人教版数学七年级下册:5.1.1 相交线 学案4

合集下载

人教版七年级数学(下册)教案:5.1.1相交线

人教版七年级数学(下册)教案:5.1.1相交线
在讲授重点难点时,我发现通过举例和比较的方式能够帮助学生更好地理解。这也提醒我,在未来的教学中,需要准备更多贴近学生生活、富有启发性的例子,以增强他们对知识点的理解和记忆。
此外,学生在小组讨论中的表现也让我印象深刻。他们能够围绕相交线在实际生活中的应用展开讨论,并提出自己的观点和想法。但在引导讨论的过程中,我也意识到需要进一步提高自己的提问技巧,以便更好地激发学生的思考和参与。
5.培养学生的合作交流能力,通过小组讨论、互动交流,学会倾听他人意见,表达个人观点,共同探索几何问题的解决方法。
三、教学难点与重点
1.教学重点
-理解并掌握相交线的概念,包括对顶角、邻补角、同位角、内错角、同旁内角的识别。
-掌握同位角、内错角、同旁内角的性质,如两直线平行时,同位角相等,内错角相等,同旁内角互补。
-几何证明的逻辑表达,如何将观察到的角度关系转化为严密的几何语言进行证明。
举例解释:针对难点,教师可以设计一些具有挑战性的题目,如给出一个多边形,其中包含多个相交线,要求学生找出所有的同位角、内错角、同旁内角,并应用性质求解未知角度。同时,教师应引导学生通过画图、标记、列出已知和未知条件等步骤,逐步建立起解决问题的框架,并通过小组讨论和全班交流来共同突破难点。
3.重点难点解析:在讲授过程中,我会特别强调同位角、内错角、同旁内角这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
2.掌握同位角、内错角、同旁内角的性质,并能运用这些性质解决实际问题。
3.能够运用相交线的相关知识,解决平面图形中的角度问题。

人教版七年级下册数学学案:5.1.1相交线

人教版七年级下册数学学案:5.1.1相交线

5.1.1相交线[学习目标]1、理解邻补角、对顶角的概念,并能灵活运用邻补角和对顶角的性质解决问题;2、通过观察和动手操作,总结解决问题的方法和经验;3、激情投入,善于发现问题和提出问题,感受学习数学的乐趣。

[重点] 邻补角和对顶角的概念及性质。

[难点]利用邻补角和对顶角的定义和性质求角的大小或找角的关系。

导学流程暨内容 一、课前预习 1、旧知回顾(1)两个角互余的概念是什么? (2)两个角互补的概念是什么? (3)余角与补角的性质是什么?同角或等角的余角 ;同角或等角的补角2、如下图用剪子剪东西时,哪对角同时变大或变小?____________________________如果将图1转化成几何图形得到图2,那么∠1与∠2的位置有什么关系? ∠1与∠3呢?二、自主探究1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 例如:(1).∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 .用量角器量一量这两个角的度数,会发现它们的数量关系是(2).∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的 ,称这两个角互为 .用量角器量一量这两个角的度数,会发现它们的数量关系是 .2.根据观察图形和度量角度完成下表:两直线相交所形成的角有对顶角有 邻补角有 数量关系式有3、邻补角、对顶角概念:4.注意:对顶角和邻补角都是指两个角之间的关系,即互为对顶角、互为邻补角。

4321ODC BA邻补角:有一条( ),而且另一边( )的两个角叫做邻补角.对顶角:如果两个角有一个( ), 而且一个角的两边分别是另一角两边的( ),那么这两个角叫对顶角.-----【要求理解背会】A COD图图ADBCO 1 2 3 4B12OA CD5、练习一:(1)如图1所示,直线AB和CD相交于点O,OE是一条射线。

人教版初中数学七年级下册5.1.1《相交线》教案

人教版初中数学七年级下册5.1.1《相交线》教案

《相交线》教案一、设计说明1.内容解析本节课的内容是在学习了直线、射线、线段、角的基础上,进一步研究两条直线的位置关系:相交.由于两条直线的位置关系与它们所成的角有直接的关系,所以我们首先要研究两条直线相交成有公共顶点的四个角的关系,即:对顶角与邻补角.为后面学习垂线、三线八角以及空间里的垂直关系打好基础.然后研究两条直线被第三条直线所截而形成的没有公共顶点的三角的关系,为研究平行线做好准备.对顶角相等的性质是证明角相等的一个重要的依据,并在以后的推理过程中有着广泛的应用.所以要求学生熟练掌握.同时,在教学过程中,要培养学生的识图能力和几何语言的表达能力,从而初步引入几何推理的格式,让学生知道推理要步步有据.2.三维目标(1)知识与技能:①理解邻补角与对顶角的概念.②掌握对顶角的性质.(2)过程与方法:①经历探究对顶角、邻补角的位置关系的过程,建立空间观念.②通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.③通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.(3)情感态度与价值观①通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.②通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.3、重点、难点重点:邻补角与对顶角的概念.对顶角性质与应用.难点:理解对顶角相等的性质的探索.4、课时安排:1课时二、教学过程设计(一)创设情景问题1:观察下图,一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?师生活动:让学生观察,把剪刀的构造想象成两条相交直线.在剪刀剪开纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系.设计意图:通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉.把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题。

5.1.1相交线导学案人教版数学七年级下册

5.1.1相交线导学案人教版数学七年级下册

5.1.1 相交线导学案班级姓名编写:课型:新授课 NO:1 使用时间:一、目标导学(2分钟)1.经历实际操作,通过观察讨论等活动,能在具体的情境中认识对顶角、邻补角.表述对顶角、邻补角的概念、性质,并能利用它进行简单的推理和计算;2.通过对顶角性质的推理过程,提高推理和逻辑思维能力;3.通过变式图形的识图训练,提高识图能力【学习重点】邻补角、对顶角的概念,对顶角的性质与应用.【学习难点】理解对顶角相等的性质.二、读书探究(16分钟)认真阅读课本第1—2页练习以上部分,画出重点,然后完成以下部分。

探究一:探究邻补角的概念及有关性质(4分钟)如图,任意画两条相交的直线(直线AB与直线CD相交于点O),形成四个角,∠1和∠2有怎样的位置关系以及数量关系?1.什么是邻补角?图中一共有哪些邻补角?2.邻补角在数量上有什么关系?几何语言:【自学检测】(2分钟)1.下列图形中,∠1和∠2是邻补角的是()A.B.C.D.提示:判断两个角是不是邻补角,应满足两个条件:(1)有一条公共边;(2)另一边互为反向延长线。

即邻补角相邻且互补。

2.如图,直线AB,CD相交于点O,∠AOD=140°,则∠AOC的度数是()A.40°B.50°C.60°D.70°探究二:探究对顶角的概念以及性质(5分钟)如图,任意画两条相交的直线(直线AB与直线CD相交于点O),形成四个角,∠1和∠3有怎样的位置关系以及数量关系?1.什么是对顶角?图中一共有哪些对顶角?2.∠1 与∠3在数量上又有什么关系呢?证明过程:归纳:对顶角的性质:。

几何语言:【自学检测】(2分钟)3.在下面四个图形中,∠1与∠2是对顶角的是()A. B. C. D.提示:判断两个角是不是对顶角,应满足两个条件:(1)顶点相同(2)角的两边互为反向延长线4.如图,若∠1=35°,则∠2的度数是()A.35°B.40°C.45°D.145°【典型例题】(3分钟)如图,直线a、b相交,∠2=130°,求∠1、∠3、∠4的度数.三、点拨分享(12分钟)对读书探究部分进行提问、更正、点拨、归纳。

人教版数学七年级下册5.1.1《相交线》教学设计

人教版数学七年级下册5.1.1《相交线》教学设计

人教版数学七年级下册5.1.1《相交线》教学设计一. 教材分析人教版数学七年级下册5.1.1《相交线》是学生在学习了直线、射线、线段的基础上,进一步研究两条直线的关系。

本节课的主要内容是让学生掌握相交线的定义、性质和特点,并能够运用相交线的知识解决一些实际问题。

教材通过丰富的图形和实例,引导学生探究、发现相交线的特征,培养学生的观察能力、操作能力和抽象思维能力。

二. 学情分析学生在之前的学习中已经掌握了直线、射线、线段的基本知识,对于图形的认识和观察能力也有一定的基础。

但是,对于相交线的概念和性质,学生可能还比较陌生,需要通过实际操作和探究来理解和掌握。

此外,学生可能对于两条直线相交的多种情况分辨不清,需要在教学中进行针对性的指导。

三. 教学目标1.知识与技能:让学生掌握相交线的定义、性质和特点,能够识别和画出相交线。

2.过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、操作能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.重点:相交线的定义、性质和特点。

2.难点:对于两条直线相交的多种情况的理解和判断。

五. 教学方法1.引导探究法:通过提出问题,引导学生观察、操作、思考,从而发现相交线的特征。

2.合作交流法:让学生在小组内进行讨论、分享,培养学生的团队合作意识。

3.实例分析法:通过具体的实例,让学生理解和应用相交线的知识。

六. 教学准备1.教具:多媒体教学设备、黑板、粉笔、直线、射线、线段教具。

2.学具:学生作业本、直线、射线、线段教具。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示直线、射线、线段的教具,让学生观察并指出哪些是相交线。

学生尝试给出相交线的定义。

3.操练(10分钟)教师给出几个实例,让学生判断哪些是相交线,并说明理由。

七年级数学下册5.1.1相交线导学案(新版)新人教版

七年级数学下册5.1.1相交线导学案(新版)新人教版

相交线课题5.1.1相交线导学目标1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力。

2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题。

教学重点邻补角与对顶角的概念、对顶角性质与应用教学难点理解对顶角相等的性质的探索。

教学过程教学环节教学任务教师活动学生活动预见性问题及策略复习问题1:什么叫互余的角及互补的角?问题2:在同一平面内,两条直线有几种位置关系?分别有几个公共点?教师提出问题巡视各小组交流,倾听其内容,注意规范学生的概念语言学生先独立思考再组内交流后分组报告学生回答的不完整及时补充纠正研习问题3:任意画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?问题4:请你说出邻补角和对顶角的概念?邻补角:对顶角:问题5:用量角器分别量一量各角的度数,发现各类角的度数有什么关系?为什么?问题6:学生根据观察和度量完成下表:问题7:如果改变AOC的大小,会改变它与其它角的位置关系和数量关系吗?问题8:请你概括出邻补角和对顶角有什么性质?教师巡视,深入各组帮助学困生完成问题教师指导学生使用量角器。

使用量角器测量后得出结论完成表格注意使学生能够区分补角与邻补角的区别结论:研习分组展现:问题9:判断下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角问题10:如图,直线a,b相交,ο401=∠,求4,3,2∠∠∠的度数。

问题11:已知,如图,οο80,35=∠=∠COFAOC,求:DOFAOD∠∠和的度数。

若有学生在展现此题后出现错误,教师可追问学生举出反例精习一、知识梳理:这节课我们一起学习了哪些问题?重点关注:对顶角的性质。

二、知识运用:训练1:如图,直线AB、CD、EF相交于点O,AOE∠的对顶角是,COF∠的邻补角是若AOC∠:AOE∠=2:3,ο130=∠EOD,则BOC∠=训练2:教材第8页2题;训练3:教材第9页7题。

人教版七年级数学下册5.1.1《相交线》教学设计

人教版七年级数学下册5.1.1《相交线》教学设计

人教版七年级数学下册5.1.1《相交线》教学设计一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍相交线的概念、性质和应用。

通过学习相交线,学生能够理解直线、射线和线段的特征,掌握相交线的定义和性质,并能够运用相交线解决一些实际问题。

本节课的内容是学生进一步学习几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了直线、射线和线段的基本概念,对于一些基本的几何图形有一定的了解。

但是,对于相交线的概念和性质可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对于相交线在实际问题中的应用还不够熟悉,需要通过一些具体的案例来引导和启发。

三. 教学目标1.知识与技能:学生能够理解相交线的概念,掌握相交线的性质,并能够运用相交线解决一些实际问题。

2.过程与方法:学生通过观察、操作和思考,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,自主学习,培养对数学的兴趣和自信心。

四. 教学重难点1.重点:相交线的概念和性质。

2.难点:相交线在实际问题中的应用。

五. 教学方法1.情境教学法:通过实物和图形,引导学生观察和操作,激发学生的学习兴趣和积极性。

2.问题驱动法:通过提出问题,引导学生思考和探究,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论和合作,促进学生之间的交流和互助。

六. 教学准备1.教具准备:直尺、圆规、三角板、白板等。

2.教学素材:相交线的图片、实例和练习题。

3.教学环境:教室布置成有利于学生思考和交流的环境。

七. 教学过程1.导入(5分钟)教师通过展示一些实际的图形,如交叉的道路、铁路等,引导学生观察和思考这些图形的特征。

提问:这些图形有什么共同的特点?学生通过观察和思考,能够发现这些图形的共同特点是它们由两条直线相交而成。

教师引导学生总结出相交线的概念。

人教版七年级数学下册 教案5.1.1 第1课时《相交线》

人教版七年级数学下册 教案5.1.1 第1课时《相交线》

人教版七年级数学下册教案5.1.1 第1课时《相交线》一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍了相交线的定义、性质和应用。

本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经具备了一定的观察和动手能力,对于基本的几何概念和性质有一定的了解。

但是,对于相交线的定义和性质可能还比较模糊,需要通过实例和操作来进一步理解和掌握。

三. 教学目标1.了解相交线的定义和性质。

2.能够识别和判断相交线。

3.能够运用相交线的性质解决简单的问题。

四. 教学重难点1.相交线的定义和性质。

2.运用相交线的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作来发现相交线的性质。

2.使用多媒体辅助教学,通过动画和图片来形象地展示相交线的性质。

3.采用小组合作的学习方式,让学生在讨论和交流中加深对相交线性质的理解。

六. 教学准备1.多媒体教学设备。

2.相交线的图片和实例。

3.练习题和作业。

七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如铁路交叉、道路交汇等,引导学生观察和思考这些实例中的共同特点。

学生可能会发现这些实例都有两条线段或直线相交的情况。

教师进而提问:“什么是相交线?相交线有哪些性质?”从而引出本节课的主题。

呈现(10分钟)教师通过多媒体展示相交线的定义和性质,引导学生观察和理解相交线的概念。

同时,教师可以给出一些实例,让学生判断哪些是相交线,并解释原因。

操练(10分钟)教师给出一些练习题,让学生独立完成。

这些练习题可以包括判断相交线、找出相交线的性质等。

教师可以在学生完成后进行讲解和解析。

巩固(10分钟)教师可以通过一些实际问题来巩固学生对相交线的理解和掌握。

例如,给出一个几何图形,让学生找出其中的相交线,并解释其性质。

拓展(10分钟)教师可以引导学生进一步思考相交线的应用,例如在建筑设计、交通规划等领域中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线--------拓展课
班级:姓名:组号:一、巩固训练

B.
C.D
=_________
二、错题再现
1.∠1的对顶角是∠2,∠2的邻补角是∠3,若∠3=45º,则∠1的度数是()
A.45º
B.135º
C.45º和135º
D.90º
2.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.
3.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC的距离是_______,点C到AB•的距离是_______,•AC>CD•的依据是_________.
4.两条直线相交与O,共有_______对对顶角;三条直线相交与O点,共有_______对对顶角;
n条直线相交于O点,共有______对对顶角。

三、能力提升
1.如图所示,直线a,b,c两两相交,∠1=60°,∠2=
2
3
∠4,•求∠3、∠5的度数.
F
E
O
D
C
B
A
第2题
2. 如图,直线EF ,CD 相交于点0,OA ⊥OB ,且OC 平分∠AOF , (1)若∠AOE =40°,求∠BOD 的度数; (2)若∠AOE =α,求∠BOD 的度数;(用含α的代数式表示) (3)从(1)(2)的结果中能看出∠AOE 和∠BOD 有何关系?
四、精炼反馈
A 组:1.如图,直线A
B 与直线CD 相交于点O ,E 是AOD ∠内一点,已知OE ⊥AB ,︒=∠45BOD ,则COE ∠的 度数是( )
A.︒125
B.︒135
C.︒145
D.︒155 2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______
3.如图,AB 是一条直线,OC 是∠AOD 的平分线,OE 在∠BOD 内,∠DOE =∠BOD ,∠COE =72°,
A 36°
B . 72°
C . 108°
D .
120°
B 组:4. 如图,AOB 为直线,∠AOD :∠DOB=3:1,OD 平分∠COB . (1)求∠AO
C 的度数;(2)判断AB 与OC 的位置关系.
A C
B
E
D
O
第1题图
F
E
O
D C
B A 第2题。

相关文档
最新文档