9.3《分式方程》典型例题精析

9.3《分式方程》典型例题精析
9.3《分式方程》典型例题精析

9.3 分式方程

1.了解分式方程的意义,掌握解分式方程的一般步骤.了解解分式方程验根的必要性.

2.能熟练地解可化为一元一次方程的分式方程,并验根.

3.掌握列分式方程解应用题的基本步骤.

4.能熟练地应用分式方程的数学模型来解决现实情境中的问题.

1.分式方程的概念

(1)分母中含有未知数的方程叫做分式方程. (2)分式方程有两个重要特征:一是方程;二是分母中含有未知数.因此整式方程和分式方程的根本区别就在于分母中是否含有未知数.例如x +1x =2,5y =7y -2,1x -2=x 2

2-x

等都是分式方程,而x 2-2x +1=0,2x +33=x -12,x +a b -x -b a

=2(x 是未知数)等都是整式方程,而不是分式方程.

【例1】下列方程中,分式方程有( ).

(1)x +1π=3;(2)1x

=2; (3)2x +54+x 3=12;(4)2x -2=1x +1

. A .1个 B .2个

C .3个

D .4个

解析:对于方程(1),因为π是常数,所以该方程不是分式方程,是整式方程;方程(3)中的分母不含字母,所以不是分式方程.方程

(2)(4)符合分式方程的概念,都是分式方程.

答案:B

2.分式方程的解法

(1)把分式方程转化为整式方程,然后通过解整式方程,进一步求得分式方程的解,这是解分式方程的关键.本章中,解分式方程都是把分式方程转化为一元一次方程,通过解一元一次方程求解分式方程.分式方程的解题思路如下图:

(2)解可化为一元一次方程的分式方程的一般步骤是:

①去分母,即在方程的两边乘以最简公分母,把原方程化为整式方程.

②解这个整式方程.

③验根:把求得的根代入最简公分母,看它的值是否为零,使它不为零的根才是原方程的根,使它为零的根即为增根,应舍去.

(1)增根能使最简公分母等

于0;(2)增根是去分母后所得的整式方程的根.

以上步骤可简记为“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”.

【例2】解分式方程:(1)x x -2+6x +2

=1; (2)7x 2+x -3x -x 2=6x 2-1

. 分析:(1)中方程的最简公分母是(x -2)(x +2);(2)中方程的最

简公分母是x(x+1)(x-1).当方程有根时,检验的过程可以简写为经检验.

解:(1)原方程两边同时乘以(x-2)(x+2),得x(x+2)+6(x-2)=(x-2)(x+2),

即x2+2x+6x-12=x2-4,

解这个整式方程,得x=1.

经检验x=1是原方程的解.

故原方程的解是x=1.

(2)原方程可化为

7 x x+1+

3

x x-1

6

x+1x-1

去分母,方程两边都乘以x(x+1)(x-1)后,原方程化为整式方程7(x-1)+3(x+1)=6x,

解这个整式方程,得x=1.

经检验,x=1时,最简公分母x(x+1)(x-1)=0.

故x=1是原方程的增根,原分式方程无解.

在去分母时,根据等式的基本性质,方程左右两端的每一项都要同乘以最简公分母,要避免某一项漏乘,从而导致错误.如本题(1)小题中右端的1去分母时,往往被忽略,忘记乘以(x-2)(x+2),从而导致错误.

3.增根

(1)增根的概念

将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原分式方程的解(或根),这

种根通常称为增根.如:若方程

m

x-2

+3=

1+x

2-x

有增根,则这个增根

一定是x=2.

(2)增根产生的原因

把分式方程转化为整式方程过程中,方程的两边都乘以的整式可能使分母为零,这样无形中去掉了原分式方程中分母不为零的限制条件,从而扩大了未知数的取值范围,于是就产生了如下两种情况:(1)如果整式方程的根都在分式方程未知数的取值范围内,那么整式方程的根就是分式方程的根;(2)如果整式方程的有些根不在分式方程未知数的取值范围内,那么这种根就不是分式方程的根,是分式方程的增根.

因此,解分式方程时,验根是必不可少的步骤.

【例3-1】解方程3y +1=-6y 2-1

. 分析:先去分母,再解整式方程,最后检验.

解:去分母,得3(y -1)=-6,

解这个整式方程,得y =-1.

检验:当y =-1时,分母y +1=0,原分式方程无意义,因此y =-1是原方程的增根.

故原分式方程无解.

【例3-2】若解分式方程2x -2+mx x 2-4=3x +2

有增根,试求m 的值.

分析:解分式方程会产生增根,即最简公分母等于0,则x 2-4=0,故解方程产生的增根有两种可能:x =2或x =-2,由增根的定义可知,x =2或x =-2是原方程去分母后化成的整式方程的根,把其代入整式方程即可求出m 的值.

解:原方程两边都乘以(x +2)(x -2),

得2(x +2)+mx =3(x -2),

∵这个方程有增根,

∴x 2-4=0,解得x =2或x =-2.

由于当x =2时,m =-4;当x =-2时,m =6.

故m =-4或6.

解决此类问题可按如下步骤进行:

(1)根据最简公分母确定增根;

(2)化分式方程为整式方程;

(3)把增根代入整式方程即可求得相关字母的值.

4.分式方程的应用

分式方程的应用主要是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法一样,不同的是,因为有了分式的概念,表示数与数的相依关系的代数式不受整式的限制.一般地,列分式方程解应用题步骤如下:

(1)审题,了解已知数与所求的各是什么.

(2)设未知数.

(3)找出相等关系,列出分式方程.

(4)解这个分式方程.

(5)检验,看方程的解是否满足方程,符合题意,写出答案.

列分式方程解应用题的关键

是用分式表示一些基本的数量关系,列分式方程解应用题一定要验根,还要保证其结果符合实际意义.

【例4-1】2011年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1 800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?

解:设原计划每天生产x 吨纯净水,则依据题意,得1 800x -1 8001.5x =3,整理得4.5x =900,

解得x =200.

把x 代入原方程,成立,

因此x =200是原方程的解.

故原计划每天生产200吨纯净水.

【例4-2】甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时需捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6 s ,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50 s .”乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍.”根据图文信息,请问哪位同学获胜?

分析:用球拍托着乒乓球走的游戏,相信同学们看到过或亲身经历过,解此题,要注意在甲来回用时中不可漏加他浪费的6 s .要判断谁获胜就是看谁来回用时少,根据对话情景可得相等关系:甲来回用时+乙来回用时=50 s ,其中甲来回用时要包含掉球后浪费的6 s.

解:设乙同学的速度为x m/s ,则甲同学的速度为1.2x m/s.

根据题意,得? ????601.2x +6+60x

=50, 解得x =2.5.

经检验,x =2.5是原方程的解.

因此甲同学所用的时间为

601.2x

+6=26(s), 乙同学所用的时间为

60x

=24(s). 因为26>24,所以乙同学获胜.

5.分式方程的特殊解法

解分式方程,一般是在方程的两边都乘以最简公分母,化为整式方程求解.但有些特殊的方程,按此方法往往比较繁琐,而且易错,若根据分式自身的特点,灵活处理,将已知方程简化,会收到事半功倍的效果.如换元法、化归法、观察比较法、分离常数法、逐项通分法等都是一些特殊的解法.

(1)如果一个分式方程中,同一个分式的分子、分母最高次数相同,且左、右两边各个分式的分子、分母最高次数的项的系数之商(或商的和)相等,同为常数M ,那么方程两边同减常数M .

(2)根据系数特点,逐项通分,使分子都为1,即利用分子相等时,分母也相等,这样就使方程的解答过程变得简单了.

【例5】解方程:(1)2x 2-12x 2-5=2x 2+6x -24x 2+3x -11

; (2)1x +2-1x +3-1x +4+1x +5=0.

解:(1)因为原方程可化为2x 2-12x 2-5-2=2x 2+6x -24x 2+3x -11

-2. 所以-2x 2-5=-2x 2+3x -11

, 即x 2-5=x 2+3x -11,解得x =2.

检验:把x =2代入原方程,得左边=4,右边=4,

因此左边=右边,即x =2是原方程的根.

(2)因为原方程可化为? ????1x +2-1x +3-? ??

??1x +4-1x +5=0,所以1x +2x +3-1x +4x +5

=0, 即1x +2x +3=1x +4x +5

,从而可得(x +2)(x +3)=(x +4)(x +5),解得x =-3.5.

检验:当x =-3.5时,该分式方程中各分式的分母的值均不为0,所以x =-3.5为原方程的解.

6.列方程解应用题的两种技巧

(1)利用列表法解分式方程应用题

列分式方程解应用题同列整式方程解应用题一样,都需要寻找题目中的等量关系.其中,利用列表的方法可以很快地找到等量关系,从而比较方便地解决问题.

(2)灵活选取未知数的设法

列分式方程解决实际问题时,应根据题目的特点,采用灵活的设未知数的方法.如可采用直接设未知数法、间接设未知数法等得方程.

①直接设未知数法

直接设未知数法是问什么就设什么为未知数的一种设元法.这种设法可以直接求得答案.

②间接设未知数法

所谓间接设未知数法,就所设的未知数并不是所要求的.间接设未知数法也是一种比较重要的解题方法.这种设未知数的方法易于问题的解决.

【例6】王老师家在商场与学校之间,离学校1 km ,离商场2 km.一天王老师骑车到商场买奖品后再到学校,结果比平常步行直接到校迟20 min.已知骑车速度为步行速度的2.5倍,买奖品时间为10 min.求其骑车的速度.

分析:题目中的相等关系是:王老师骑车到校的行程为5 km 所

用的时间-步行走1 km 所用的时间为1060

小时(因为买奖品时间为10

min).为了易于列出方程,可采用间接设未知数的方法.解:设王老师步行的速度为x km/h,则他骑车速度为2.5x km/h.这天王老师骑车到校的行程为 5 km,比平常步行多用时间10 min.

由题意,得5

2.5x -

10

60

1

x

即2

x

1

6

1

x

1

x

1

6

.

所以x=6.

经检验x=6是原方程的根.

因为当x=6时,2.5x=15.

所以王老师骑车的速度为15 km/h.

间接设法一般在利用直接设法数量关系不容易表达或无法表达时采用.本题也可以采用直接设未知数的方法列方程.

7.与分式方程有关的综合题

分式方程常与列代数式、不等式等知识综合出题,常见的有:求方程中字母系数的值及取值范围、求满足条件的代数式中字母的取值等.此类型题主要考查分式方程的解法,解答时可根据要求列分式方程求解或把条件代入方程中求解新方程.

如a 为何值时,关于x 的方程x +1x -2=2a -3a +5

的解等于零? 显然,要求解本题,可根据方程解的意义,先把x =0代入原分式方程,得到关于a 的方程,再解方程即可求出a 的值.

这里要特别注意,关于a 的方程也是分式方程,因此不要漏了验根这一步骤.

【例7】已知关于x 的分式方程x

x -3-2=m

x -3有正数解,试求m

的取值范围.

分析:先由原分式方程得x =6-m ,要使x =6-m 是原分式方程的正数解,一方面要保证x =6-m 不是增根,另一方面要满足x =6-m >0,综合以上两点的m 值才适合题意.

解:由x

x -3-2=m

x -3得x =6-m ,

要使x =6-m 是原方程的正数解,应满足的条件是

?

???? x ≠3,即6-m ≠3,x >0,即6-m >0, 解之可得????? m ≠3,m <6.

故当m <6且m ≠3时,方程x

x -3-2=m

x -3的解必为正数.

方程没有增根是方程有正数

解的前提条件,解答本题时易忽视对x ≠3时m 的取值大小限制的讨论.

8.与分式方程有关的创新题

列分式方程解决问题,命题形式灵活多样,渗透着浓郁的生活气息.

解这些问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,根据这些等量关系正确地列出方程,再解方程可使问题得以解决. 如下面一列有规律的数:13,28,315,424,535,648

,…,若第m 个数化简后是180

,则它是第__________个数. 显然,根据分子、分母的规律,可得第m 个数是m

m m +2,

于是m m m +2=180

, 可解得m =78.

【例8】数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15∶12∶10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do ,mi ,so.研究15,12,10这三个数的倒

数发现:112-115=110-112

.我们称15,12,10这三个数为一组调和数.现有一组调和数:x,5,3(x >5),则x 的值是__________.

解析:本题以音乐学科和数学学科相融合来命题,使题目具有挑

战性,能够激发学生的解题热情.通过阅读材料可知,调和数

15,12,10,其倒数满足式子112-115=110-112

, 因而调和数x,5,3(x >5),应满足式子15-1x =13-15

. 解这个方程,得x =15.经检验:x =15是原方程的根.故填15. 答案:15

数学必修二第二章经典测试题(含答案)

必修二第二章综合检测题 一、选择题 1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面 2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为() A.3B.4C.5D.6 3.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面 4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90° 5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a?α,b?αB.a?α,b∥α C.a⊥α,b⊥αD.a?α,b⊥α 6.下面四个命题:其中真命题的个数为() ①若直线a,b异面,b,c异面,则a,c异面; ②若直线a,b相交,b,c相交,则a,c相交; ③若a∥b,则a,b与c所成的角相等; ④若a⊥b,b⊥c,则a∥c. A.4B.3C.2D.1 7.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论: ①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD. 其中一定正确的有() A.①②B.②③C.②④D.①④ 8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是() A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥b C.若a?α,b?β,a∥b,则α∥β D.若a⊥α,b⊥β,α⊥β,则a⊥b 9.已知平面α⊥平面β,α∩β=l,点A∈α,A?l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成

机械简谐运动的两种典型模型

● 基础知识落实 ● 1、弹簧振子: 2.单摆 (1).在一条不可伸长、不计质量的细线下端系一质点所形成的装置.单摆是实际摆的理想化物理模型. (2).单摆做简谐运动的回复力 单摆做简谐运动的回复力是由重力mg 沿圆弧切线的分力F =mgsin θ提供(不是摆球所受的合外力),θ为细线与竖直方向的夹角,叫偏角.当θ很小时,圆弧可以近似地看成直线,分力F 可以近似地看做沿这条直线作用,这时可以证明F =- t mg x =-kx .可见θ很小时,单摆的振动是 简谐运动 . (3).单摆的周期公式 专题二 简谐运动的两种典型模型

①单摆的等时性:在振幅很小时,单摆的周期与单摆的 振幅 无关,单摆的这种性质叫单摆的等时性,是 伽利略 首先发现的. ②单摆的周期公式 π2 g l T =,由此式可知T ∝g 1,T 与 振幅 及 摆球质量 无关. (4).单摆的应用 ①计时器:利用单摆的等时性制成计时仪器,如摆钟等,由单摆的周期公式知道调节单摆摆长即可调节钟表快慢. ②测定重力加速度:由g l T π 2=变形得g =2 2 π4T l ,只要测出单摆的摆长和振动周期,就可以求 出当地的重力加速度. ③秒摆的周期秒 摆长大约M (5).单摆的能量 摆长为l ,摆球质量为m ,最大偏角为θ,选最低点为重力势能零点,则摆动过程中的总机械能为: E =mgl (1-cos θ) ,在最低点的速度为v = ) cos 1(2 θ-gl . 知识点一、弹簧振子: 1、定义:一根轻质弹簧一端固定,另一端系一质量为m 的小球就构成一弹簧振子。 2、回复力:水平方向振动的弹簧振子,其回复力由弹簧弹力提供;竖直方向振动的弹簧振子,其回复力由重力和弹簧弹力的合力提供。 3、弹簧振子的周期:k m T π 2= ① 除受迫振动外,振动周期由振动系统本身的性质决定。

圆经典例题精析

圆经典例题精析 考点一、圆的有关概念和性质 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) (A)4个(B)3个(C)2个(D)1个 【考点】本题考查直径、过不在同一条直线上的三点的圆、外心、等圆与等弧等概念, 【思路点拨】其中第②个命题不对的原因在于忽视了过三点作图的条件.若三点在一条直线上,则不能作出过这三点的圆,故②不对. 【答案】B. 2.下列判断中正确的是( ) (A)平分弦的直线垂直于弦 (B)平分弦的直线也必平分弦所对的两条弧 (C)弦的垂直平分线必平分弦所对的两条弧 (D)平分一条弧的直线必平分这条弧所对的弦 【考点】垂径定理 【解析】弦的垂直平分线平分弦、垂直于弦,因此平分弦所对的两条弧.A中被平分的弦应不是直径; B理由同A;D中平分弧的直线的直线应过圆心. 【答案】C. 3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则( ) (A)(B) (C)的度数=的度数(D)的长度=的长度 【思路点拨】因为在圆中,圆心角的度数与它所对的弧的度数相等,而∠AOB=∠A′OB′,所以的 度数=的度数. 【答案】C. 4.如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB的度数是( ) A.80° B.100° C.120° D.130°

【考点】同弧所对的圆周角等于圆心角的一半,圆内接四边形的对角互补. 【思路点拨】可连结OC,则由半径相等得到两个等腰三角形, ∵∠A+∠B+∠ACB=360°-∠O=260°,且∠A+∠B=∠ACB,∴∠ACB=130°. 或在优弧AB上任取一点P,连结PA、PB,则∠APB=∠O=50°, ∴∠ACB=360°-∠APB =130°. 【答案】D. 总结升华:圆的有关性质在解决圆中的问题时,应用广泛,运用简便. 举一反三: 【变式1】某公园的一石拱桥是圆弧形(劣弧),跨度为24米,拱的半径为13米,则拱高为_____. 【考点】垂径定理. 【思路点拨】本题可用几何语言叙述为:如图,AB为⊙O的弦,CD为拱高,AB=24米,半径OA=13米,求拱高CD的长. 【解析】由题意可知:CD⊥AB,AD=BD,且圆心O在CD的延长线上.连结OA, 则OD===5(米).所以CD=13-5=8(米). 【答案】8米. 【变式2】如图,AB是⊙O的直径,∠ACD=15°,则∠BAD=__________°. 【考点】同弧所对的圆周角相等,直径所对的圆周角是90°. 【思路点拨】AB是直径,则∠ADB=90°,∠ACD=∠ABD=15°,可求得∠BAD. 【答案】75°. 【变式3】如图,⊙O的直径AB和弦CD相交于点E,且AE=1cm,EB=5cm,∠DEB=60°,求CD的长. 【解析】因为AE=1cm,EB=5cm,所以OE=(1+5)-1=2(cm),半径等于3cm.在Rt△OEF中可求EF

高中数学必修二第二章经典练习题

高一数学必修二第二章经典练习题 第I卷(选择题) 请修改第I卷的文字说明 一、单项选择 ). ①平行于同一条直线的两条直线互相平行 ②垂直于同一条直线的两条直线互相平行 ③平行于同一个平面的两条直线互相平行 ④垂直于不一个平面的两条直线互相平行 A.仅②不正确B.仅①、④正确 C.仅①正确D.四个命题都正确 2. 如果直线 a是平面α的斜线,那么在平面α内() A 不存在与a平行的直线 B 不存在与a垂直的直线 C 与a垂直的直线只有一条 D 与a平行的直线有无数条 3. 平面α内有一四边形ABCD,P为α外一点,P点到四边形ABCD各边的距离相等,则这个四边形() A 必有外接圆 B 必有内切圆 C 既有内切圆又有外接圆 D 必是正方形 4. 已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是( ) A.PB⊥AD B.平面PAB⊥平面PBC C.直线BC∥平面PAE D.直线PD与平面ABC所成的角为45° 5. 若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交 B.异面 C.平行 D.异面或相交 6. 设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α( )A.不存在B.只有1个 C.恰有4个D.有无数多个 7. 设P是△ABC所在平面外一点,P到△ABC各顶点的距离相等,而且P 到△ABC各边的距离也相等,那么△ABC() A 是非等腰的直角三角形 B 是等腰直角三角形 C 是等边三角形 D 不是A、B、C所述的三角形 8. 已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E是SB 的中点,则AE SD ,所成的角的余弦值为( ) A. 1 3 D. 2 3 9. 正方体ABCD—A1B1C1D1中,E、F分别是AA1与CC1的中点,则直线ED 与D1F所成角的大小是 () A. 1 5 B。 1 3 C。 1 2 D 10. 已知空间两条不同的直线m,n和两个不同的平面,αβ,则下列命题中正确的是( ) A.若//,,// m n m n αα ?则 B.若,, m m n n αβα ?=⊥⊥ 则 C.若//,//,// m n m n αα则 D.若//,,,// m m n m n αβαβ ?= I则 11. 在三棱柱 111 ABC A B C -中,各棱长相等,侧掕垂直于底面,点D是 侧面 11 BB C C的中心,则AD与平面 11 BB C C所成角的大小是 ( ) A.30o B.45o C.60o D.90o 12. 已知直线l、m,平面α、β,且lα ⊥,mβ ?,则// αβ是l m ⊥ 的 A.充要条件 B.充分不必要条件

高中物理《机械波》典型题(精品含答案)

《机械波》典型题 1.(多选)某同学漂浮在海面上,虽然水面波正平稳地以1.8 m/s 的速率向着海滩传播,但他并不向海滩靠近.该同学发现从第1个波峰到第10个波峰通过身下的时间间隔为15 s .下列说法正确的是( ) A .水面波是一种机械波 B .该水面波的频率为6 Hz C .该水面波的波长为3 m D .水面波没有将该同学推向岸边,是因为波传播时能量不会传递出去 E .水面波没有将该同学推向岸边,是因为波传播时振动的质点并不随波迁移 2.(多选)一振动周期为T 、振幅为A 、位于x =0点的波源从平衡位置沿y 轴正向开始做简谐运动.该波源产生的一维简谐横波沿x 轴正向传播,波速为v ,传播过程中无能量损失.一段时间后,该振动传播至某质点P ,关于质点P 振动的说法正确的是( ) A .振幅一定为A B .周期一定为T C .速度的最大值一定为v D .开始振动的方向沿y 轴向上或向下取决于它离波源的距离 E .若P 点与波源距离s =v T ,则质点P 的位移与波源的相同 3.(多选)一列简谐横波从左向右以v =2 m/s 的速度传播,某时刻的波形图如图所示,下列说法正确的是( ) A .A 质点再经过一个周期将传播到D 点 B .B 点正在向上运动 C .B 点再经过18T 回到平衡位置

D.该波的周期T=0.05 s E.C点再经过3 4T将到达波峰的位置 4.(多选)图甲为一列简谐横波在t=2 s时的波形图,图乙为媒质中平衡位置在x=1.5 m处的质点的振动图象,P是平衡位置为x=2 m的质点,下列说法中正确的是( ) A.波速为0.5 m/s B.波的传播方向向右 C.0~2 s时间内,P运动的路程为8 cm D.0~2 s时间内,P向y轴正方向运动 E.当t=7 s时,P恰好回到平衡位置 5.(多选)一列简谐横波沿x轴正方向传播,在x=12 m处的质点的振动图线如图甲所示,在x=18 m处的质点的振动图线如图乙所示,下列说法正确的是( ) A.该波的周期为12 s B.x=12 m处的质点在平衡位置向上振动时,x=18 m处的质点在波峰 C.在0~4 s内x=12 m处和x=18 m处的质点通过的路程均为6 cm D.该波的波长可能为8 m E.该波的传播速度可能为2 m/s 6.(多选)从O点发出的甲、乙两列简谐横波沿x轴正方向传播,某时刻两列波分别形成的波形如图所示,P点在甲波最大位移处,Q点在乙波最大位移处,

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

第2章 典型例题与综合练习

经济数学基础第2章导数与微分第一章典型例题与综合练习 第一节典型例题 一、极限计算 例1求极限lim n n n n n →∞ ++ -+ 2 2 1 254 解:原式= ++ -+ →∞ lim n n n n n 2 2 1 254 = ++ -+ →∞ lim n n n n n 1 11 2 54 2 2 = 1 2 例2求极限lim x x x x → - -+ 1 2 2 1 32 解:lim x→1 x x x x x x x x x x x 2 2 11 1 32 11 12 1 2 11 12 2 - -+ = -+ -- = + - = + - =- →→ lim ()() ()() lim 例3求极限lim sin x x x → -+ 11 2 解:lim x→0 11 2 -+ x x sin=)1 1( 2 sin )1 1 )( 1 1( lim 0+ + + + + - →x x x x x =lim x→0 x x sin2× lim x→0 - ++ 1 11 x= ) 2 1 ( 2 1 - ? =4 1 - 例4求极限lim() x x x →∞ + - 1 1 2 1 解:lim() x x x →∞ + -= 1 1 2 1lim() x x x →∞ - 1 1 2 lim() x x →∞ - 1 1 2 =+ - →∞ -? - lim()() x x x 1 1 2 2 1 2lim() x x →∞ - 1 1 2

经济数学基础 第2章 导数与微分 =+-? ???? ?→∞--lim()x x x 11221 2 lim() x x →∞-1121 e 21?=-e 1= 二、函数的连续性 例1讨论函数?? ???>+=<=0 2100e )(x x x a x x f x 在x =0处的连续性,并求函数的连续区间. 解:因为 a f x x x x ==+=+-→→)0(,1)21(lim ,1e lim 0 ,所以1 )(lim 0 =→x f x 当1≠a 时, ) (lim )0(0 x f f x →≠,即极限值不等于函数值,所以x =0是函数的一个 间断点,且当1≠a 时,函数的连续区间是),0()0,(+∞?-∞. 当1=a 时, ) (lim )0(0 x f f x →=,即极限值等于函数值,所以x =0是函数的一个连 续点,且当1=a 时,函数的连续区间是),(+∞-∞. 三、函数的可导性 例1设函数 f x ax b x x x ()=+>≤???002 若函数f x ()在点x =0处连续且可导,应如何选取系数a b ,? 解:因为0 )0(,)(lim ,0lim 0 20 ==+=+-→→f b b ax x x x 所以当b =0时函数f x ()在点x =0处连续. 又因为0 )(lim )0()0(lim lim )0(2 000=??=?-?+=??='---→?→?→?-x x x f x f x y f x x x '===+→→+ +f y x a x x a x x ()lim lim 000?????? 所以当a =0,b =0时函数f x ()在点x =0处可导.

简谐运动典型例题

简谐运动典型例题 一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在s 40-内的振动图象,下列正 确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6)cm 则该振子振动的振幅和周期为( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=1.5s 开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) -

简谐运动典型例题精析

简谐运动?典型例题精析 [ 例题1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N 两点时速度v(v工0)相同,那么,下列说法正确的是 A.振子在M N两点受回复力相同 B.振子在M N两点对平衡位置的位移相同 C.振子在M N两点加速度大小相等 D.从M点到N点,振子先做匀加速运动,后做匀减速运动 [ 思路点拨] 建立弹簧振子模型如图9-1 所示.由题意知,振子第一 次先后经过M N两点时速度v相同,那么,可以在振子运动路径上确定M N两点,M N 两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的).建立起这样的物理模型,这时问题就明朗化了. [ 解题过程] 因位移速度加速度和回复力都是矢量,它们要相同必须大小相等、方向相同.M N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A B选项错误.振

子在M N 两点的加速度虽然方向相反,但大小相等,故 C 选项正确?振子由 M RO 速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运 动.振子由O HN 速度越来越小,但加速度越来越大,振子做减速运动,但不 是匀减速运动,故D 选项错误.由以上分析可知,该题的正确答案为 C. [小结](1)认真审题,抓住关键词语.本题的关键是抓住“第一次先 后经过M N 两点时速度v 相同”. (2) 要注意简谐运动的周期性和对称性,由此判定振子可能的路径,从而 确定各物理量及其变化情况. (3) 要重视将物理问题模型化,画出物理过程的草图,这有利于问题的解 决. [例题2] 一质点在平衡位置0附近做简谐运动,从它经过平衡位置起 开始计时,经0.13 s 质点第一次通过M 点,再经0.1s 第二次通过M 点,则 质点振动周期的可能值为多大? [思路点拨] 将物理过程模型化,画出具体的图景如图 9-2所示.设 质点从平衡位置O 向右运动到M 点,那么质点从O 到M 运动时间为0.13 s , 再由M 经最右端A 返回M 经历时间为0.1 s ;如图9-3所示. 另有一种可能就是M 点在0点左方,如图9-4所示,质点由0点经最右 方A 点后團^-3

高中物理总复习简谐运动

简谐运动 一、本周内容: 1、简谐运动 2、振幅、周期和频率 二、本周重点: 1、简谐运动过程中的位移、回复力、加速度和速度的变化规律 2、简谐运动中回复力的特点 3、简谐运动的振幅、周期和频率的概念 4、关于振幅、周期和频率的实际应用 二、知识点要点: 1、机械振动 (1)定义:物体在平衡位置附近所做的往复运动,叫做机械振动,简称振动。 (2)产生振动的条件: ①物体受到的阻力足够小 ②物体受到的回复力的作用 手施力使水平弹簧振子偏离平衡位置,感到振子受到一指向平衡位置的力,它总要使振子返回平衡位置,所以叫做回复力。回复力是根据力的作用效果命名的。回复力可以是弹力,也可以是其他的力,或几个力的合力,或某个力的分力。 (3)机械振动是一种普遍的运动形式,大至地壳振动,小至分子、原子的振动。 2、简谐运动 (1)定义:物体在跟位移的大小成正比,并且总指向平衡位置的回复力作用下的运动,叫简谐运动 (2)条件:物体做简谐运动的条件是F=-kx,即物体受到的回复力F跟位移大小成正比,方向跟位移方向相反。 (3)对F=-kx的理解:对一般的简谐运动,k是一个比例常数,不同的简谐运动,K值不同,k是由振动系统本身结构决定的物理量,在弹簧振子中,k是弹簧的劲度系数。 3、简谐运动的特点 (1)回复力:物体在往复运动期间,回复力的大小和方向均做周期性的变化,物体处在最大位移处时的回复力最大,物体处于平衡位置时的回复力最小(为零),物体经过平衡位置时,回复力的方向发生改变。 (2)加速度:由力与加速度的瞬时对应关系可知,回复力产生的加速度也是周期性变化的,且与回复力的变化步调相同。 (3)位移:物体做简谐运动时,它的位移(大小和方向)也是周期性变化的,为研究问题方便,选取平衡位置位移的起点,物体经平衡位置时位移的方向改变。 (4)速度:简谐运动是变加速运动,速度的变化也具有周期性(包括大小和方向),物体经平衡位置时的速度最大,物体在最大位移处的速度为零,且物体的速度方向改变。 4、振幅(A) (1)定义:振动物体离开平衡位置的最大距离,单位:m (2)作用:描述振动的强弱。 (3)振幅和位移的区别:对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的,位移是矢量,振幅是标量,它等于最大位移的大小。

中考数学专题圆的切线精华习题

中考数学专题圆的位置关系 第一部分真题精讲 【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线; (2)若DE=2,tan C=1 2 ,求⊙O的直径. A 【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证OD⊥DE。至于第二问则重点考察直径所对圆周角是90°这一知识点。利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。 【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点, A ∴ OD为△ABC的中位线.∴OD∥BC. ∵ DE⊥BC,∴∠DEC=90°. ∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D. ∴ DE为⊙O的切线. (2)解:联结DB.∵AB为⊙O的直径, ∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°. ∵ D为AC中点,∴AB=AC. 在Rt△DEC中,∵DE=2 ,tanC=1 2 ,∴EC=4 tan DE C =. (三角函数的意义要记牢) 由勾股定理得:DC= 在Rt △DCB 中, BD=tan DC C ?= BC=5. ∴AB=BC=5. ∴⊙O的直径为5. 【例2】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥ 于点D.(1)求证:DA为⊙O的切线;(2)若1 BD=, 1 tan 2 BAD ∠=,求⊙O的半径.

知识讲解 简谐运动及其图象

简谐运动及其图象 编稿:张金虎审稿:吴嘉峰 【学习目标】 1.知道什么是弹簧振子以及弹簧振子是理想化模型。 2.知道什么样的振动是简谐运动。 3.明确简谐运动图像的意义及表示方法。 4.知道什么是振动的振幅、周期和频率。 5.理解周期和频率的关系及固有周期、固有频率的意义。 6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。 7.能用公式描述简谐运动的特征。 【要点梳理】 要点一、机械振动 1.弹簧振子 弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子. 2.平衡位置 平衡位置是指物体所受回复力为零的位置. 3.振动 物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动. 振动的特征是运动具有重复性. 要点诠释:振动的轨迹可以是直线也可以是曲线. 4.振动图像 (1)图像的建立:用横坐标表示振动物体运动的时间t,纵坐标表示振动物体运动过程中对平衡位置的位移x,建立坐标系,如图所示.

(2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律. (3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻). (4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负表示振子运动方向与坐标轴的正方向相同或相反. 如图所示,在x 坐标轴上,设O 点为平衡位置。A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零. 在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负. 要点二、简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动. 简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动. 物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件 (1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内. 3.理解简谐运动的对称性 如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有: (1)时间的对称: 4 OB BO OA AO T t t t t ==== , OD DO OC CD t t t t ===,

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

第二章轴对称图形知识点归纳+典型例题+提优

2.1轴对称与轴对称图形 姓名_______学号_______班级_______ 学习目标: 1.欣赏生活中的轴对称现象和轴对称图案,探索它们的共同特征,发展空间观念. 2.通过具体实例了解轴对称概念,了解轴对称图形的概念,知道轴对称与轴对称图形的区别和联系. 学习重点: 了解轴对称图形和轴对称的概念,并能简单识别、体会轴对称在现实生活中的广泛应用和它的丰富文化价值. 学习难点: 能正确地区分轴对称图形和轴对称,进一步发展空间观念. 学习过程: 一、创设情境 观察如下的图案, 它们有什么共同的特征? 二、探索活动 活动一折纸印墨迹 问题1.你发现折痕两边的墨迹形状一样吗?

问题2.两边墨迹的位置与折痕有什么关系? 概念:把一个图形沿着___________________翻折,如果它能够与另一个图形__________,那么称这两个图形____________________对称,也称这两个图形成______________. 这条直线叫做________________,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点. 如图,△ABC和△DEF关于直线MN对称, 直线MN是对称轴,点A与点D、点B与点E、 点C与点F都是关于直线MN的对称点. 活动二切藕制作成轴对称的两个截面 联系实际,你能举出一些生活中图形成轴对称的实例吗? 活动三

把_________图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是_______________,这条直线就是_____________. 请你找出图1-5中的各图的对称轴. 联系实际,你能举出一个轴对称图形的实例吗? 活动五轴对称与轴对称图形的区别和联系 三、课堂练习 1. 分别画出下列轴对称型字母的对称轴以及两对对称点. 2.画出下列各轴对称图形的对称轴.

简谐运动典型例题

一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在内的振动图象,下列正确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6 )cm 则该振子振动的振幅和周期为 ( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 1 2 3 4 5 x/cm t/s 1 2 4 -2

6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) A .mg +k A B .mg -Ka C .kA D .kA -mg 4.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以某时刻作为计时起点,即t =0,其振动图象如图所示,则( ) A .t =14T 时,货物对车厢底板的压力最大 B .t =1 2T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =3 4T 时,货物对车厢底板的压力最小 5.弹簧振子的质量为,弹簧劲度系数为,在振子上放一质量为m 的木块,使两者一起振动,如图。木块的回复力是振子对木块的摩擦力,也满足,是弹簧的伸长(或压缩)量,那么为( ) A . B . C . D . 6、一个弹簧振子,第一次被压缩x 后释放做自由振动,周期为T 1,第二次被压缩2x 后释放做自由振动,周期为T 2,则两次振动周期之比T 1∶T 2为 ( ) A .1∶1 B .1∶2 C .2∶1 D .1∶4

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

简谐运动教学难点的分析与突破

简谐运动教学难点的分析与突破 江苏省溧阳中学彭建武 简谐运动是一种变加速运动,对高一学生来说比前面学过的各种运动要复杂,是高中物理教学的难点之一。本文就这一教学难点形成的原因进行分析,并运用建构主义理论的某些观点,结合自己的教学实践,提出一些突破教学难点的思路和方法,供同行参考斧正。 1、难点形成原因分析 1.1从教学内容本身看,简谐运动是一种较复杂的变加速运动,而且要综合分析各种物理量之间的变化关系,学生难以形成比较深刻的理解,客观上有一定的难度。 1.2从教材结构看,教材处理的流程为:例举实例指出什么是机械振动,然后由弹簧振子引出简谐运动。其中对一次全振动的表述方法是由实例来说明,而不是用精辟的物理语言来下定义。这样学生的理解只能是肤浅的,对学生的继续学习带来困难。 1.3从学生的认识结构和能力水平来看,学生在此之前对位移的定义有很深的印象,他们对振子的位移是指偏离平衡位置的位移很难接受,这种思维定势绝不是通过几次讲解就能逆转的;学生对复杂运动的分析能力也是一个薄弱环节,给新授内容的理解和掌握造成了不可忽视的困难。 1.4从教学方法上看,有些教师在教学时省去了实验或很草率的做一下,缺少启发性,学生对规律缺乏正确的、深刻的理解,结果一旦遇到新的问题、新的情境,就无从下手,学生的能力得不到培养和发展,在主观上增加了教学难度。 2、突破难点的理论依据和教学思路 建构主义理论认为,学习过程不是学习者被动的接受知识,而是积极的建构知识的过程;在学校里,学习不是教师向学生传递知识的过程,而是学生建构自己的知识和能力的过程。只有充分发挥学生的主体作用,让学生积极参与教与学的整个活动,才能以其已有的知识和经验去过滤和解释新知识、新信息,并对新知识构建起自己的正确理解。因此教师在教学设计时,首先要考虑的不是将课本上的知识灌输给学生,而是为学生建构知识创造良好的环境。基于这种指导思想,我在进行教学设计时,首先通过实验,由此提出一些问题让学生去观察、思考,激发学生探索新知识的兴趣和动机,为突破难点提供良好的情境。其次,充分考虑学生的认知特点,激励学生积极思维,尽可能让学生去思考,教师只在适当的时候再做点拨、启发、整理归纳。这样,既有利于学生主动构建新知识,又利于学生创新精神的培养。第三,针对教学内容和物理学科之特点,借助多媒体,形象直观的展示物理过程及各物理量之间的变化关系,让学生对所学内有深层次的理解。第四加强对学生的学法指导,在学生对简谐运动有较深刻理解之后,通过典型问题的解释分析,达到巩固提搞的目的,这也是分解教学难点的具体方法。 3、突破难点的教学设计 3.1创造学生主动建构的情景 让学生观察下列实验:单摆的摆动、竖直弹簧振子的振动、水平弹簧振子的振动,且用标志物指示它们的中心位置。敏锐的学生会发现它们有共同的特征:以某位置为中心位置作往复运动,这样不但激起学生学习的动机,又把本节课的第一个学习任务——什么是机械振动,置于一个有利于

相关文档
最新文档