2014—2015第一学期高二第三次月考数学试卷

合集下载

山西省太原市外国语学校2014-2015学年高二上学期半月考数学试卷 Word版含答案

山西省太原市外国语学校2014-2015学年高二上学期半月考数学试卷 Word版含答案

高二年级(半月)考试卷( 数学 )使用时间:2014年11月1日 测试时间: 90 分钟 总分:120 分第一部分 (选择题共48分)一、选择题:本大题共12个小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.直线1l 的倾斜角为30,斜率为1k ,直线2l 过点(1,2),(5,2,斜率为2k ,则 ( ) A 12k k > B 12k k < C 12k k = D 不能确定2.设直线0a x b y c ++=的倾斜角为α,且s i n co s 0αα+=,则,a b 满足:( ).A 1=+b a .B 1=-b a .C 0=+b a .D 0=-b a3.已知三点()3,1A 、()2,B k -、()8,11C 共线,则k 的取值是 ( ) .A 6- .B 7- .C 8- .D 9-4.下列命题中正确的是 ( ) A. 经过点P 0(x 0,y 0)的直线都可以用方程y -y 0=k(x -x 0)表示 B. 经过定点A(0,b)的直线都可以用方程y=kx +b 表示.C. 经过任意两个不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可用方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x-x 1)表示.D. 不经过原点的直线都可以用方程a x +by=1表示. 5.经过圆0222=++y x x 的圆心C ,且与直线x+y =0垂直的直线方程是( ) A .01=--y x B. 01=+-y x C.01=-+y x D. 01=++y x 6.已知点(),2a (0a >)到直线l :30x y -+=的距离为1,则a 等于( ).A .B 2.C 1 .D 17.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 ( ) A. 230x y -=B. 50x y ++=C. 230x y -=或50x y ++=D. 50x y ++=或x -y +5=08. 直线1:2(1)40l x m y +++=与直线2:320l mx y +-=平行,则m 的值为( )A.2或-3B.-3C. 2D.-2或-3 9.过三点(0,0)O , (1,1)A , (4,2)B 的圆的方程为( ) A. 2210x y += B. 22860x y x y ++-= C. 22860x y x y +-+= D. 22970x y x y +-+=10.若直线()()2243660a a x a a y ++++--=与210x y --=垂直,则a 等于( )A.5B. 5或-3C.-3 D 不存在 11. 已知α是第二象限角,直线sin tan cos 0x y ααα++=不经过 ( ) A.第一象限 B.第二象限 C.第三象限D.第四象限12.直线l 经过()2,1A ,()21,B m (m R ∈)两点,那么直线l 的倾斜角范围是 ( ).A [)0,π .B ,,422ππππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭.C 0,4π⎡⎤⎢⎥⎣⎦ .D 0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭第二部分 (非选择题共72分)二、填空题:本大题共4小题,每小题4分,共16分13. 已知)4,7(-A 关于直线l 的对称点为)6,5(-B ,则直线l 的方程是__________________ 14.与直线0532=++y x 平行,且距离等于13的直线方程是 .15.直线l 经过点)3,2(P ,且与两坐标轴围成一个等腰直角三角形,直线l 的方程_________ 16. 已知点)15,2(),5,3(B A -,P 是直线x -y +5=0上的动点,则PB PA +的最小值为________________.三、解答题:本大题共5小题,共56分。

陕西省三原县北城中学高二上学期第三次月考数学(理)试

陕西省三原县北城中学高二上学期第三次月考数学(理)试

命题人:李存战 审题人:第I 卷(选择题 共50分)一、选择题(本大题共10个小题,每小题只有一个正确选项。

每小题5分,共50分)1.等差数列{}中,已知,,则=( )A.4B.3C.2D.12.已知,则“”是“”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. {}==⋅=+q a a a a a n 则公比中,在正项等比数列,16,105362( ) A. B. C. D.26. 已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A. B .1 C .2 D .47.()22220 1 62x y y px p =>+=若的焦点与椭圆 的右焦点重合,则抛物线准线方程为 A. B. C. D.8.已知,p q 是简单命题,则“p 或q 为真”是“p 且q 为真”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件10.上到直线抛物线212=x y ( )A.(1,1)B.(1,2)C.(2,2)D.(2,4)第II 卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分)11.命题“∀x ∈R ,x 2-x+3>0”的否定是12. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和等于 .13. 的最大值为,则足若满y x z x y x y x y x -=⎪⎩⎪⎨⎧≥+≤-≤+302142, .14.抛物线的焦点坐标是15.(期中考试15题)已知正项等比数列满足:,若存在两项使得,则的最小值为 .三、解答题(解答应写出文字说明,证明过程或演算步骤本大题共6小题,共75分)16.(本小题共12分)已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程.17.(本小题共12分)设p:函数y =log a (x+1) (a > 0,a ≠1)在(0,+∞)上单调递减;q:曲线y = x 2+(2a-3)x+1与x 轴交于不同的两点,如果p 且q 为假命题,p 或q 为真命题,求a 的取值范围.18. (本小题共12分)已知a ,b ,c 分别是△ABC 的三个内角A 、B 、C 的对边.(Ⅰ)若△ABC 面积为求a ,b 的值;(Ⅱ)若acosA=bcosB ,试判断△ABC 的形状.19. (本小题共12分,期中考试20题)在等差数列中,,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列是首项为,公比为的等比数列,求的前项和北城中学2014-2015学年度第一学期第三次月考高二理科数学试题答题纸二、填空题(共5小题,每小题5分,共25分).三、解答题(解答应写出文字说明,证明过程或演算步骤本大题共6小题,共75分)。

高考精品模拟试卷_浙江省建人高复2015届高三上学期第三次月考数学(理)试卷 Word版含答案(精校完美版)

高考精品模拟试卷_浙江省建人高复2015届高三上学期第三次月考数学(理)试卷 Word版含答案(精校完美版)

浙江建人高复2015届第一学期第三次月考试卷理科数学第I 卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求.请将你认为正确的选项答在指定的位置上) 1.已知函数 f (x )=267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩ 则 f (0)+ f (-1)=( ▲ )(A) 9 (B)7110 (C) 3 (D)11102.已知,a b ∈R ,下列四个条件中,使a b >成立的必要而不充分的条件是( ▲ )(A) 1a b >- (B)1a b >+ (C)||||a b > (D)22a b>3.若实数,x y 满足不等式组20,10,210,x x y x y -≥⎧⎪++≥⎨⎪-+≥⎩则3y x -的最大值为( ▲ )(A) 6-(B)3-(C)2- (D)1-4.若实数a ,b ,c 满足l o g 2l o g 2l o g ab c<<,则下列关系中不可能成立.....的是( ▲ )(A) a b c << (B)b a c << (C)c b a << (D)a c b <<5.若正实数x ,y满足1911x y+=+,则x +y的最小值是( ▲ )(A )15(B )16 (C )18 (D )196.已知圆22:1C x y +=,点A (-2,0)及点B (2,a ),从A 点观察B 点,要使视线不被圆C挡住,则a的取值范围是( ▲ )A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,,+∞) D.(-∞,-4)∪(4,+∞) 7.设1AB =,若2CA CB =,则CA CB ⋅的最大值为( ▲ )(A )13 (B )2 (C (D )38.已知点(1,1)A --.若曲线G 上存在两点,B C ,使ABC △为正三角形,则称G 为Γ型曲线.给定下列三条曲线:① 3(03)y x x =-+≤≤; ② (0)y x =≤≤;③1(0)y x x=->.其中,Γ型曲线的个数是 ( ▲ ) (A) 0 (B)1 (C)2 (D)3第Ⅱ卷(非选择题,共110分)二、填空题(本题共7道小题,第9题到12题每空3分,第13到15题每空4分 ,共36分;将答案直接答在答题卷上指定的位置)9.已知全集{},|3U R A x x ==≥,{}2|870,B x x x =-+≤{}|=≥C x x a .则=A B▲ ;若=C A A ,则实数a 的取值范围是 ▲ .10.若cos α=,π02α<<,则sin 2α= ▲ , πsin (2)6α-= ▲ . 11. 在等差数列{}n a 中,25=a ,1412+=a a ,则=n a ▲ ,设211=-n n b a *()∈n N ,则数列{}n b 的前n 项的和=n S ▲ .12.函数=y 的最大值是 ▲ ;最小值是 ▲ .13.点A 在单位正方形OPQR 的边,PQ QR 上运动,OA 与RP 的交点为B ,则OA OB ⋅的最大值为 .14.在直角ABC ∆中,两条直角边分别为a b 、,斜边和斜边上的高分别为c h 、,则c ha b++的取值范围是 ▲ .15.设),(b a P 是直线x y -=上的点,若对曲线)0(1>=x xy 上的任意一点Q 恒有3≥PQ ,则实数a 的取值范围是 ▲ .三、解答题(本大题共74分,解答应写出文字说明,证明过程或演算步骤): 16.(本题满分15分)已知函数)sin()(ϕω+=x A x f (∈x R ,0>A ,0>ω,20πϕ<<)图象如图,P 是图象的最高点,Q 为图象与x 轴的交点,O 为原点.且2||=OQ ,25||=,213||=. (Ⅰ)求函数)(x f y =的解析式;(Ⅱ)将函数)(x f y =图象向右平移1个单位后得到函数)(x g y =的图象,当]2,0[∈x 时,求函数)()()(x g x f x h ⋅=的最大值.17.(本题满分14分)已知x 满足不等式0l o g )(l o g 2222≤-x x ,求函数1224221++⋅-=-a a y xx (R a ∈)的最小值.18.(本题满分15分) 已知圆C 过点P (1,1),且与圆M :(x+2)2+(x+2)2=r 2(r>0)关于直线x+y+2=0对称.⑴求圆C 的方程;⑵设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值;⑶过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.19.(本题满分15分)设公比为正数的等比数列{}n a 的前n 项和为n S ,已知328,48a S ==,数列{}n b 满足24log n n b a =.(第16题)(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)是否存在m N *∈,使得12m m m b b b ++⋅是数列{}n b 中的项?若存在,求出m 的值;若不存在,请说明理由.20.(本题满分15分)设12,x x 是函数2()(1)1(,,0)f x ax b x a b R a =+-+∈>的两个零点. (Ⅰ)如果1224x x <<<,求(2)f -的取值范围; (Ⅱ)如果12102,2x x x <<-=,求证:41<b ; (III )如果212,2a x x ≥-=,且12(,)x x x ∈,函数2()()2()g x f x x x =-+-的最大值为()h a ,求()h a 的最小值.理数答案一、选择题(共8小题,每小题5分,共40分) CADA A C BC二、填空题(本题共7道小题, 共36分) 9.[3,7][3,)+∞10.4511.21n + 44nn +12.213.114.(1,415.([7,)-∞+∞ 三、解答题(本大题共74分,解答应写出文字说明,证明过程或演算步骤) 16.解(Ⅰ)由余弦定理得51||||2cos 222==∠OQ OP POQ ,∴52sin =∠POQ ,得P 点坐标为)1,21(.∴ 1=A ,6)212(42=-=ωπ,3πω=. 由1)6sin()21(=+=ϕπf ,20πϕ<<得3πϕ=.∴)(x f y =的解析式为)33sin()(ππ+=x x f .(Ⅱ)x x g 3sin)(π=,x x x x x x g x f x h 3cos 3sin 233sin 213sin )33sin()()()(2ππππππ+=+=⋅=41)632sin(2132sin 43432cos 1+-=+-=ππππx x x. 当]2,0[∈x 时,]67,6[632ππππ-∈-x , ∴ 当2632πππ=-x ,即1=x 时43)(max =x h . 17.解:解不等式 0log )(log 2222≤-x x ,得 41≤≤x ,所以 1622≤≤x1)2(21122)2(211224222221+-=++⋅-=++⋅-=-a a a a a y x xx xx当2<a 时,1)2(212min +-=a y ; 当162≤≤a 时,1min =y 当16>a 时,1)16(212min +-=a y18.5.(1)222=+y x ;(2)-4;(3)OP ∥AB ;理由祥见解析.:⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧-=-⨯++=+-+-001)1(22022222000000y x x y y x ,所以圆C 的方程为:222r y x =+,又因为圆C 过点P(1,1),所以有211222=⇒=+r r ,故知:⊙C 的方程为:222=+y x(2)设Q (x 、y ),则222=+y x ,从而可设θθsin 2,cos 2==y x )(R ∈θ则(1)(2)(1)(2)22sin()24PQ MQ x x y y x y πθ⋅=-++-+=+-=+-所以PQ MQ ⋅的最小值为-4.(3)设PA 的方程为:)1(1-=-x k y ,则PB 的方程为:)1(1--=-x k y由⎩⎨⎧=+-=-2)1(122y x x k y 得22112k k k x A +--=,同理可得:22112k k k x B +-+= OPAB A B A B A B A B A B ABk k k k k k k x x x x k k x x x k x x x y y k ==++-⋅-=-+-=-----=--=∴1141222)(2)1()1(k 222∴OP ∥AB .19.解:(Ⅰ)设{}n a 的公比为q ,则有211181228a q q a a q ⎧⋅=⇒=⎨+=⎩或12q =-(舍). 则12832a q==,16132()22n n n a --=⋅=, 6224log 4log 2424n n n b a n -===-+.即数列{}n a 和{}n b 的通项公式为16132()22n n n a --=⋅=,424n b n =-+.(Ⅱ)12(244)(204)4(6)(5)(164)(4)m m m b b m m m m b m m ++⋅----==--,令4(3,)t m t t Z =-≤∈,所以 124(6)(5)4(2)(1)24(3)(4)m m m b b m m t t t b m t t++⋅--++===++-, 如果12m m m b b b ++⋅是数列{}n b 中的项,设为第0m 项,则有024(3)4(6)t m t ++=-,那么23t t ++为小于等于5的整数,所以{2,1,1,2}t ∈--. 当1t =或2t =时,236t t ++=,不合题意;当1t =-或2t =-时,230t t++=,符合题意.所以,当1t =-或2t =-时,即5m =或6m =时,12m m m b b b ++⋅是数列{}n b 中的项.20.解:(Ⅰ) (2)0(4)0f f <⎧⎨>⎩ 得421016430a b a b +-<⎧⎨+->⎩,(2)423f a b -=-+得(2)f -的范围(3,)+∞(Ⅱ)212x x -==所以22(1)44b a a -=+,又(2)4210f a b =+-<,得1240b a ->>,所以22212(1)44(12)2b b a a b -⎛⎫-=+<+- ⎪⎝⎭即22121()(12)4b b b b b -+<-++-,得41<b ; (III )122122()()()2()()()2()g x a x x x x x x a x x x x x x =---+-=--+-221212221()()(1)2x x a a x x x x a a a a ⎛⎫-+ ⎪=-+-≤=+ ⎪⎪⎝⎭当1212x x x a+=-取等号, 所以211()(1)2h a a a aa =+=++,()h a 在[2,)+∞上是增函数, 所以()h a 的最小值是9(2)2h =.。

河北省邢台市第二中学2014-2015学年高二上学期第三次月考数学(文)试题

河北省邢台市第二中学2014-2015学年高二上学期第三次月考数学(文)试题

河北省邢台市第二中学2014-2015学年高二上学期第三次月考数学(文)试题一、选择题(每题5分,共60分,将正确选项涂在答题卡上) 1、抛物线212y x =的焦点为( )A .()6,0B .()0,6C .()3,0D .()0,32、双曲线13222=-y x 的离心率为 ( )A B C D 3、命题“00,20x x R ∃∈≤”的否定为( )A .00,20x x R ∀∈≤B .00,20x x R ∀∈≥C .00,20x x R ∀∈<D .00,20x x R ∀∈> 4. 已知1:1,:1p x q x><,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也非必要条件 5. 若A x f =')(0,则xx f x x f x ∆-∆-→∆)()(lim000等于( )A .AB .A -C .A 21 D .以上都不是6.已知双曲线()2222:10,0x y C a b a b -=>>C 的渐近线方程为( )111....432A y x B y x C y x D y x=±=±=±=±7.已知对k R ∈直线10y kx --=与椭圆2215x y m+=恒有公共点,则实数m 的取值范围是() A .(0,1)B . (0,5)C .),5()5,1[+∞⋃D .[1,5)8.曲线1323+-=x x y 在点)1,1(-处的切线方程为( )A .43-=x y B .23+-=x y C .34+-=x yD .54-=x y9.如图是'()f x 的图像,则正确的判断个数是( ) (1))(x f 在)3,5(--上是减函数;(2)4=x 是极大值点; (3)2=x 是极值点;(4))(x f 在)2,2(-上先减后增; A.0 B .1 C .2 D. 310、已知函数()3sin34(,)f x a x bx a R b R =++∈∈,()f x '为()f x 的导函数,则()()2014(2014)2015(2015)f f f f ''+-+--=( ) A .8 B .2014 C .2015 D .011. 函数a ax x y +-=23在)1,0(内有极小值,则实数a 的取值范围为( ) A. )3,0( B. )3,(-∞ C. ),0(+∞ D. )23,0(12.已知双曲线()2222:10,0x y E a b a b-=>>的右焦点为()3,0F ,过点F 的直线交双曲线于,A B 两点,若AB 的中点坐标为()12,15N --,则E 的方程为( ) 22222222.1.1.1.136634554x y x y x y x y A B C D -=-=-=-=二 、填空题(每题5分,共20分,将正确答案写在答题纸上)13.方程22113x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是_ _____. 14.已知定义在R 上的可导函数y =f (x )的图象在点1M(,f(1))处的切线方程为122y x =-+,则f (1)+f ′(1)=_ _____.15.已知P 是双曲线1366422=-y x 上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为_ _____.16、已知函数223)(a bx ax x x f +++=在1=x 处有极值10,则)2(f =_ _____.三、解答题:(第17题10分,其它各12分,共70分,将规范的答题过程写在答题纸上.) 17.(本题满分10分)设命题12:,6:2>≥-xq x x p ,已知“”“”p q q ∧⌝与同时为假命题,. (1)分别判断p 和q 的真假; (2)求满足条件的x 的取值集合.18.(本题满分12分)某种产品的广告费支出x 与销售额y (单位:万元)之间有如下对应数据(1)求回归直线方程;(2)试预测广告费支出为10万元时,销售额多大? (参考数据:521145ii x ==∑ 52113500ii y ==∑511380i ii x y==∑参考公式:线性回归方程系数:1221ni ii ni i x y nx yb x nx==-=-∑∑,a y bx =-)19.(本题满分12分)已知函数321()33fx x x x a =-+++. (1)求()f x 的单调区间;(2)若()f x 在区间[﹣3,3]上的最小值为,求a 的值.20.(本题满分12分)已知中心在原点的双曲线的渐近线方程是y =,且双曲线过点(Ⅰ)求双曲线的方程;(Ⅱ)过双曲线右焦点F 作倾斜角为4π的直线交双曲线于,A B ,求||AB .21.(本题满分12分)已知函数()ln f x x x =.(Ⅰ)求函数()f x 在[1,3]上的最小值;(Ⅱ)若对1[,e]ex ∀∈,都有不等式22()3f x x ax ≥-+-成立,求实数a 的取值范围.22. (本题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 右焦点)0,1(F ,且21=e (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,都不是顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.2013级高二上学期第三次月考文数参考答案三、解答题17.解:(1) “”“”p q q ∧⌝与同时为假命题,所以q 为真,p 为假------------------4分(2)由(1)知⎩⎨⎧<->62x x x 解得03x <<--------------------------------------8分故x 的取值集合为{}|03x x <<. --------------------------------------10分18. (1)解:2+4+5+6+825=555x ==,30+40+60+50+70250=5055y == ------3分 又已知521145ii x==∑ ,511380i i i x y ==∑于是可得:5152215138055506.51455555i ii i i x y x yb x x==--⨯⨯===-⨯⨯-∑∑, ------------------------5分50 6.5517.5a y bx =-=-⨯=因此,所求回归直线方程为: 6.517.5y x =+ --------------------------------8分 (2)解根据上面求得的回归直线方程,当广告费支出为10万元时,6.51017.5=82.5y =⨯+ (万元) 即这种产品的销售收入大约为82.5万元. ------12分19.解:(1)∵321()33f x x x x a =-+++,∴2'()23f x x x =-++ --------------------------------------2分 令'()0f x >,得13x -<<;令'()0f x <,得13x x <->或, ∴()f x 的单调减区间为(-∞,-1),(3,+∞),单调增区间为(-1,3). ---------------------------------------6分(2)当x ∈[-3,-1]时,'()0f x <;当x ∈[-1,3]时,'()0f x > ∴min 17()(1)1333f x f a =-=+-+= ∴4a =.------------------------------------------------------------12分 20.解:(1)设所求双曲线方程为:223(0)x y λλ-=≠,点代入得:3λ=,故所求双曲线方程为:2213y x -= --------------------------------------4分 (2)直线AB 的方程为:2y x =-,设1122(,),(,)A x y B x y ,由22233y x x y =-⎧⎨-=⎩ 得:22470x x +-=,则1212272x x x x +=-⎧⎪⎨=-⎪⎩ -----------------9分∴12||6AB x x -=弦长 ------------12分22.解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:21=e 且1c =,∴2a =,∴2223b a c =-=.∴椭圆的标准方程为22143x y +=.---------------------------------------4分(Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y=+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=, 22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,, ------------8分 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+,因为以AB 为直径的圆过椭圆的右顶点(20)D ,,∴1AD BD k k =-,即1222211-=-⋅-x yx y ,---------------------------------10分 ∴1212122()40y y x x x x +-++=,∴2222223(4)4(3)1640343434m k m mk k k k--+++=+++, ∴0416722=++k mk m .解得:027=+k m 或02=+k m∴直线l 过点)0,72(或点)0,2((舍)--------------------------------------12分。

江西省上高二中2014-2015学年高二上学期第三次月考试题 数学理

江西省上高二中2014-2015学年高二上学期第三次月考试题 数学理

江西省上高二中2014-2015学年高二上学期第三次月考试题 数学理一、选择题(10×5=50分)1.设,[0,)a b ∈+∞,A B ==A 、B 的大小关系是( ) A .A B ≤B .A B ≥C .A B <D .A B >2.若PQ 是圆229x y +=的弦,PQ 中点是(1,2),则直线PQ 方程是( ) A .230x y +-= B .250x y +-= C .240x y -+= D .20y x -= 3.命题“0,1x R x ∃∈>”否定是( )A .,1x R x ∀∈>B .00,1x R x ∃∈≤C .,1x R x ∀∈≤D .00,1x R x ∃∈<4.抛物线的顶点在原点,焦点与双曲线22154y x -=的一个焦点重合,则抛物线的标准方程可能是( ) A .24x y =B .24x y =-C .212y x =-D .212x y =-5.设平面α与平面β相交于直线m ,直线a 面α,直线bβ且b m ⊥,则“αβ⊥”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6.知椭圆22221()x b a b c a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P ,若3AP PB =,则椭圆离心率是( )A .3B .2C .13D .127.椭圆C :22143x y +=的左、右顶点分别为M 、N ,点P 在C 上,且直线PN 的斜率为14-,则直线PM 斜率为( )A .13B .3C .13-D .3-8.知,αβ是二个不同的平面,,m n 是二条不同直线,给出下列命题: ①若,m n m α⊥,则n α⊥;②若,m n ααβ⋂=,则m n ;③若,m m αβ⊥⊥,则αβ;④若,m m α⊥β,则αβ⊥,真命题共有( )A .1个B .2个C .3个D .4个9.某四面体的三视图如图所示,该四面体的四个面的面积中最大的是( )A 11A .8B .C .10D .10.从双曲线22135x y -=的左焦点F 引圆223x y +=的切线FP 交双曲线右支于点P ,T 为切点,M 为线段PF 的中点,O 为原点,则||||MOMT -=( )ABCD 二、填空题(5×5=25分)11.知第一象限的点(,)a b 在直线2310x y +-=上,则23a b+的最小值为 . 12.双曲线C 的渐近线方程为430x y ±=,一条准线方程为165y =,则双曲线方程为 .13.如图,O 为正方体AC 1的底面ABCD 的中心,异面直线B 1O 与A 1C 1所成角的大小为.14.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的一条渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若M 为EF 中点,则双曲线的离心率e = .15.在正方体上任取四个顶点,它们可能是如下各种几何图形的四个顶点,这些图形序号是 .①矩形;②不是矩形的平行四边形; ③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体。

福建省福州市2014-2015学年第一学期高三质量检查理科数学试卷

福建省福州市2014-2015学年第一学期高三质量检查理科数学试卷

福建省福州市2014-2015学年第一学期高三质量检查理科数学试卷(满分:150分;完卷时间:120分钟)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中有且只有一个选项是正确的.把正确选项涂在答题卡的相应位置上.)1. 如图,复平面上的点1234,,,Z Z Z Z 到原点的距离都相等.若复数z 所对应的点为1Z ,则复数z 的共轭复数所对应的点为( ). A .1Z B .2Z C .3ZD .4Z2. 已知πtan()34+=α,则tan α的值是( ).A .2B .12C .1-D .3-3. 已知A ⊂≠B ,则“x A ∈”是“x B ∈”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a 为座位号),并以输出的值作为下一个输入的值. 若第一次输入的值为8,则第三次输出的值为( ). A .8 B .15 C .29D .365. 如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为A .1π( ). C .3πD .126. 已知函数()lg(1)=-f x x 的值域为(,1]-∞,则函数()f x 的定义域为( ).A .[9,)-+∞B .[0,)+∞C .(9,1)-D .[9,1)-7. 已知抛掷一枚质地均匀的硬币,正面朝上的概率为0.5.现采用随机模拟试验的方法估计抛掷这枚硬币三次恰有两次正面朝上的概率:先由计算器产生0或1的随机数,用0表示正面朝上,用1表示反面朝上;再以第1第4题图第5题图每三个随机数做为一组,代表这三次投掷的结果.经随机模拟试验产生了如下20组随机数: 101 111 010 101 010 100 100 011 111 110 000 011 010 001 111 011 100 000 101 101 据此估计,抛掷这枚硬币三次恰有两次正面朝上的概率为( ). A .0.30B .0.35C .0.40D .0.658. ABC △的三个内角,,A B C 所对的边分别为,,a b c .若cos cos A bB a==C 的大小为( ). A .60︒B . 75︒C .90︒D .120︒9. 若双曲线2222:1x y a bΓ-=(0,0a b >>)的右焦点()4,0到其渐近线的距离为,则双曲线Γ的离心率为( ). ABC .2D .410.定义运算“”为:,0,2,0a b ab a a b a +<⎧⎪*=⎨⎪⎩≥.若函数()(1)f x x x =+*,则该函数的图象大致是( ).AC11.已知ABC ∆的三个顶点,,A B C 的坐标分别为())()0,1,,0,2-,O 为坐标原点,动点P 满足1CP =,则OA OB OP ++的最小值是( ).A .4-B 1C 1+D 12.已知直线:l y ax b =+与曲线:Γ1x y y=+没有公共点.若平行于的直线与曲线Γ有且只有一个公共点,则符合条件的直线( ). A .不存在B .恰有一条C .恰有两条D .有无数条第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置上.) 13.若变量,x y 满足约束条件0,0,2x y y x ⎧⎪⎨⎪-⎩≤≥≤,则z x y =+的最小值为 ★★★ .14.已知6234560123456(1)x a a x a x a x a x a x a x +=++++++,则016,,,a a a ⋅⋅⋅中的所有偶数..的和等于 ★★★ . 15.已知椭圆2239x y +=的左焦点为1F ,点P 是椭圆上异于顶点的任意一点,O 为坐标原点.若点D 是线段1PF 的中点,则1F OD ∆的周长为 ★★★ .16. 若数列{}n a 满足112n n n a a a +-+≥(2n ≥),则称数列{}n a 为凹数列.已知等差数列{}n b 的公差为d ,12b =,且数列n b n ⎧⎫⎨⎬⎩⎭是凹数列,则d 的取值范围为 ★★★ .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知等比数列{}n a 的公比1q >,1a ,2a 是方程2320x x -+=的两根. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}2n n a ⋅的前n 项和n S .18.(本小题满分12分)“ALS 冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记X 为接下来被邀请到的6个人中接受挑战的人数,求X 的分布列和均值(数学期望).19.(本小题满分12分)已知函数()4f x x π⎛⎫= ⎪⎝⎭在同一半周期内的图象过点,,O P Q ,其中O 为坐标原点,P 为函数()f x 图象的最高点,Q 为函数()f x 的图象与x 轴的正半轴的交点.(Ⅰ)试判断OPQ ∆的形状,并说明理由.(Ⅱ)若将OPQ ∆绕原点O 按逆时针方向旋转角02ααπ⎛⎫<< ⎪⎝⎭时,点,P Q ''恰好同时落在曲线ky x=()0x >上(如图所示),求实数k 的值.20.(本小题满分12分)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用m (14m ≤≤且m ∈R )个单位的药剂,药剂在血液中的含量y (克)随着时间x (小时)变化的函数关系式近似为)(x f m y ⋅=,其中()10,06,4.4,682x xf x x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤(Ⅰ)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?(Ⅱ)若病人第一次服用2个单位的药剂,6个小时后再服用m 个单位的药剂,要使接下来的2小时中能够持续有效治疗,试求m 的最小值.21.(本小题满分12分)已知抛物线Γ的顶点为坐标原点,焦点为(0,1)F . (Ⅰ)求抛物线Γ的方程; (Ⅱ)若点P 为抛物线Γ的准线上的任意一点,过点P 作抛物线Γ的切线PA 与PB ,切点分别为,A B ,求证:直线AB 恒过某一定点;(Ⅲ)分析(Ⅱ)的条件和结论,反思其解题过程,再对命题(Ⅱ)进行变式和推广.请写出一个你发现的真命题...,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分). 22.(本小题满分14分)已知函数()()e sin cos ,cos x x f x x x g x x x =-=,其中是自然对数的底数.(Ⅰ)判断函数()y f x =在π(0,)2内的零点的个数,并说明理由;(Ⅱ)12ππ0,,0,22x x ⎡⎤⎡⎤∀∈∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x g x m +≥成立,试求实数m 的取值范围;(Ⅲ)若1x >-,求证:()()0f x g x ->.福州市2014-2015学年度第一学期高三质量检查理科数学试卷参考答案及评分细则一、选择题:本大题共12小题,每小题5分,共60分. 1.C 2.B 3.A 4.A 5.B 6.D 7.B 8.C 9.C 10.D 11.B 12.C二、填空题:本大题共4小题,每小题4分,共16分,13.2- 14.32 15.3+16.(,2]-∞ 三、解答题:本大题共6小题,共74分.17. 本题主要考查一元二次方程的根、等比数列的通项公式、错位相减法求数列的和等基础知识,考查应用能力、运算求解能力,考查函数与方程思想. 解:(Ⅰ)方程2320x x -+=的两根分别为1,2, ·························································· 1分 依题意得11a =,22a =. ································································································ 2分 所以2q =, ······················································································································· 3分 所以数列{}n a 的通项公式为12n n a -=. ·········································································· 4分 (Ⅱ)由(Ⅰ)知22n n n a n ⋅=⋅, ··················································································· 5分 所以212222n n S n =⨯+⨯+⋅⋅⋅+⨯, ············································ ①23121222(1)22n n n S n n +⋅=⨯+⨯+⋅⋅⋅+-⋅+⨯, ························· ② 由①-②得23222n S -=+++⋅⋅⋅122n n n ++-⨯, ················································································ 8分即 1222212n n n S n +-⋅-=-⨯-, ······················································································· 11分 所以12(1)2n n S n +=+-⋅. ····························································································· 12分18.本题主要考查离散型随机变量的概率、分布列、数学期望等基础知识,考查运算求解能力以及应用意识,考查必然与或然思想等.解法一:(Ⅰ)这3个人接受挑战分别记为A 、B 、C ,则,,A B C 分别表示这3个人不接受挑战.这3个人参与该项活动的可能结果为:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C .共有8种; ····································································································· 2分 其中,至少有2个人接受挑战的可能结果有:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,共有4种. 3分 根据古典概型的概率公式,所求的概率为4182P ==. ·················································· 4分 (说明:若学生先设“用(),,x y z 中的,,x y z 依次表示甲、乙、丙三人接受或不接受挑战的情况”,再将所有结果写成(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,不扣分.) (Ⅱ)因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ···································· 5分 所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭,()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭,()60661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭······················································································· 9分故X 的分布列为:10分所以()1315515310123456364326416643264E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.故所求的期望为. ··········································································································· 12分 解法二:因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ···································· 1分 (Ⅰ)设事件M 为“这3个人中至少有2个人接受挑战”,则2323331111()2222P M C C ⎛⎫⎛⎫⎛⎫=⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ·········································································· 4分 (Ⅱ)因为X 为接下来被邀请的6个人中接受挑战的人数,所以1~6,2X B ⎛⎫⎪⎝⎭. ··········································································································· 5分 所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()6661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭······················································································· 9分 故X 的分布列为:10分所以()1632E X =⨯=.故所求的期望为. ········································································································· 12分19.本题主要考查反比例函数、三角函数的图象与性质、三角函数的定义、同角三角函数的基本关系式、二倍角公式、两角和的正弦公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想. 解法一:(Ⅰ)OPQ ∆为等边三角形. ············································································ 1分 理由如下:因为函数()4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==π,所以函数()f x 的半周期为4, 所以4OQ =. ·················································································································· 2分又因为P 为函数()f x 图象的最高点,所以点P坐标为(2,,所以4OP =, ···································································· 4分 又因为Q 坐标为(4,0),所以4PQ ==,所以OPQ ∆为等边三角形. ··························································································· 6分 (Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,,················ 7分 代入k y x =,得216cos sin 8sin(2π)333k αααππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,且16sin cos 8sin 2k ααα==, ························································································· 9分所以2sin 2sin(2π)3αα=+,结合22sin (2)cos (2)1αα+=,02απ<<,解得1sin 22α=,············································································································· 11分所以4k =,所以所求的实数k 的值为4. ····································································· 12分 解法二:(Ⅰ)OPQ ∆为等边三角形. ·········································································· 1分 理由如下:因为函数()4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==π,所以函数()f x 的半周期为4,所以4OQ =, ··································· 2分 因为P 为函数()f x 的图象的最高点,所以点P坐标为(2,,所以4OP =,所以OP OQ =.······································· 4分 又因为直线OP的斜率k ==,所以60POQ ∠=︒, 所以OPQ ∆为等边三角形. ··························································································· 6分(Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,,·················· 7分 因为点P ',Q '在函数(0)ky x x=>的图象上,所以16cos sin ,3316sin cos k k ⎧ππ⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪=⎩αααα, ················································································ 8分 所以28sin(2π),38sin 2k k ⎧=+⎪⎨⎪=⎩αα, ·································································································· 9分 消去k 得, 2sin 2sin(2π)3αα=+,所以22sin 2sin 2cos πcos 2sin π33ααα=+,所以3sin 222αα=,所以tan 2α=, ···························································· 10分又因为 02απ<<,所以26απ=,所以1sin 22α=, ···················································· 11分 所以4k =.所以所求的实数k 的值为4. ····································································· 12分 解法三:(Ⅰ)同解法一或同解法二;(Ⅱ)由(Ⅰ)知,OPQ ∆为等边三角形.因为函数(0)ky x x=>的图象关于直线y x =对称, ························································ 8分由图象可知,当12απ=时,点P ',Q '恰在函数(0)ky x x=>的图象上. ······················ 10分此时点Q '的坐标为(4cos 4sin )1212ππ,, ········································································· 11分 所以16sin cos 8sin 412126k πππ===,所以所求的实数k 的值为4.····························· 12分20. 本题主要考查分段函数模型的应用问题、一元二次函数的最值、解不等式等基础知识,考查应用意识、运算求解能力,考查化归与转化思想、分类讨论思想等.解:(I )因为3m =,所以30,06,4312,682x xy x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤. ······················································ 1分当06x <≤时,由3024x+≥,解得x ≤11,此时06x <≤; ······································· 3分 当68x ≤≤时,由31222x -≥,解得203x ≤,此时2063x ≤≤. ····························· 5分综上所述,2003x ≤≤.故若一次服用3个单位的药剂,则有效治疗的时间可达203小时. ······························· 6分(Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ······················· 8分因为10822mx x -+-≥对6x ≤≤8恒成立,即281210x x m -+≥对6x ≤≤8恒成立,等价于2max 812)10x x m -+≥(,6x ≤≤8. ······································································ 9分 令2812()10x x g x -+=,则函数2(4)4()10x g x --=在[6,8]是单调递增函数, ·············· 10分当x =8时,函数2812()10x x g x -+=取得最大值为65, ················································ 11分所以65m ≥,所以所求的m 的最小值为65. ································································ 12分解法二:(Ⅰ)同解法一;(Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ······················· 8分注意到18y x =-及2102my x =-(14m ≤≤且m ∈R )均关于x 在[6,8]上单调递减,。

河北省高阳中学2014-2015学年高二12月月考数学(理)试题

河北省高阳中学2014-2015学年高二12月月考数学(理)试题

河北省高阳中学2014-2015学年高二12月月考数学(理)试题一、选择题(每小题5分,共60分,在给出的四个选项中,只有一项是符合题目要求的) 1. 某单位职工200人,不到35岁有90人, 35岁到45岁有50人,剩下为50岁及以上的人。

用分层抽样从中抽40人的样本,则各年龄段分别抽取人数为( ) A . 18.10.12 B . 14.10.16 C . 14.10.18 D . 16.10.14 2.执行如图所示的程序框图输出一列数,则这个数列的第3项是( )A .870B .30C .6D .33. 已知命题:,sin p x R x x ∈>存在,则命题p 的否定为( ) A .:,sin p x R x x ⌝∈<存在 B . :,sin p x R x x ⌝∈<任意 C .:,sin p x R x x ⌝∈≤存在 D . :,sin p x R x x ⌝∈≤任意4. “a ≠1或b ≠2”是“a +b ≠3”的( ) A .充分不必要条件 B . 充要条件C . 必要不充分条件D .既不充分也不必要条件5. 从1 .3 .5 .7.9 这5个数中任取3个, 这三个数能成为三角形三边的概率为( ) A .25 B .310 C .710 D .356. 抽查8件产品,记事件A 为‘至少有3件次品’ 则A 对立事件为( ) A . 至多有3件次品 B . 至多有3件正品 C . 至多2件次品 D . 至少有2件正品7.已知变量x 与y 正相关,且由观测数据算得样本平均数3, 3.5x y ==,则由观测数据算得的线性回归方程是( )A .0.4 2.3y x =+B .2 2.4y x =+C .29.5y x =-+D .0.3 4.4y x =-+8. 已知62a x x ⎛⎫ ⎪⎝⎭-的展开式中常数项为160-,则常数a = ( ) A .12B.12-C.1D.1-9.已知点,满足,则关于的二次方程有实数根的概率为( )A .B .C .D .10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于B A ,两点, 34||=AB ,则C 的实轴长为( )A .2 B . 22 C . 4 D . 811.已知圆锥曲线122=+my x 的一个焦点为)0,||2(m F ,则该曲线的离心率为( )A.332 B. 533或 C. 5 D.552332或12.设直线022:=+-y x l 关于原点对称的直线为l ',若l '与椭圆4422=+y x 的交点 为P 、Q, 点M 为椭圆上的动点,则使△MPQ 的面积为12的点M 的个数为( ) A .1 B .2C .3D . 4二、填空题(每小题5分,共20分).13. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则的值为____________.14.从甲、乙、丙、丁四名同学中选出三名同学,分别参加三个不同科目的竞赛,其中甲同学必须参赛,则不同的参赛方案共有________种.15.若0122222729,n nn n n n C C C C +++⋅⋅⋅+=且n 2n 012n (3)x a a x a x a x L +=++++则n 012n (1)a a a a L -+-+- __ .16.已知抛物线方程x y 42=,直线l 的方程为05=+-y x ,在抛物线上有一动点P 到y 轴的距离为1d ,到直线l 的距离为2d ,则21d d +的最小值为______________三、解答题(解答应写出文字说明,证明过程或演算步骤,6小题,共70分) 17. (本小题10分) 已知p:01322≤+-x x ,q :0)1()12(2≤+++-a a x a x (1)若a =21,且q p ∧为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.18. (本小题12分) 某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图; (2)估计本次考试的平均分;(3)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率。

贵州省遵义市凤冈一中2014-2015学年高二上学期第三次月考数学文试题人教A版

贵州省遵义市凤冈一中2014-2015学年高二上学期第三次月考数学文试题人教A版

凤冈一中2014—2015学年度第一学期高二文科数学第三次月考试卷注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.本试卷满分150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)一、 选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 在等差数列}{n a 中,1a =3,93=a 则5a 的值为 A . 6 B . 15 C. 81 D. 9 2.设a R ∈,则1a >是11a< 的 A .充要条件 B .必要但不充分条件 C .充分但不必要条件 D .既不充分也不必要条件3. 椭圆2241x y +=的离心率为A.23 B.43 C. 22 D.32 4. 在ABC ∆中,a 、b 、c 满足a 2+b 2+c 2=ab+bc+ac ,则ABC ∆一定是A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形5.若不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是A.-14B.-10C. 10D. 14 6. 在等比数列{a n }中, 2S =23,2154=S ,则65a a +的值是A .12B .24C .48D .2637.已知12=+y x ,则y x 42+的最小值为A .8B .6C .23D .22 8. 若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是A .⎪⎭⎫ ⎝⎛43,0B.⎪⎭⎫⎢⎣⎡43,0 C.⎥⎦⎤⎢⎣⎡43,0D.⎪⎭⎫⎝⎛+∞-∞,43]0,( 9.已知变量y x ,满足⎪⎩⎪⎨⎧≤-+≥≥0311y x y x ,则目标函数y x z +=2有 A .5max =z ,z 无最小值 B .z z ,3min =无最大值 C .3,5min max ==z z D .z 既无最大值,也无最小值10.若不等式02>++a ax x 恒成立,则a 的取值范围是A .40<<aB .0<a 或4>aC .4≥a 或0≤aD .40≤≤a11.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)12.若正实数a,b 满足ab=a+b+3,则ab 的最小值为( )A .6B .7C .8D .9第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.二次函数()2y ax bx c x R =++∈的部分对应值如下表:则不等式20ax bx c ++>的解集是_______________________.14. 已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .15.已知232,(0,0)x y x y+=>>,则xy 的最小值是________.16.已知各项都是正数的等差数列{a n },S n 是它的前n 项和,若a 2 + a 3 + a 7= a 24,则a 5 ﹒S 5的最大值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:___________班级:___________一、选择题1.“1x ≠”是“2320x x -+≠”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 2.命题:“对任意的x ∈R ,2x -2x-30≤”的否定是( ) A 、不存在x ∈R ,2x -2x-30≥ B 、存在x ∈R ,x 2-2x-3≤0 C 、存在x ∈R ,x 2-2x-3>0 D 、对任意的x ∈R ,x 2-2x-3>03.1F , 2F 是距离为6的两定点,动点M 满足∣1MF ∣+∣2MF ∣=6,则M 点的轨迹是 ( )A.椭圆B.直线C.线段D.圆4. )5.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )6.中心在原点的双曲线,一个焦点为(0F ,1,则双曲线的方程是( )A .2212x y -= B .2212y x -= C .221x = D .221y = 7.已知正方形ABCD 的顶点,A B 为椭圆的焦点,顶点,C D 在椭圆上,则此椭圆的离心率为( )A8有相同的焦点,则a 的值为( )A .1 BC .2D .39.且过点(2,2)的双曲线标准方程为( )(A(B(C(D10. 如图,点P在椭圆2222x+=1(a>b>0)a by上,F1、F2分别是椭圆的左、右焦点,过点P作椭圆右准线的垂线,垂足为M,若四边形PF1F2M为菱形,则椭圆的离心率是()A.2 B.2C.12D.12二、填空题11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________cm3.(第14题图)12.已知椭圆xykkkyx12)0(3222=>=+的一个焦点与抛物线的焦点重合,则该13表示椭圆,则k的取值范围为___________14.上面图中的程序框图输出结果i=___________三、解答题17.求过点(-1,6)与圆x2+y2+6x-4y+9=0相切的直线方程.1819.求与x 轴相切,圆心C 在直线3x -y =0上,且截直线x -y =0得的弦长为圆的方程.20.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.21,椭圆C 上任意一点到椭圆两个焦点的距离之和为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 2:-=kx y 与椭圆C 交于B A ,两点,点P (0,1)直线l 的方程.22.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,,E F 分别是,AB PB 的中点.(1)求证:EF CD ⊥;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论;(3)求DB 与平面DEF 所成角的正弦值.AEBPCDF参考答案1.B 【解析】试题分析: 2320(1)(2)0x x x x -+≠⇒--≠,则1x ≠且2x ≠;反之,1x ≠且2x =时,2320x x -+=,故选B.考点:充要条件的判断. 2.C 【解析】试题分析:当p 、q 都是真命题p q ⇔Λ是真命题,其逆否命题为: p q Λ是假命题⇔p 、q 至少有一个是假命题,可得C 正确.考点: 命题真假的判断. 3.C 【解析】解题分析:因为1F , 2F 是距离为6,动点M 满足∣1MF ∣+∣2MF ∣=6,所以M 点的轨迹是线段12F F 。

故选C 。

考点:主要考查椭圆的定义。

点评:学习中应熟读定义,关注细节。

4.Ca=4,b=3,c=5,选C. 5.A【解析】试题分析:由焦点为(0F ,所以,双曲线的焦点在y 轴上,且c =1,所以,a =1)=1双曲线方程为:2212x y -=.本题容易错选B ,没看清楚焦点的位置,注意区分. 考点:双曲线的标准方程及其性质. 6.A 【解析】试题分析:设正方形ABCD的边长为考点:本小题主要考查椭圆中基本量的运算和椭圆中离心率的求法,考查学生的运算求解能力.,而不必分别求出,.a c 7.A 【解析】试题分析:所以0a >,且椭圆的焦点应该在x 轴上,所以242,2, 1.a a a a -=+∴=-=或因为0a >,所以 1.a = 考点:本小题主要考查椭圆与双曲线的标准方程及其应用. 点评:椭圆中222c a b =-,而在双曲线中222.c a b =+8.B 【解析】2,2),代入可得3λ=-,所以考点:本小题主要考查双曲线标准方程的求解,考查学生的运算求解能力..9.C【解析】试题分析: -1.所以量,OA OB 与的夹角是π,故选C 。

考点:本题主要考查向量的数量积及向量的坐标运算.点评:较好地考查考生综合应用知识解题的能力以及运算能力,属于基本题型。

10.C ; 【解析】试题分析:向量的共线(平行)问题,可利用空间向量共线定理写成数乘的形式.即b a b a b λ=⇔≠//,0.也可直接运用坐标运算。

经计算选C 。

考点:本题主要考查向量的共线及向量的坐标运算.点评:有不同解法,较好地考查考生综合应用知识解题的能力。

11.B 【解析】试题分析:因圆心在直线0=+y x 上,而点(1,1)和点(-1,-1)不在直线上,故C 、D 错;又直线0=-y x 及04=--y x 平行,且都与圆相切,故圆心在第四象限,故A 错,选B.或用直接法求解亦可.考点:1.圆的标准方程;2.直线与圆的位置关系. 12.C 【解析】试题分析:根据题意,由于直线m y x =+与圆m y x =+22相切,则圆心(0,0)到直线x+y=mm 的值为2,故答案为C. 考点:直线与圆的位置关系点评:主要是考查了直线与圆的位置关系的运用,属于基础题。

13【解析】试题分析:由弦心距、半径、弦长的一半构成的直角三角形,应用勾股定理得,直线y x =被圆22(2)4x y +-=截得的弦长为 考点:直线与圆的位置关系点评:简单题,研究直线与圆的位置关系问题,要注意利用数形结合思想,充分借助于“特征直角三角形”,应用勾股定理。

14【解析】试题分析:抛物线的焦点为(3,0)F ,3394k k -=⇒=,所考点:1、椭圆与抛物线的焦点;2、圆的离心率. 151)(,2)2- 【解析】表示椭圆,需要满足302032k k k k+>⎧⎪->⎨⎪+≠-⎩,解得k 的取值范围为1)(,2)2-.考点:本小题主要考查椭圆的标准方程,考查学生的推理能力. 点评:解决本小题时,不要忘记32k k +≠-,否则就表示圆了.16【解析】试题分析:设正方体棱长为2,以1D 为原点,建立如图所示的空间直角坐标系,则1(2,1,0)D E =,1(2,0,2)C B =,设1D E 和1BC 公垂线段上的向量为(1,,)n λμ=,则110n D E n C B ⎧⋅=⎪⎨⋅=⎪⎩,即20220λμ+=⎧⎨+=⎩,21λμ=-⎧∴⎨=-⎩,(1,2,1)n ∴=--,又11(0,2,0)D C =,1146D C n n ⋅=异面直线1D E 和1BC 间的距离为考点:本题主要考查空间向量的应用,综合考查向量的基础知识。

点评:法向量在距离方面除应用于点到平面的距离、多面体的体积外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等. 17.3x -4y+27=0或x=-1. 【解析】试题分析:圆x 2+y 2+6x -4y+9=0,即22(3)(2)4x y ++-=。

点(-1,6)在圆x 2+y 2+6x -4y+9=0外,所以,过点(-1,6)与圆x 2+y 2+6x -4y+9=0相切的直线有两条。

当切线的斜率不存在时,x=-1符合题意;当切线的斜率存在时,设切线方程为6(1)y k x -=+,即60kx y k -++=。

由圆心(-3,2)到切线距离等于半径2所以,切线方程为3x -4y+27=0。

综上知,答案为3x -4y+27=0或x=-1. 考点:直线与圆的位置关系点评:中档题,研究直线与圆的位置关系问题,利用“代数法”,须研究方程组解的情况;利用“几何法”,则要研究圆心到直线的距离与半径比较。

本题易错,忽视斜率不存在的情况。

18.(x-1)2+(y-3)2 =9或(x+1)2+(y+3)2=9 【解析】试题分析:解:设圆心为(a,b ),半径为r, 因为圆x 轴相切,圆心C 在直线3x -y=0上, 所以b=3a,r=|b|=|3a|,圆心(a,3a )到直线x -y =0的距离由r 2-d 2 2得:a=1或-1所以圆的方程为(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9 考点:圆的方程点评:确定出圆心和半径是解决圆的方程的关键,属于基础题。

19【解析】……4分……8分∴所求双曲线方程为……10分……12分考点:本小题主要考查由渐近线方程和双曲线上的点求双曲线方程的方法和双曲线离心率的求法,考查学生的运算求解能力.点评:另外圆锥曲线中离心率是一个比较常考的考点,要准确求解.20【解析】试题分析:设抛物线方程为)0(22>-=ppyx,则焦点F,由题意可得故所求的抛物线方程为yx82-=,考点:本题主要考查抛物线的标准方程、几何性质,考查抛物线标准方程求法---待定系数法。

点评:本题突出考查了抛物线的标准方程、几何性质,,通过布列方程组,运用待定系数法,使问题得解。

21.(Ⅱ)02=--yx或02=++yx【解析】试题分析:(Ⅰ)由已知62=a,解得3=a,所以3222=-=c a b ,所以椭圆C……4分得0312)31(22=+-+kx x k , 直线与椭圆有两个不同的交点,所以0)31(1214422>+-=∆k k 解得 设A (1x ,1y ),B (2x ,2y )……7分PE ⊥AB ,1-=⋅AB PE k k ,解得1±=k ,经检验,符合题意,所以直线l 的方程为02=--y x 或02=++y x 。

……12分 考点:本小题主要考查椭圆标准方程的求解和直线与椭圆的位置关系、弦长公式以及中点坐标公式、斜率公式等的综合应用,考查学生数形结合解决问题的能力和运算求解能力. 点评:圆锥曲线是每年高考的重点考查内容,涉及到直线与圆锥曲线的位置关系时,运算量比较大,要结合图形,数形结合可以简化运算. 22.(1)详见解析;(2)详见解析;【解析】试题分析:在空间中直线、平面的平行和垂直关系的判定,求空间中的角,可以用相关定义和定理解决,如(1)中,易证EF AP ,AP CD ⊥,所以,EF CD ⊥,但有些位置关系很难转化,特别求空间中的角,很难找到直线在平面内的射影,很难作出二面角,这时空间向量便可大显身手,如果图形便于建立空间直角坐标系,则更为方便,本题就是建立空间直角坐标系,写出各点坐标(1)计算0EF DC ⋅=即可;(2)设(,0,)G x z ,再由0FG CB ⋅=,0FG CP ⋅=解出,x z ,即可找出点G ;(3)用待定系数法求出件可求出平面DEF 的法向量,再求出平面DEF 的法向量与向量平面DB 的夹角的余弦,从而得到结果.试题解析:以,,DA DC DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系(如图),设答案第7页,总7页).因为(a EF DC ⋅=-,(FG x =-(FG CB x ⋅=-(,,22FG CP x z ⋅=--∴G 点坐标为(a 由00DF DE ⎧⋅=⎪⎨⋅=⎪⎩n n 得,)02a =⎧⎪⎪ 取1x =,则2y =-,1z =,得(1,2,1)=-n .,|||BD BD BD ⋅〈〉==n n n | 所以,DB 与平面DEF 所成角的正弦值的大小为分 考点:空间向量与立体几何.。

相关文档
最新文档