-a 2)/(2bc sin A )-(c 2+a 2-b 2)/(2ca sin B )=2(b 2-a 2)/(2ca sin B )=ac /(ca sin B )=1sin B,由b 2-a 2=ac 知,b 2=a 2+ac ,又由余弦定理知,b 2=c 2+a 2-2ca cos B =a 2+ac ,故c -2a cos B =a ,由正弦定理得,sin C -2sin A cos B =sin A ,即sin(A +B )-2sin A cos B =sin A ,即sin(B -A )=sin A ,由已知得,0<B -A ,A <π,故B -A =A ,即B =2A ,由三角形为锐角三角形得,π3<B <π2,故1sin B ∈(1,233),即1tan A -1tan B的取值范围为(1,233). 【解二】自点C 作CD ⊥AB 于点D ,设CD =h ,AD =x ,则BD =y ,由b 2-a 2=ac 得,x 2-y 2=ac ,又x +y =c ,故x -y =a ,在AD 上取点E ,使得DE =y ,则AE =a ,已知CE =a ,故∠AEC =B =2A ,则1tan A -1tan B =x /h -y /h =(x -y )/h =1sin B ,由三角形为锐角三角形得,π3<B <π2,故1sin B ∈(1,233),即1tan A -1tan B 的取值范围为(1,233). 阅卷报告6——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件,【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】[11安徽]在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a = 3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因:忽视三角形中“大边对大角”的定理,产生了增根.实录:由1+2cos(B +C )=0知,cos A =12,故A =π3,根据正弦定理a sin A =b sin B 得:sin B =b sin A a=22,故B =π4或B =3π4.以下解答过程略. 正解:由1+2cos(B +C )=0知,cos A =12,故A =π3.在△ABC 中,由a sin A =b sin B ,故sin B =b sin A a=22.因a >b ,故B =π4,则C =π-(A +B )=5π12.故sin C =sin(A +B )=6+24.故BC 边上的高为b sin C =3+12.。
高考数学一轮复习正弦定理余弦定理及解三角形课件理

基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7
=
7 14 .
基础诊断 考点突破
课堂总结
在
Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 正弦与余弦(1)
【基础知识精讲】
一、 正弦与余弦:
1、 在ABC ∆中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记
作A sin ,
锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos .
斜边
的邻边
斜边的对边A A A A ∠=⋅∠=
cos sin .
若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c ,
则c a A =sin ,c
b
A =cos 。
2、当A ∠为锐角时, 1sin 0<<A ,1cos 0<<A (A ∠为锐角)。
二、 特殊角的正弦值与余弦值:
2130sin =
, 2245sin =
, 2
360sin = . 2330cos = , 2
245cos = , 2160cos =
.
三、 增减性:当0
0900<<α时,
sin α随角度α的增大而增大;cos α随角度α的增大而减小。
【例题巧解点拨】
例1:在图1中求出ABC Rt ∆中的A sin 、B cos 的值,在图2中求出ABC Rt ∆中的
A cos 、
B cos 的值
例2:求下列各式的值:
(1)
30cos 30sin +; (2)
60cos 2
1
45sin 2-
.
(3)
30
cos 30sin . (4) ︒⋅︒+︒⋅︒45sin 30cos 45cos 30sin
例3:(1)若21
sin =
A ,则锐角_____=∠A ; (2)若22
cos =A ,则锐角_____=∠A .
(3)若23
sin =A ,则锐角____=∠A .
(4)若2
3
cos =B ,则锐角_____=∠A
(5)已知ABC ∆中,︒=∠90C ,BC AB 3=,B cos =__________
【同步达纲练习】
A 组
一、填空题:
1. =︒+︒30sin 30cos ___________,
2.
sin 2
1
= cos = 。
3、若2
1
sin =θ,且︒<<︒900θ,则θ=_______,
已知2
3
sin =α,则锐角α=__________。
4.在_________cos ,,60,90,==∠=∠B A C ABC Rt 则中
∆
5.在ABC ∆,_________cos ,5,3,90====∠B AB AC C 则
6._________sin ,5,3,90,====∠A AB BC C ABC Rt 则中
∆
7.在ABC ∆Rt 中,︒=∠90C ,b a 33=,则A ∠=_________,A sin =_________ 8.如图,已知在_________,5
3
sin ,5,90,====∠BC A AB C ABC Rt 则中
∆ 二、选择题:
9.
30sin 2的值是( )
A .21
B .1
C .23
D .3 10.
30cos 的值是( )
A .23
B .2
2
C .21
D .3
11.在ABC ∆,︒=∠90C ,AC =6,BC =8,则=A sin ( )
(A )54 (B )53 (C )43 (D )3
4
12.在ABC ∆中,︒=∠90C ,5=AC ,13=AB ,则B cos 等于( )
A .1312
B .135
C .125
D .13
10
13.在ABC ∆Rt 中,︒=∠90C ,1=AC ,2=AB ,则B ∠为( ) A .︒30 B .︒45 C .︒60 D .︒90
14.在PMN Rt ∆中,∠=∠Rt P ,则) (sin =M
A .
PM PN B .PN PM C .MN PN D .MN
PM
15.在ABC ∆Rt 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )
A 都没有变化
B 都扩大2倍
C 都缩小2倍
D 不能确定
16.在ABC ∆中,若0cos 2322sin 2
=⎪⎪⎭
⎫
⎝⎛-+-B A ,A ∠,B ∠都是锐角,则C ∠的度
数是( )
A ︒75
B ︒90
C ︒105
D ︒120
三、求下列各式的值:
17.
︒︒-30cos 30sin 21 18.︒⋅︒+︒+︒30cos 30sin 45sin 2
2
60sin 21。
19.)45cos 60)(sin 45sin 30)(cos 45sin 230sin 2(︒-︒︒+︒︒+︒
四、解答题:
20.在ABC ∆中,C B A ∠∠∠,,所对的边分别为c b a ,,,且,25,24==c a b=7。
求sin A ,cos A ,sin B ,cos B .
B 组
1.如图,在AB CD Rt ACB ABC Rt ⊥∠=∠,,中∆于点D ,AD =4,,5
4sin =
∠ACD CD 求、BC 的值。
2.比较大小:sin23°______sin33°;cos67.5°_________cos76.5°。
3、如图,在R t △ABC 中,C B A ∠∠∠,,所对的边分别为c b a ,,,∠C=90°。
sinA=__________;cosB=___________;则sinA________ cosB
cosA=_________;sinB=____________;则cosA________ sinB
思考:sin(90°-α)=____________;cos(90°-α)=_______________。
4、若30°<α<β<90°,化简αβαβcos 12
3
cos )cos (cos 2
-+---。
家庭作业
校区:姓名:_________
科目:数学第 6 次课作业等级:______ 第一部分:
1.(2010年湖南郴州市)1sin45°的结果等于( )
1
2
2.(2010年怀化市)在Rt△ABC中,∠C=90°,sinA=
5
4
,则cosB的值等于()
A.
5
3
B.
5
4
C.
4
3
D.
5
5
第二部分:
3.(2012红河自治州)13. 计算:12+2sin60°=
4.(201104cos30°; 6.(2010郴州)
1
1
12sin60cos60
2
-
骣÷
ç+--鞍
÷
ç÷
ç桫
第三部分:
5.(2012年兰州)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP
是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3
≈1.73,5≈2.24,6≈2.45)
第7题图。