Structure simulation in unidirectionally solidified turbine blade by dendrite envelope tracking
一种体内构建组织工程软骨的方法

一种体内构建组织工程软骨的方法1.组织工程学是一门研究如何在体内构建组织和器官的学科。
Tissue engineering is a discipline that studies how to build tissues and organs in the body.2.目前,体内构建软骨组织的方法已经取得了一定的进展。
Currently, there has been some progress in the methods of building cartilage tissue in the body.3.软骨是一种结缔组织,具有一定的韧性和弹性。
Cartilage is a type of connective tissue that has a certain toughness and elasticity.4.在体内构建软骨组织需要考虑细胞、生物材料和生物力学等因素。
Building cartilage tissue in the body requires consideration of factors such as cells, biomaterials, and biomechanics.5.一种常见的体内构建软骨组织的方法是通过干细胞移植。
A common method for building cartilage tissue in the body is through stem cell transplantation.6.干细胞具有多能性,可以分化成不同类型的细胞,如软骨细胞。
Stem cells have pluripotency and can differentiate into different types of cells, such as chondrocytes.7.干细胞移植需要将干细胞注入到受损的软骨组织中,促进软骨再生。
Stem cell transplantation involves injecting stem cells into damaged cartilage tissue to promote cartilage regeneration.8.另一种体内构建软骨组织的方法是通过生物材料支架的植入。
PDA TR 62 Recommended Practices for Manual Aseptic Processes(2013)中英对照

62 号技术报告
对手工无菌工艺的建议
仅供学习交流,请勿用作商业用途
沈阳兴齐 张开宇 译
Table of ts
目录
1.0 Introduction 简介................................................................................................................................................................................... - 1 2.0 Glossary of Terms 专业术语...........................................................................................................................................................................- 4 3.0 Buildings And Facilities 厂房与设施.......................................................................................................................................................................- 8 4.0 Operational Personnel Training and Qualification 操作人员的培训和确认.................................................................................................................................................- 11 -
Mechanical Design of Structures

Mechanical Design of Structures Mechanical design of structures is a critical aspect of engineering that involves the creation and development of various types of structures, such as buildings, bridges, and industrial facilities. This process requires a deep understanding of mechanical principles, materials science, and structural analysis to ensure that the resulting structures are safe, reliable, and cost-effective. One of the key considerations in mechanical design is the selection of appropriate materials for the structure. This involves evaluating the mechanical properties of different materials, such as strength, stiffness, and durability, to determine the most suitable option for the specific application. Factors such as environmental conditions, load requirements, and cost constraints must also be taken into account when choosing materials for a structure. In addition to material selection, the design process also involves the calculation and analysis of the structural elements to ensure that they can withstand the anticipated loads and forces. This requires the use of advanced engineering software and mathematical modeling to simulate the behavior of the structure under different conditions. By conducting thorough structural analysis, engineers can identify potential weak points and make necessary adjustments to improve the overall performance and safety of the structure. Furthermore, mechanical design of structures also involves the consideration of various external factors, such as seismic activity, wind loads, and temperature variations. These environmental factors can have a significant impact on the structural integrity of a building or bridge, and must be carefully evaluated during the design process. Engineers must incorporate appropriate safety measures and design features to mitigate the effects of these external forces and ensure the long-term stability of the structure. Moreover, the mechanical design of structures also plays a crucial role in ensuring the sustainability and energy efficiency of buildings and infrastructure. By incorporating innovative design solutions, such as passive solar heating, natural ventilation, and energy-efficient materials, engineers can reduce the environmental impact of structures and contribute to a more sustainable built environment. This aspect of mechanical design requires a holistic approach that considers not only the structural integrity, but also the environmental and socialimplications of the design. In conclusion, the mechanical design of structures is a complex and multifaceted process that requires a deep understanding of mechanical principles, materials science, and structural analysis. By carefully considering material selection, conducting thorough structural analysis, and addressing external factors and sustainability concerns, engineers can create safe, reliable, and sustainable structures that meet the needs of society. This field of engineering is essential for the development of our built environment and plays a critical role in shaping the world around us.。
力学名词中英对照

[推荐][名词委审定]汉英力学名词(1993)[翻译与翻译辅助工具][回复][引用回复][表格型][跟帖][转发到Blog][关闭][浏览930次]用户名:westbankBZ反应||Belousov-Zhabotinski reaction, BZ reactionFPU问题||Fermi-Pasta-Ulam problem, FPU problemKBM 方法||KBM method, Krylov-Bogoliubov-Mitropolskii methodKS动态]熵||Kolmogorov-Sinai entropy, KS entropyKdV 方程||KdV equationU 形管||U-tubeWKB 方法||WKB method, Wentzel-Kramers-Brillouin method[彻]体力||body force[单]元||eleme nt[第二类]拉格朗日方程||Lagra nge equati on [of the seco nd kin d][叠栅]云纹||moir e fringe;物理学称"叠栅条纹”。
[叠栅]云纹法||moir e method[抗]剪切角||a ngle of shear resista nee[可]变形体||deformable body[钱]币状裂纹||penny-shape crack[映]象||image[圆]筒||cyli nder[圆]柱壳||cylindrical shell[转]轴||shaft[转动]瞬心||instantaneous center [of rotation][转动]瞬车由||instantaneous axis [of rotation][状]态变量||state variable[状]态空间||state space[自]适应网格||[self-]adaptive meshC 0 连续问题||C0-continuous problemC 1 连续问题||C1-continuous problemCFL条件||Courant-Friedrichs-Lewy condition, CFL conditionHRR场||Hutchinson-Rice-Rosengren fieldJ 积分||J-integralJ 阻力曲线||J-resistance curveKAM定理||Kolgomorov-Arnol'd-Moser theorem, KAM theoremKAM环面||KAM torush收敛||h-c on verge ncep收敛||p-c on verge ncen 定理||Buckingham theorem, pi theorem阿尔曼西应变||Almansis strain阿尔文波||Alfven wave阿基米德原理||Archimedes principle阿诺德舌[头川Arnol'd tongue阿佩尔方程||Appel equation阿特伍德机||Atwood machine埃克曼边界层||Ekman boundary layer埃克曼流||Ekman flow 埃克曼数||Ekman number 埃克特数||Eckert number 埃农吸引子||Henon attractor 艾里应力函数||Airy stress function 鞍点"saddle [point] 鞍结分岔||saddle-node bifurcation 安定[性]理论||shake-down theory 安全寿命||safe life 安全系数||safety factor 安全裕度||safety margin 暗条纹||dark fringe 奥尔-索末菲方程||Orr-Sommerfeld equation 奥辛流||Oseen flow 奥伊洛特模型||Oldroyd model 八面体剪应变||octohedral shear strain 八面体剪应力||octohedral shear stress 八面体剪应力理论||octohedral shear stress theory 巴塞特力||Basset force 白光散斑法||white-light speckle method 摆||pe ndulum 摆振||shimmy 板||plate 板块法||panel method 板元||plate element 半导体应变计||semic on ductor stra in gage 半峰宽度||half-peak width 半解析法||semi-analytical method 半逆解法||semi-inverse method 半频进动||half frequency precession 半向同性张量||hemitropic tensor 半隐格式||semi-implicit scheme 薄壁杆||thin-walled bar 薄壁梁||thin-walled beam 薄壁筒||thin-walled cylinder 薄膜比拟||membrane analogy 薄翼理论||thin-airfoil theory保单调差分格式||monotonicity preserving differenee scheme 保守力||conservative force 保守系||conservative system 爆发||blow up 爆高||height of burst 爆轰||detonation; 又称"爆震”。
铸造短语 英汉对照

短语1 数值模拟:numerical simulation2 力学性能:mechanical property3 铝合金:aluminum alloy4 应力分析:stress analysis5 钛合金:titanium alloy6 表面处理:surface treatment7 电磁场:electromagnetic field8 抗拉强度:tensile strength9 晶粒细化:grain refinement10 工艺参数:process parameter11 有机合成:organic synthesis12 表面质量:surface quality13 定向凝固:directional solidification14 生产管理:production management15 制备工艺:preparation technology16 拉伸强度:tensile strength17 冷轧:cold rolling18 速度场:Velocity Field19 电子束:Electron beam20 ANSYS软件:ANSYS software21 电磁搅拌:electromagnetic stirring22 铸铁:cast iron23 隔振:vibration isolation24 动力学仿真:Dynamic Simulation25 铜合金:copper alloy26 离心铸造:centrifugal casting27 色差:color difference28 金属基复合材料:metal matrix composites29 应变速率:Strain Rate30 气力输送:pneumatic conveying31 压铸:Die Casting32 金属氧化物:metal oxide33 正电子湮没:Positron annihilation34 热效率:heat efficiency35 凝固组织:solidification structure36 界面反应:interfacial reaction37 模具设计:mold design38 置换通风:displacement ventilation39 镁合金:Mg alloy40 熔模铸造:Investment Casting41 高铬铸铁:high chromium cast iron42 电磁力:electromagnetic force 43 生产实践:production practice44 AZ91D镁合金:AZ91D magnesium alloy45 机械振动:mechanical vibration46 机械系统:mechanical system47 温差:temperature Difference48 传热模型:heat transfer model49 耐磨性能:wear resistance50 硅溶胶:silica sol51 生产系统:production system52 色散关系:dispersion relation53 超声振动:ultrasonic vibration54 知识表达:knowledge representation55 真空系统:Vacuum system56 工艺控制:process control57 TiAl合金:TiAl alloy58 离心力:Centrifugal force59 连续铸造:Continuous Casting60 液压控制:Hydraulic control61 球墨铸铁:nodular cast iron62 流变模型:rheological model63 时效处理:aging treatment64 小波网络:wavelet network65 软件包:software package66 弹簧钢:spring steel67 冷却速率:cooling rate68 铸钢:Cast steel69 水平连铸:horizontal continuous casting70 技术改造:technological transformation71 脉冲电流:pulse current72 凝固过程:Solidification Process73 气缸盖:cylinder head74 制备技术:preparation technology75 复合形法:Complex method76 工艺分析:process analysis77 动力学建模:dynamic modeling78 消失模铸造:Lost Foam Casting79 真空干燥:vacuum drying80 余热:waste heat81 系统控制:system control82 铝硅合金:Al-Si Alloy83 响应面分析法:Response surface methodology84 铸造工艺:casting process85 气缸套:cylinder liner86 SIMPLE算法:SIMPLE algorithm87 工艺优化:technology optimization88 流场:fluid field89 工艺过程:Technological process90 氮化硼:boron nitride91 精密铸造:investment casting92 热循环:thermal cycling93 表面缺陷:Surface defects94 节能技术:energy-saving technology95 低压铸造:Low Pressure Casting96 界面结构:interface structure97 铁水:hot metal98 Al-Cu合金:Al-Cu alloy99 AZ91镁合金:AZ91 magnesium alloy 100 凝固模拟:Solidification simulation101 碳酸钾:potassium carbonate102 等离子弧:plasma arc103 抗裂性:crack resistance104 模锻:die forging105 冲蚀磨损:erosion wear106 注射成形:injection molding107 热压缩变形:hot compression deformation108 激光淬火:laser quenching109 超声检测:ultrasonic inspection110 磨球:Grinding ball111 冷变形:cold deformation112 强韧化:strengthening and toughening 113 气泡:air bubble114 保温时间:holding time115 白口铸铁:white cast iron116 电磁铸造:electromagnetic casting117 断口形貌:fracture morphology118 氢含量:hydrogen content119 浇注温度:pouring temperature120 锥齿轮:bevel gear121 灰铸铁:gray iron122 喷丸:shot peening123 排气系统:exhaust system124 水玻璃:Sodium silicate125 挤压铸造:Squeezing Casting126 密度分布:density distribution127 渣浆泵:slurry pump128 分型面:parting surface 129 A356合金:A356 alloy130 静磁场:static magnetic field131 网格剖分:mesh generation132 电磁连铸:electromagnetic continuous casting133 快速制造:rapid manufacturing134 压铸模:die-casting die135 韧性断裂:ductile fracture136 ADAMS软件:ADAMS software137 弯曲变形:bending deformation138 缸体:cylinder block139 变频控制:frequency conversion control 140 热应力场:thermal stress field141 压铸机:Die Casting Machine142 TiNi合金:TiNi alloy143 碳当量:carbon equivalent144 析出相:precipitated phase145 保温材料:thermal insulation material 146 对甲苯磺酸:p-toluene sulphonic acid 147 组织性能:microstructure and property 148 半固态成形:Semi-solid Forming149 TC4合金:TC4 alloy150 疲劳破坏:fatigue failure151 熔池:molten pool152 超声处理:ultrasonic treatment153 阀体:Valve Body154 压缩变形:Compression Deformation 155 扩散层:Diffusion layer156 缸套:cylinder liner157 铸钢件:steel casting158 性能计算:Performance calculation 159 缸盖:cylinder head160 微波炉:microwave oven161 浇注系统:pouring system162 Al-Zn-Mg-Cu合金:Al-Zn-Mg-Cu alloy 163 炉衬:furnace lining164 规则推理:rule-based reasoning165 在线控制:on-line control166 共晶碳化物:eutectic carbide167 振动频率:vibrational frequency168 TA15钛合金:TA15 titanium alloy169 Cr12MoV钢:Cr12MoV steel170 变形镁合金:wrought magnesium alloy 171 功率超声:power ultrasound172 TiAl基合金:TiAl-based alloy173 Box-Behnken设计:Box-behnken design 174 专业课:specialized course175 金相组织:metallurgical structure176 模具寿命:die life177 研究应用:research and application 178 Al-Mg合金:Al-Mg alloy179 成本优化:cost optimization180 变形激活能:deformation activation energy181 干燥工艺:drying technology182 合金铸铁:alloy cast iron183 模具材料:die material184 铸态组织:as-cast microstructure185 电磁制动:electromagnetic brake186 球铁:ductile iron187 侧架:side frame188 气缸体:cylinder block189 洛伦兹力:Lorentz Force190 微观组织演变:microstructure evolution 191 显微组织:microscopic structure192 共晶组织:Eutectic structure193 冶金质量:metallurgical quality194 热震稳定性:thermal shock resistance 195 强迫对流:forced convection196 切削加工:cutting process197 过共晶Al-Si合金:Hypereutectic Al-Si Alloy198 定量金相:quantitative metallography 199 磁感应强度:Magnetic Flux Density 200 半固态浆料:Semi-solid Slurry201 电磁泵:electromagnetic pump202 超声衰减:Ultrasonic attenuation203 加热时间:heating time204 半连续铸造:Semi-continuous Casting 205 液压站:Hydraulic station206 三元硼化物:ternary boride207 内应力:inner stress208 热裂纹:hot crack209 黄麻纤维:jute fiber210 泡沫陶瓷:foam ceramics211 砂型铸造:Sand casting212 油润滑:oil lubrication213 预热温度:preheating temperature 214 维氏硬度:Vickers Hardness215 高温合金:high-temperature alloy216 拉速:casting speed217 铝熔体:aluminum melt218 异型坯:beam blank219 高钒高速钢:high vanadium high speed steel220 静液挤压:hydrostatic extrusion221 等轴晶:equiaxed grain222 摩擦角:friction angle223 初生相:Primary Phase224 转向节:steering knuckle225 快速成型技术:rapid prototyping technology226 冷坩埚:Cold Crucible227 A357合金:A357 Alloy228 焊接结构:welding structure229 耦合场:coupled field230 AZ80镁合金:AZ80 magnesium alloy 231 止推轴承:thrust bearing232 铝镁合金:Al-Mg alloy233 真空熔炼:vacuum melting234 铝锂合金:aluminum-lithium alloy235 充型过程:filling process236 AZ61镁合金:AZ61 magnesium alloy 237 声流:Acoustic streaming238 金属凝固:metal solidification239 高速钢轧辊:high speed steel roll240 石墨形态:graphite morphology241 磁粉检测:Magnetic particle testing 242 颗粒级配:particle size distribution243 型砂:molding sand244 收缩率:shrinkage rate245 Mg-Li合金:Mg-Li alloy246 自动生产线:automatic production line 247 高频磁场:High Frequency Magnetic Field248 组织与性能:microstructure and property249 连续定向凝固:continuous unidirectional solidification250 充型:mold filling251 失效机制:failure mechanism252 梯度分布:gradient distribution253 制动鼓:Brake drum254 摄动分析:perturbation analysis255 铸造企业:foundry enterprise256 超声波振动:Ultrasonic vibration257 测量系统分析:measurement system analysis258 固溶处理:solution heat treatment259 冷却速度:cooling velocity260 固液混合铸造:solid-liquid mixed casting 261 温度场分布:temperature distribution 262 部分重熔:Partial Remelting263 工艺措施:technological measures264 变形量:deformation amount265 模糊优化设计:Fuzzy optimal design 266 零缺陷:zero defect267 重力分离:gravitational separation268 晶粒:crystal grain269 离心力场:centrifugal force field270 凝固行为:Solidification Behavior271 铝铜合金:Al-Cu alloy272 组织和性能:microstructure and property 273 复合板:composite plate274 Al-Fe合金:Al-Fe alloy275 马氏体不锈钢:martensite stainless steel 276 冷却装置:cooling device277 铝合金车轮:aluminum alloy wheel 278 热应力分析:thermal stress analysis 279 Al含量:Al content280 挤压比:extrusion ratio281 相似准则:similarity criterion282 热疲劳裂纹:thermal fatigue crack283 原子团簇:atomic cluster284 湿型砂:green sand285 AZ91D合金:AZ91D alloy286 6061铝合金:6061 aluminum alloy287 锻造工艺:forging technology288 铸铁件:Iron casting289 表面复合材料:Surface composites 290 盲孔法:blind-hole method291 加热功率:heating power292 铸造合金:Cast Alloy293 低铬白口铸铁:Low chromium white cast iron294 初生硅:primary silicon 295 热节:Hot Spot296 锡青铜:tin bronze297 ZL101合金:ZL101 alloy298 真空感应熔炼:vacuum induction melting299 薄带连铸:strip casting300 真空压铸:vacuum die casting301 缩孔:shrinkage hole302 等温处理:Isothermal Treatment303 平均晶粒尺寸:average grain size304 抽芯:core pulling305 离心浇铸:Centrifugal casting306 铸铁管:cast iron pipe307 感应线圈:induction coil308 冷却介质:Cooling medium309 气体压力:gas pressure310 船用柴油机:marine diesel311 高温强度:high-temperature strength 312 3Cr2W8V钢:3Cr2W8V steel313 缺陷预测:defect prediction314 工艺方案:process scheme315 温度均匀性:temperature uniformity 316 电磁离心铸造:electromagnetic centrifugal casting317 横向应力:transverse stress318 超声声速:ultrasonic velocity319 残留应力:residual stress320 固化工艺:curing process321 精铸:Investment Casting322 铝锭:aluminum ingot323 短路过渡:short circuit transfer324 反重力铸造:counter-gravity casting 325 感应电炉:induction furnace326 稀土Y:rare earth Y327 工艺因素:Technological factor328 双辊铸轧:twin roll casting329 凝固速率:solidification rate330 含氢量:Hydrogen Content331 钢锭:steel ingot332 浆料制备:slurry preparation333 η相:η phase334 衬板:lining board335 压铸件:die casting336 水口堵塞:nozzle clogging337 陶瓷型芯:ceramic core338 车间布局:workshop layout339 安全操作:safe operation340 铸造不锈钢:cast stainless steel341 压铸模具:die casting die342 热裂:Hot Crack343 失效形式:failure form344 成形机理:forming mechanism345 AlSi7Mg合金:AlSi7Mg Alloy346 铸件缺陷:casting defect347 银合金:silver alloys348 反应层:reaction layer349 镍基高温合金:Ni base superalloy350 薄带:thin strip351 覆膜砂:coated sand352 CAE技术:CAE Technique353 性能预测:property prediction354 液态金属:liquid metals355 熔模精密铸造:investment casting356 空气压力:air pressure357 ZA合金:ZA alloy358 凝固传热:Solidification and heat transfer 359 侧向分型:Side Parting360 高温塑性:Hot Ductility361 黑斑:black spot362 点火温度:ignition temperature363 旋压机:spinning machine364 Al-Ti-B中间合金:Al-Ti-B master alloy 365 减排:discharge reduction366 射线检测:radiographic inspection367 耐热:heat resistant368 2024铝合金:2024 aluminum alloy369 技术现状:technology status370 复合变质:complex modification371 蠕墨铸铁:vermicular iron372 机械搅拌:mechanical agitation373 保温炉:holding furnace374 成形技术:forming technology375 碳化硅颗粒:SiC particle376 可锻铸铁:malleable iron377 模型控制:model control378 改性水玻璃:modified sodium silicate 379 熔炼工艺:melting process380 焊补:repair welding 381 异常组织:abnormal structure382 组织细化:structure refinement383 防止措施:preventing measures384 铸渗:Casting infiltration385 BT20钛合金:BT20 titanium alloy386 直流电场:direct current field387 铸造应力:casting stress388 初晶Si:primary Si389 夹紧装置:clamping device390 均衡凝固:Proportional solidification 391 熔模精铸:investment casting392 空心叶片:hollow blade393 ZL201合金:ZL201 alloy394 温轧:warm rolling395 不均匀变形:inhomogeneous deformation396 呋喃树脂砂:furan resin sand397 纸浆:paper pulp398 半连铸:semi-continuous casting399 锻锤:forging hammer400 延伸率:elongation rate401 焊接修复:welding repair402 冶金结合:metallurgical bond403 技术对策:technical measures404 结晶器振动:Mold Oscillation405 厚壁:thick wall406 WC颗粒:WC particles407 预处理技术:pretreatment technology 408 金属零件:metal part409 特种铸造:special casting410 低熔点合金:low melting point alloy 411 水模实验:water model experiment 412 复合管:clad pipe413 插装阀:plug-in valve414 金相试样:Metallographic specimen 415 抗吸湿性:humidity resistance416 近液相线铸造:near-liquidus casting 417 新设计:new design418 电机转子:motor rotor419 CAE:computer aided engineering420 交流变频:AC variable frequency421 下横梁:lower beam422 ZL102合金:ZL102 alloy423 模型参考控制:model reference control424 虚拟对象:virtual object425 加工图:processing maps426 立式离心铸造:vertical centrifugal casting427 抽芯机构:core pulling mechanism428 连铸连轧:casting and rolling429 残留强度:residual strength430 复合铸造:composite casting431 树脂砂:resin bonded sand432 AM60B镁合金:AM60B magnesium alloy 433 铸造CAE:casting CAE434 砂型:sand mould435 熔化:melting process436 高硼铸钢:high boron cast steel437 稳恒磁场:stable magnetic field438 Al-Ti-C晶粒细化剂:Al-Ti-C grain refiner 439 再生技术:regeneration technology 440 压铸工艺:die casting process441 管坯:tube billet442 厚大断面:Heavy section443 保护气体:protective gas444 性能特征:performance characteristics 445 Al-5%Fe合金:Al-5%Fe alloy446 半固态挤压:Semi-solid extrusion447 金属型铸造:Permanent mold casting 448 晶粒组织:grain structure449 综合经济效益:Comprehensive economic benefit450 半固态压铸:semi-solid die casting451 气膜:gas film452 硅酸乙酯:Ethyl Silicate453 自动化生产线:automatic production line454 Mg-Gd-Y-Zr合金:Mg-Gd-Y-Zr alloy455 渗透检测:Penetrant testing456 W-Cu复合材料:W-Cu composites457 存放时间:storage time458 ProCAST软件:ProCAST software459 滑板:sliding plate460 铸造铝合金:casting aluminum alloy 461 水玻璃砂:Water-glass Sand462 电脉冲:Electrical pulse463 蜡模:Wax Pattern464 悬浮铸造:suspension casting 465 D型石墨:D-type graphite466 工艺性能:technological performance 467 Al-1%Si合金:Al-1%Si alloy468 悬浮性:suspension property469 差压铸造:counter-pressure casting 470 工艺原理:process principle471 铸轧:continuous roll casting472 行波磁场:traveling magnetic field473 型壳:Shell Mold474 金属型:permanent mould475 脱模机构:demolding mechanism476 调压铸造:adjusted pressure casting 477 喷砂:sand blasting478 界面换热系数:interfacial heat transfer coefficient479 Al-Mg-Si-Cu合金:Al-Mg-Si-Cu alloy 480 电熔镁砂:fused magnesia481 充型速度:Filling Velocity482 泵体:pump body483 钢锭模:ingot mould484 Cu-Fe合金:Cu-Fe alloy485 辐射力:radiation force486 空化泡:Cavitation bubble487 渣池:slag pool488 原位生成:In-situ Synthesis489 热型连铸:heated-mold continuous casting490 缩松:dispersed shrinkage491 CO2气体保护焊:CO_2 arc welding 492 伺服控制系统:servo system493 端盖:End cover494 铸造技术:casting technology495 水力学模拟:Hydraulics simulation496 再生铝:secondary aluminum497 轴套:axle sleeve498 成形模具:forming die499 抗磨性能:Wear Resistance500 水模拟:water model501 快速铸造:rapid casting502 电磁软接触:electromagnetic soft-contact503 石膏型:plaster mold504 大型铸钢件:heavy steel casting505 移动磁场:traveling magnetic field506 轴承座:bearing seat507 混合稀土:rare earth508 铸态球铁:as-cast nodular iron509 砂芯:sand core510 铸造性能:casting properties511 真空差压铸造:vacuum counter-pressure casting512 玻璃模具:glass mold513 双联熔炼:duplex melting514 设备改进:improvement of equipment 515 铸坯质量:billet quality516 局部加压:Local Pressurization517 旧砂再生:used sand reclamation518 结晶速度:Crystallization rate519 壳体:shell body520 干强度:dry strength521 浇注系统设计:gating system design 522 慢压射:slow shot523 图像分析仪:image analysis system 524 温度曲线:Temperature profile525 水力效率:hydraulic efficiency526 单晶铜:single-crystal copper527 电渣重熔:electroslag refining528 铸造起重机:casting crane529 Cu-Cr合金:Cu-Cr alloys530 堆垛机:stacking machine531 巴氏合金:Babbitt alloy532 自抗扰控制器:auto-disturbance rejection controller(ADRC)533 陶瓷型:ceramic mold534 直流磁场:direct current magnetic field 535 漏气:air leakage536 泡沫陶瓷过滤器:foam ceramic filter 537 过共晶高铬铸铁:Hypereutectic High Cr Cast Iron538 壁厚差:wall thickness difference539 HPb59-1黄铜:HPb59-1 Brass540 旋转喷吹:Spinning Rotor541 水玻璃旧砂:used sodium silicate sand 542 冷却强度:cooling strength543 耐磨铸铁:wear resistant cast iron544 ZA35合金:ZA35 alloy545 钠基膨润土:sodium bentonite546 熔体净化:melt purification 547 油雾润滑:oil-mist lubrication548 初生α相:primary α phase549 铸造生产:foundry production550 高电位:High Potential551 钴基高温合金:cobalt base superalloy 552 Al-Zn-Mg-Cu-Zr合金:Al-Zn-Mg-Cu-Zr alloy553 水平连续铸造:Horizontal continuous casting554 自硬砂:no-bake sand555 微区分析:micro-area analysis556 顺序凝固:sequential solidification557 非枝晶组织:Non-dendritic microstructure558 反变形:reverse deformation559 铬青铜:Chromium bronze560 湿型铸造:green sand casting561 配料计算:burden calculation562 热-力耦合:Thermo-mechanical Coupling 563 浇注时间:Pouring time564 铸造速度:Casting velocity565 亚共晶铝硅合金:Hypoeutectic Al-Si Alloy566 搅拌功率:power consumption567 热电场:thermoelectricity field568 铸铝合金:cast aluminum alloy569 陶瓷型铸造:Ceramic mold casting570 热凝固:Thermal coagulation571 界面压力:interface pressure572 多尺度模拟:multiscale simulation573 输送链:Conveyor Chain574 关键措施:key measures575 冒口系统:Riser system576 开炉:blowing in577 铜锡合金:Cu-Sn alloy578 无铅黄铜:unleaded brass579 球墨铸铁管:ductile cast iron pipe580 二次枝晶间距:secondary dendrite arm spacing581 GA-BP网络:GA-BP network582 铝合金熔体:aluminum alloy melt583 生产条件:production conditions584 铬铁矿砂:chromite sand585 再生效果:regeneration effect586 导向叶片:Guide Vane587 金属管:Metal tube588 空心管坯:hollow billet589 超高强铝合金:ultra-high strength aluminum alloy590 流变曲线:flow curve591 蠕化剂:vermicularizing alloy592 波浪型倾斜板:wavelike sloping plate 593 凝固特性:solidification characteristics 594 磨头:grinding head595 反白口:reverse chill596 黑线:black line597 净化技术:purifying technology598 中间合金:master alloys599 捏合块:Kneading Block600 硅相:silicon phase601 低过热度浇注:low superheat pouring 602 3004铝合金:3004 aluminum alloy603 液态压铸:liquid die casting604 中频感应电炉:intermediate frequency induction electric furnace605 球墨铸铁件:Ductile iron casting606 凝固路径:solidification path607 喷枪:spraying gun608 ZL201铝合金:ZL201 aluminum alloy 609 质量改善:quality improvement610 气路:gas circuit611 补缩设计:Feeding design612 油底壳:Oil sump613 汽缸体:cylinder block614 CREM法:CREM process615 铸造机:Casting machine616 提高措施:improving measure617 SIMA法:SIMA method618 铬系白口铸铁:Chromium white cast iron 619 高合金钢:High alloy steels620 增压系统:pressurization system621 收缩缺陷:shrinkage defect622 卧式离心铸造:Horizontal Centrifugal Casting623 测控仪:measuring and controlling instrument624 精铸件:Investment Castings625 制动阀:Brake valve 626 金属成型:metal forming627 有机纤维:organic fiber628 大气采样器:air sampler629 钢支座:steel bearing630 低频磁场:low frequency magnetic field 631 破坏面:failure surface632 偏轨箱形梁:bias-rail box girder633 数值处理:data processing634 双辊薄带:twin-roll thin strip635 合成铸铁:Synthetic cast iron636 堆冷:stack cooling637 行星轧制:planetary rolling638 铸造缺陷:foundry defect639 二次冷却:second cooling640 炉衬材料:lining material641 弥散强化:dispersion hardening642 2D70铝合金:2D70 aluminum alloy 643 A356铝合金:A356 Al alloy644 元胞自动机方法:Cellular Automaton method645 铸造温度:casting temperature646 铸造涂料:Foundry coating647 耦合模拟:coupled simulation648 充型能力:Filling ability649 复合尼龙粉:nylon composite powder 650 改性纳米SiC粉体:modified SiC nano-powders651 炉外脱硫:external desulfurization652 绿色铸造:green casting653 净化方法:purification method654 制芯:Core making655 铸态球墨铸铁:as-cast ductile iron656 复合轧辊:compound roller657 冷隔:cold shut658 薄壁件:thin-wall part659 铸钢车轮:cast steel wheel660 铁水质量:quality of molten iron661 热物理性能:Thermo-physical properties 662 7050铝合金:7050 Al alloy663 半固态金属加工:semi-solid metal forming664 半固态铸造:semisolid casting665 表面反应:Surface reactions666 KBE:knowledge-based engineering(KBE)667 倾斜板:inclined plate668 弯销:dog-leg cam669 多边形效应:polygonal effect670 脱模剂:releasing agent671 铜包铝线:copper clad aluminum wire 672 球化衰退:nodularization degeneration 673 低过热度:low superheat674 升降机构:lifting mechanism675 SLS:selective laser sintering(SLS)676 溢流槽:spillway trough677 制浆技术:pulping technology678 浇注工艺:casting process679 变形行为:deformation behaviors680 转移涂料:transfer coating681 牵引速度:haulage speed682 WC/钢复合材料:WC/steel composites 683 泡沫模样:foam pattern684 皮下气孔:surface blowhole685 超高强度铝合金:ultrahigh strength aluminum alloy686 薄带铸轧:strip casting687 造型线:moulding line688 工具杆:tool rod689 铸锭组织:ingot microstructure690 复合变质剂:composite modifier691 发热剂:Heating Agent692 液相线半连续铸造:liquidus semi continuous casting693 Mg-Al-Zn合金:Mg-Al-Zn alloy694 洛仑兹力:Lorenz force695 散射比:scattering ratio696 翻转机构:turnover mechanism697 超声铸造:Ultrasonic Casting698 A356:A356 alloy699 Mg-Li-Al合金:Mg-Li-Al alloy700 复合磁场:electromagnetic field701 单缸机:single cylinder engine702 快速产品设计:Rapid Product Design 703 真空阀:Vacuum valve704 界面传热系数:Interfacial heat transfer coefficient705 液态金属冷却:liquid metal cooling 706 散射衰减:scattering attenuation707 电磁场频率:Electromagnetic Frequency 708 半连续铸锭:semicontinuous casting ingot709 凝固补缩:Solidification Feeding710 Mg-Zn合金:Mg-Zn alloy711 连铸-热轧区段:CC-HR region712 TC11钛合金:titanium alloy713 损坏机理:failure mechanism714 元素分布:Distribution of element715 原位TiC颗粒:in-situ TiC particles716 均匀化处理:uniform heat treatment 717 使用要求:application requirement718 初生相形貌:morphology of primary phase719 枝晶形貌:dendritic morphology720 铸造废弃物:foundry waste721 AZ91D:AZ91D Magnesium Alloy722 高压铸造:high pressure die casting 723 细化变质:Refinement and Modification 724 结疤:scale formation725 连续铸轧:continuous casting726 热变形行为:Thermal Deformation Behavior727 壳型铸造:shell mould casting728 消失模:evaporative pattern729 手机外壳:mobile phone shell730 热管技术:heat pipe731 水韧处理:water toughening process 732 阻燃镁合金:Ignition proof magnesium alloys733 除尘装置:dust collector734 悬浮率:suspending rate735 非线性估算法:nonlinear estimation method736 电解铝液:electrolytic aluminum melt 737 双金属复合:bimetal compound738 离心浇注:centrifugal pouring739 抗磨损:abrasion resistance740 薄壁铸件:thin-walled casting741 盖包法球化处理:tundish-cover nodulizing process742 无定形二氧化硅:amorphous silicon dioxide743 排气槽:air vent744 高铬白口铸铁:high chromium cast iron745 熔炼炉:smelting furnace746 过滤机理:Filtration mechanism747 汽车覆盖件模具:auto panel die748 低合金高强度钢:Low-alloy high-strength steel749 精铸模具:investment casting mould 750 铝板带:aluminum plate751 球状石墨:nodular graphite752 铸轧区:casting-rolling zone753 接线盒:junction box754 铁水净化剂:purifying agent for molten iron755 石墨块:graphite block756 优质铸件:high quality casting757 处理温度:treatment temperature758 高尔夫球头:golf head759 固相体积分数:solid volume fraction 760 纳米SiC颗粒:SiC nanoparticle761 检测仪器:testing instrument762 Mg17Al12相:Mg_(17)Al_(12) phase 763 攻关:tackling key problems764 硬化机理:Hardening mechanism765 真空吸铸:vacuum suction766 热分析技术:thermal analysis technology 767 高频调幅磁场:High Frequency Amplitude-modulated Magnetic Field768 坯料制备:blank production769 补缩通道:feeding channel770 水基涂料:water-based coating771 球铁件:Ductile Iron Castings772 稀土Er:rare earth Er773 陶瓷型壳:Ceramic shell774 精密电铸:precision electroforming 775 发气性:Gas evolution776 充型凝固:Mold Filling and solidification 777 铝带:aluminum strip778 新SIMA法:new SIMA method779 AZ91HP镁合金:AZ91HP magnesium alloy780 电子束冷床熔炼:electron beam cold hearth melting781 粘砂:metal penetration782 物理冶金学:physical metallurgy783 砂处理:Sand preparation 784 铸造裂纹:casting crack785 气冲造型:air impact molding786 金属模:metal mould787 磷共晶:phosphor eutectic788 近液相线半连续铸造:nearby liquidus semi-continuous casting789 液固反应:liquid-solid reaction790 呋喃树脂:furane resin791 汽缸盖:Cylinder Cap792 充型模拟:Simulation of mold filling 793 铸造工艺CAD:casting technology CAD 794 粘土砂:Clay sand795 冲天炉熔炼:cupola smelting796 射料充填过程:filling process797 半固态金属:semisolid metals798 大型铸件:heavy casting799 电机端盖:motor cover800 熔铸工艺:casting process801 加入方法:Joined technique802 区域熔化:zone melting803 真空除气:Vacuum Degassing804 相平衡热力学:phase equilibrium thermodynamics805 溢流系统:overflow system806 Al-Ti-C中间合金:Al-Ti-C master alloys 807 晶界碳化物:grain boundary carbide 808 净化装置:purification equipment809 液穴形状:sump shape810 铝合金铸造:Aluminum Alloy Casting 811 修模:Tool modification812 SKD61钢:SKD61 steel813 软化退火:Softening Annealing814 大齿轮:Large Gear815 合金渗碳体:Alloy cementite816 工艺性能试验:technological property tests817 硅碳比:Si/C ratio818 冷却曲线:Cooling Curves819 壁厚不均:non-uniform wall thickness 820 V法铸造:V process821 铸造系统:casting system822 电渣加热:electroslag heating823 残余内应力:residual stress824 表面清理:surface cleaning825 黄斑:macular region826 电磁振荡:Electromagnetic Oscillation 827 初始组织:initial structure828 气密性能:air permeability performance 829 电极调节:electrode adjustment830 气体速度:gas velocity831 抑制方法:suppressing method832 孔洞率:void ratio833 废品率:reject rate834 气动装置:pneumatic actuator835 应急发电机:emergency generator836 缺陷修复:Error repair837 有机高聚物:organic polymer838 理论成果:theoretical achievements 839 凝固曲线:Solidification curve840 元胞自动机法:cellular automaton841 ZL101铝合金:ZL101 Al alloy842 高韧性球墨铸铁:High toughness ductile iron843 搅拌方式:stirring method844 沉积坯尺寸:deposit dimension845 高锌镁合金:high zinc magnesium alloy 846 雕铣机:carves-milling machine847 铸造模拟:Casting simulation848 精益设计:lean design849 无余量精密铸造:Investment Casting 850 热顶铸造:hot-top casting851 羊油:mutton tallow852 压射速度:injection speed853 DOE试验:DOE experiment854 超声波振荡:ultrasonic oscillation855 酯固化:ester cured856 缸盖罩:cylinder head cover857 尺寸变化率:dimension variance rate 858 大型铸铁件:heavy iron castings859 单晶铜线材:copper single crystal wire 860 厚大断面球墨铸铁:heavy section ductile iron861 钛镍合金:Ti-Ni alloy862 实型铸造:Full Mold863 6082合金:6082 Alloy864 奥贝球铁:austenite-bainite nodular-iron 865 白口组织:white microstructure866 铸轧工艺参数:casting process parameters867 铸铁轧辊:cast iron milling roll868 强化处理:strengthen treatment869 半固态成型:semi-solid processing870 深腔:deep cavity871 耐热镁合金:Heat resistant magnesium alloys872 斜滑块:inclined sliding block873 回炉料:recycled scrap874 半固态坯:semi-solid billet875 感应熔炼:inductive melting876 链板:chain board877 含泥量:sediment percentage878 模料:mould material879 复合界面:compounded interface880 铸造方法:casting methods881 模温:mold temperature882 轻合金:light alloys883 增碳工艺:recarburation process884 定位装置:location equipment885 加压速率:pressurization rate886 半固态流变成形:Semi-solid Rheoforming887 复杂铸件:Complicated casting888 高强度灰铸铁:High strength grey cast iron889 针孔度:pinhole degree890 中频感应加热:intermediate frequency induction heating891 石墨转子:graphite rotor892 修磨机:Grinding machine893 动态顺序凝固:dynamic directional solidification894 针状组织:acicular structure895 粒度配比:particle size distribution896 铝合金壳体:aluminum alloy shell897 内冷铁:Internal chill898 铸件质量:quality of casting899 精炼效果:refining effect900 发动机缸体:cylinder body901 增碳剂:carburizing agent902 7005铝合金:7005Al alloys903 复合孕育:Multiple inoculations904 复合孕育剂:compound inoculation905 气孔缺陷:blowhole defect906 铁液质量:quality of molten iron907 钛铝合金:TiAl alloys908 7A09铝合金:7A09 aluminium alloy 909 SiC颗粒增强:SiC particle reinforcement 910 沉淀相:precipitated phases911 铝母线:aluminum bus912 凝固分数:solid fraction913 球化组织:spheroidized microstructure 914 蠕铁:vermicular iron915 组织均匀性:microstructure uniformity 916 压铸型:die-casting die917 镁合金压铸机:magnesium alloy die casting machine918 凝固微观组织:solidification microstructure919 灰铸铁件:Gray iron casting920 最大剪应力:ultimate shear stress921 热挤压成形:hot extrusion922 铝合金铸件:aluminium alloy cast923 抗湿性:humidity resistance924 耳子:rolling edge925 结合面:joint face926 推管:ejector sleeve927 黑点:black spot928 铝铸件:aluminum casting929 固相分数:Solid fraction930 快干硅溶胶:Quick-dry silica sol931 激冷铸铁:Chilled iron932 负压消失模铸造:Negative pressure EPC 933 LC9铝合金:LC9 aluminium alloy934 接触层:Contact layer935 工频炉:main frequency furnace936 消失模涂料:lost foam casting coating 937 高温均匀化:high temperature homogenization938 均热炉:pit furnace939 镁合金轮毂:magnesium wheel940 平砧:flat anvil941 铝合金扁锭:aluminum alloy slab942 凝固界面:solidifying interface943 低温冲击功:Low Temperature Impact Energy944 复合发泡剂:Composite Foaming Agent 945 交叉型芯:Crossed Core946 SCR连铸连轧:SCR continuous casting-rolling947 FS粉:FS powder948 AZ81镁合金:AZ81 alloy949 ZL109活塞:ZL109 piston950 掉砂:dropping sand951 型腔壁厚:cavity wall thickness952 铝件:aluminum part953 导向装置:guide mechanism954 彩色云图:color contour image955 柴油机缸体:Diesel engine cylinder block 956 圆盘铸锭机:casting wheel957 热风冲天炉:Hot-blast cupola958 充氧压铸:pore-free die casting959 铝钛硼细化剂:Al-Ti-B refiner960 保温冒口:Insulating riser961 共晶相:Eutectic phase962 夹砂:sand inclusion963 无冒口铸造:Riserless casting964 充芯连铸:continuous core-filling casting 965 熔体混合:melt mixing966 保护渣道:mold flux channel967 碱性酚醛树脂:alkaline phenolic resins 968 细深孔:Long-deep hole969 行星减速机:planetary reducer970 直接铸型制造:direct casting mold manufacturing971 引锭头:dummy bar head972 静置炉:holding furnace973 工艺出品率:process yield974 真空法:vacuum process975 石灰石砂:limestone sand976 整体浇注:monolithic casting977 混料工艺:mixing procedure978 螺旋套:screwy sheath979 胶凝机理:gelling mechanism980 覆砂铁型:permanent mould with sand facing981 球铁铸件:ductile iron casting982 成型率:molding rate983 球状组织:spherical structure984 电弧冷焊:arc cold welding985 钢液流场:flow field of molten steel。
重介质旋流器分选过程的离散分析与数值模拟

重介质旋流器分选过程的离散分析与数值模拟黄波;徐宏祥;陈晶晶;朱子祺【摘要】重介质旋流器广泛应用于煤炭分选,分选过程十分复杂,试验测试研究重介质旋流器内部流场和颗粒运动特性费时费力,成本较高.随着数值计算技术的发展,国内外学者应用数值模拟方法研究旋流器内部的多相流流场.采用计算流体力学(CFD)与离散分析方法(DEM)耦合技术对重介质旋流器的分选过程进行数值模拟研究,为重介质旋流器的结构参数和操作参数的优化提供了一种新途径.用Fluent软件研究了旋流器内部悬浮液速度场、密度场、压力梯度场和黏度场,用EDEM软件研究了旋流分选过程中的煤粒运动行为及分选效果的评价.研究结果表明:悬浮液压力分布和压力梯度分布径向基本对称,溢流口和底流口处压力值最低.器壁沿径向形成了压力梯度,差值逐渐增大,空气柱边界处压力梯度最大;不同尺度的煤粒在旋流器内部的停留时间不同,相同密度的煤粒,粒度越小,停留时间越长.溢流中排出煤粒在旋流器中的停留时间明显长于从底流口排出的煤粒.溢流口排出的煤粒,密度越大,停留时间越长,底流口排出的煤粒,密度越大,停留时间越短.不同的旋流器结构参数对分选的影响程度不尽相同,其中溢流管直径的影响最为显著,溢流管直径超过500 mm时,不能形成完整的空气柱,无法分选.溢流管直径为300 mm时,分选效果较好;溢流管插入深度显著影响分选精度,插入深度为160 mm时,分选密度增大,细小高密度的煤颗粒将错配进入溢流,溢流管插入深度为320 ~ 800 mm时,分选密度接近悬浮液密度,分选指标Ep=0.084~0.100,分选效果较好.底流口直径对旋流器选精度影响较大,当底流口直径为272和306 mm时,分选密度与悬浮液密度接近,Ep值小于0.1,分选效果较好.圆柱段长度对于分选密度影响不明显.【期刊名称】《煤炭学报》【年(卷),期】2019(044)004【总页数】8页(P1216-1223)【关键词】重介质旋流器;多相流;分选;CFD;DEM【作者】黄波;徐宏祥;陈晶晶;朱子祺【作者单位】中国矿业大学(北京)化学与环境工程学院,北京100083;中国矿业大学(北京)化学与环境工程学院,北京100083;中国矿业大学(北京)化学与环境工程学院,北京100083;中国矿业大学化工学院,江苏徐州221116【正文语种】中文【中图分类】TD922重介质旋流器广泛用于煤炭的分选,具有分选精度高、处理量大的特点。
欧盟GMP(中英文对照)

欧盟GMP(中英⽂对照)(The words that are in the green background are new standards)(绿⾊背景下的内容为新标准)ANNEX 1MANUFACTURE OF STERILE MEDICINAL PRODUCTS附录1 ⽆菌医药产品的⽣产Principle总则The manufacture of sterile products is subject to special requirements in order to minimize risks of microbiological contamination, and of particulate and pyrogen contamination. Much depends on the skill, training and attitudes of the personnel involved. Quality Assurance is particularly important, and this type of manufacture must strictly follow carefully established and validated methods of preparation and procedure. Sole reliance for sterility or other quality aspects must not be placed on any terminal process or finished product test.⽆菌药品的⽣产,必须符合⼀些特殊的要求,以防⽌微⽣物、微粒和热源的污染。
这很⼤程度上依赖与⼯作⼈员的技术⽔平、培训和⼯作态度。
在这⽅⾯质量保证显得特别重要,这种类型的⽣产,必须严格按照完善的和经过验证的⽣产⽅法和⼯作程序。
Simulink仿真演示外文翻译

英文原文Simulink DemosSimulink is a tool for modeling, analyzing, and simulating physical and mathematical systems, including those with nonlinear elements and those that make use of continuous and discrete time.As an extension of MATLAB, Simulink adds many features specific to dynamic systems while retaining all of general purpose functionality of MATLAB.Run demos for other Simulink products you have installed. Try these demos to see which Simulink products might be appropriate for the work you do. Note that this is a comprehensive list of Simulink products. Your particular installation of MathWorksIn the Contents pane, for each Simulink product, see documentation Examples to viewmore sample code you can run or copy.Three-phase Three-level PWM Converter (discrete)This demonstration illustrates simulation of a 3-phase, 3-level inverterand Discrete 3-phase PWM Generator. It also demonstrates harmonic analysis of PWM waveformsusing the Powergui/FFT tool.Circuit Description The system consists of two three-phase three-level PWM voltage source convertersconnected in twin configuration。
Geometric Modeling

Geometric ModelingGeometric modeling is a fundamental concept in the field of computer graphics and design. It involves the creation and manipulation of digital representations of objects and environments using geometric shapes and mathematical equations. This process is essential for various applications, including animation, virtual reality, architectural design, and manufacturing. Geometric modeling plays a crucial role in bringing creative ideas to life and enabling the visualization of complex concepts. In this article, we will explore the significance of geometric modeling from multiple perspectives, including its technical aspects, creative potential, and real-world applications. From a technical standpoint, geometric modeling relies on mathematical principles to define and represent shapes, surfaces, and volumes in a digital environment. This involves the use of algorithms to generate and manipulate geometric data, enabling the creation of intricate and realistic 3D models. The precision and accuracy of geometric modeling are essential for engineering, scientific simulations, and industrial design. Engineers and designers utilize geometric modeling software to develop prototypes, analyze structural integrity, and simulate real-world scenarios. The ability to accurately model physical objects and phenomena in a virtual space is invaluable for testing and refining concepts before they are realized in the physical world. Beyond its technical applications, geometric modeling also offers immense creative potential. Artists and animators use geometric modeling tools to sculpt, texture, and animate characters and environments for films, video games, and virtual experiences. The ability to manipulate geometric primitives and sculpt organic forms empowers creatives to bring their imaginations to life in stunning detail. Geometric modeling software provides a canvas for artistic expression, enabling artists to explore new dimensions of creativity and visual storytelling. Whether it's crafting fantastical creatures or architecting futuristic cityscapes, geometric modeling serves as a medium for boundless creativity and artistic innovation. In the realm of real-world applications, geometric modeling has a profound impact on various industries and disciplines. In architecture and urban planning, geometric modeling software is used to design and visualize buildings, landscapes, and urban developments. This enables architects and urban designers toconceptualize and communicate their ideas effectively, leading to the creation of functional and aesthetically pleasing spaces. Furthermore, geometric modelingplays a critical role in medical imaging and scientific visualization, allowing researchers and practitioners to study complex anatomical structures and visualize scientific data in meaningful ways. The ability to create accurate and detailed representations of biological and physical phenomena contributes to advancementsin healthcare, research, and education. Moreover, geometric modeling is integral to the manufacturing process, where it is used for product design, prototyping,and production. By creating digital models of components and assemblies, engineers can assess the functionality and manufacturability of their designs, leading tothe development of high-quality and efficient products. Geometric modeling also facilitates the implementation of additive manufacturing technologies, such as 3D printing, by providing the digital blueprints for creating physical objects layer by layer. This convergence of digital modeling and manufacturing technologies is revolutionizing the production landscape and enabling rapid innovation across various industries. In conclusion, geometric modeling is a multifaceteddiscipline that intersects technology, creativity, and practicality. Its technical foundations in mathematics and algorithms underpin its applications in engineering, design, and scientific research. Simultaneously, it serves as a creative platform for artists and animators to realize their visions in virtual spaces. Moreover,its real-world applications extend to diverse fields such as architecture, medicine, and manufacturing, where it contributes to innovation and progress. The significance of geometric modeling lies in its ability to bridge the digital and physical worlds, facilitating the exploration, creation, and realization of ideas and concepts. As technology continues to advance, geometric modeling will undoubtedly play an increasingly pivotal role in shaping the future of design, visualization, and manufacturing.。
超大型双曲线混凝土冷却塔振动台试验研究

第 39 卷第 1 期2024 年 2 月Vol.39 No.1Feb. 2024电力学报JOURNAL OF ELECTRIC POWER文章编号:1005-6548(2024)01-0082-10 中图分类号:TU352.11;TM621 献标识码:A 科分类号:47040 DOI:10.13357/j.dlxb.2024.010开放科学(资源服务)标识码(OSID):超大型双曲线混凝土冷却塔振动台试验研究陈良1,张明玉2,陈家丰3,郝玮3,李淼2(1.中国电力工程顾问集团华北电力设计院有限公司,北京 100120;2.中国神华胜利发电厂,内蒙古锡林浩特 026000;3.中建研科技股份有限公司,北京 100013)摘要:神华胜利发电厂混凝土冷却塔位于7度抗震设防区,塔高225 m,塔筒为双曲线型。
这种超大型冷却塔在地震等极端荷载下一旦发生破坏,后果将是灾难性的。
目前对冷却塔的研究多以数值模拟为主,试验研究较少。
通过设计开展缩尺比为1∶33的地震振动台模型试验,研究冷却塔的结构动力响应特性,分析不同地震烈度下结构的刚度退化和损伤情况,寻找结构的薄弱部位,并综合动力试验和数值模拟结果,评价结构的可靠性,提出合理的抗震措施和结构建议。
关键词:超大型冷却塔;钢筋混凝土;地震选波;振动台试验;数值模拟Shaking Table Model Test of a Super Large Hyperbolic ConcreteCooling TowerCHEN Liang1,ZHANG Mingyu2,CHEN Jiafeng3,HAO Wei3,LI Miao2(1.North China Power Engineering Co., Ltd., China Power Engineering Consulting Group, Beijing 100120, China;2.Shengli Power Plant of China Shenhua Energy Co., Ltd., Xilinhot 026000, China;3.CABR Technology Co.,Ltd., Beijing 100013, China)Abstract:The concrete cooling tower of Shenhua Shengli Power Plant is located in the 7 degree seismic fortifica⁃tion zone, with a height of 225 m and a hyperbolic cylinder. Once the super large cooling tower is destroyed un⁃der extreme load such as earthquakes, the consequences will be catastrophic. At present, the research on cool⁃ing tower is mainly based on numerical simulation, and the experimental research is few. By designing and car⁃rying out a seismic shaking table model test with a scale ratio of 1∶33, the structural dynamic response character⁃istics of the cooling tower are studied, the stiffness degradation and damage of the structure under different seis⁃mic intensities are analyzed, the weak parts of the structure are found. Considering the results of dynamic test and numerical simulation, the reliability of the structure is evaluated, and reasonable anti-seismic measures and structural suggestions are put forward.Key words:super large cooling tower;reinforced concrete;seismic wave selection;shaking table test;numerical simulation*收稿日期:2023-10-25作者简介:陈良(1983—),男,高级工程师,硕士,主要从事火电水工结构设计等方面的工作,chenliang@;张明玉(1982—),男,工程师,主要从事电厂生产运行技术管理方面的工作,zhangmy12@;陈家丰(1995—),男,工程师,主要从事大跨空间结构等设计咨询工作,chenjiafeng@@;郝玮(1982—),男,副研究员,长期从事与复杂结构抗震性能相关的研究,haowei@;李淼(1987—),男,工程师,硕士,主要从事电厂生产技术管理方面的工作,151****6679@。
单向复合材料及纯树脂材料抗冲击性能的比较

单向复合材料及纯树脂材料抗冲击性能的比较宋孝浜;金利民;王春霞【摘要】Finite element software package ABAQUS is used to calculate the impact responses of unidirectional composite at the level of yam and resin substrate. Through analytical comparison with pure resin material in terms of impact resistance power under the identical conditions, the impact resistance property and main absorption mechanisms of unidirectional composite are expounded by analyzing the bullet velocity-time curve, impact stress distributions on the composites with different components. Under impact action, the unidirectional composite, compared with the pure resin material, dissipates the impact energy more quickly, indicating it has better energy absorption performance. In addition, the peak value of stress in the yarn is greater than that in the resin. It is concluded that the impact energy is mainly absorbed by the reinforcement of yarns in the unidirectional composite. This leads to better impact resistance for the unidirectional composite than the pure resin material.%运用有限元软件ABAQUS,在纱线与树脂基体尺度上计算单向复合材料的抗冲击过程.通过对比分析相同条件下纯树脂材料的抗冲击能力,从弹体的速度变化曲线、冲击应力在复合材料不同组分上的分布等方面说明单向复合材料的抗冲击行为和主要吸能机制.在冲击作用下,与纯树脂材料相比,单向复合材料可使冲击能量在较短的时间内耗散,从而表现出更好的能量吸收性能.此外,单向复合材料中纱线部分的应力峰值明显比树脂部分的应力峰值大,说明单向复合材料所承受的冲击能量主要被纱线增强相吸收,从而具有更好的抵抗冲击能力.【期刊名称】《纺织学报》【年(卷),期】2012(033)006【总页数】5页(P15-19)【关键词】单向复合材料;纯树脂材料;冲击;有限元【作者】宋孝浜;金利民;王春霞【作者单位】盐城工学院纺织服装学院,江苏盐城224003;东华大学纺织学院,上海201620;盐城工学院纺织服装学院,江苏盐城224003;东华大学纺织学院,上海201620【正文语种】中文【中图分类】TS101.2目前,纤维增强复合材料已被广泛应用于国民生产的各个领域。
分子动力学模拟的英文

分子动力学模拟的英文Molecular dynamics simulation is a computational method used to study the physical movements of atoms and molecules. It involves solving Newton's equations of motion for a system of interacting particles, typically using numerical methods. This technique allows researchers to gain insights into the dynamic behavior of materials, biological systems, and other complex systems at atomic or molecular scales.The fundamental principle of molecular dynamics simulation is to represent the system of interest as a collection of interacting particles. These particles can be atoms, molecules, or clusters of atoms/molecules, depending on the level of detail required for the simulation. The interactions between particles are typically describedusing force fields, which are mathematical functions that describe the potential energy of the system as a functionof the positions and orientations of the particles.The simulation process begins with the selection of aninitial configuration for the system. This can be obtained from experimental data, or it can be generated randomly or using specific algorithms. Once the initial configurationis set, the forces acting on each particle are calculated using the force field. These forces are then used to compute the accelerations of the particles according to Newton's second law of motion. The velocities and positions of the particles are then updated using these accelerations, typically using a time-stepping algorithm such as theVerlet algorithm.The simulation continues by iterating this process over time, allowing the system to evolve dynamically. As the simulation proceeds, the particles move and interact with each other, leading to changes in the system's structureand properties. By monitoring these changes, researcherscan gain insights into the dynamic behavior of the system and how it responds to external perturbations or changes in conditions.Molecular dynamics simulations can be used to study a wide range of systems and phenomena. In materials science,they can be used to understand the atomic-scale mechanisms underlying material properties such as mechanical strength, thermal conductivity, and electrical conductivity. In biology, they can be used to study the dynamics of proteins, nucleic acids, and other biomolecules, revealing insights into their function and interactions with other molecules.In addition to providing fundamental understanding of these systems, molecular dynamics simulations can also be used to predict and design new materials or molecules with desired properties. For example, they can be used to screen potential drug candidates or optimize the performance of materials for specific applications.However, it is important to note that molecular dynamics simulations have limitations. The accuracy of the results depends on the quality of the force field used to describe the interactions between particles. While manyforce fields have been developed and validated fordifferent types of systems, they may not always accurately represent the complex interactions that occur in real systems. Furthermore, molecular dynamics simulations arecomputationally intensive and may require significant resources to run, especially for large systems or long simulation times.Despite these limitations, molecular dynamics simulations have become a valuable tool in many fields of science and engineering. They provide a unique means to study the dynamic behavior of complex systems at atomic or molecular scales, complementing experimental techniques and enabling the discovery of new materials and molecules with improved properties.。
结构振动与动态子结构方法书英文

结构振动与动态子结构方法书英文Structural Vibrations and Dynamic Substructuring Methods.Structural vibrations are a fundamental aspect of many engineering disciplines, ranging from civil engineering to aerospace applications. These vibrations can be caused by various external forces such as wind, earthquake, or machine operations. Understanding and predicting these vibrations is crucial for ensuring the safety, efficiency, and durability of structures.Dynamic substructuring methods are a set of techniques used to analyze complex structures by dividing them into smaller, more manageable substructures. This approach allows for efficient numerical modeling and simulation of vibrations, particularly in large-scale systems where traditional methods may be computationally intensive.Basics of Structural Vibrations.Structural vibrations occur when a structure is subjected to external forces that cause it to move or deform. These forces can be periodic, such as those caused by rotating machinery, or non-periodic, such as those resulting from earthquakes. The response of the structure, including its displacement, velocity, and acceleration, is dependent on its mass, stiffness, and damping characteristics.The natural frequencies and mode shapes of a structure are key parameters in understanding its vibration behavior. Natural frequencies represent the resonant frequencies at which the structure tends to vibrate, while mode shapes describe the pattern of vibration at each frequency. These parameters can be obtained through modal analysis, which involves exciting the structure and measuring its response.Dynamic Substructuring Methods.Dynamic substructuring methods are based on the principle of modal synthesis. Instead of modeling theentire structure as a single, complex system, the structure is divided into smaller substructures, each with its own set of natural frequencies and mode shapes. These substructures are then coupled together to form the complete structure.One of the most commonly used dynamic substructuring methods is the fixed-interface modal synthesis. In this approach, the substructures are assumed to have fixed interfaces with each other, and the vibrations at these interfaces are used to couple the substructures. This allows for efficient modeling of the overall structure by reducing the number of degrees of freedom required for analysis.Another popular method is the free-interface modal synthesis, where the substructures are allowed to have free interfaces. This approach provides more flexibility in modeling the interactions between substructures but requires more complex coupling techniques.Applications of Dynamic Substructuring.Dynamic substructuring methods find applications in various engineering fields. In civil engineering, they are used to analyze the vibrations of bridges, buildings, and towers. In aerospace engineering, these methods are employed to study the dynamic behavior of aircraft and spacecraft. In mechanical engineering, dynamic substructuring is used to model and simulate the vibrations of machines and components.The key advantage of dynamic substructuring is its efficiency. By dividing a complex structure into smaller substructures, it becomes easier to model and analyze each substructure separately. This reduces the computational requirements and allows for faster simulation of theoverall structure. Additionally, the method provides a modular approach to modeling, where new substructures can be easily added or replaced without affecting the existing model.Challenges and Future Directions.Despite its advantages, dynamic substructuring methods also face some challenges. One of the main challenges is the accurate modeling of interface interactions between substructures. Achieving accurate coupling requires careful consideration of the boundary conditions and interface dynamics.Another challenge is the scalability of these methods to even larger and more complex structures. As the size and complexity of structures increase, so does the computational demand for analysis. Future research in dynamic substructuring could focus on developing more efficient algorithms and optimization techniques to handle these larger systems.In conclusion, structural vibrations and dynamic substructuring methods play a crucial role in understanding and predicting the dynamic behavior of structures. By dividing complex structures into manageable substructures, these methods enable efficient modeling and simulation, leading to safer, more efficient, and durable structures. Future research and advancements in this field willcontinue to push the boundaries of structural analysis and design.。
储层地质结构力学模型

储层地质结构力学模型英文回答:Reservoir Geological Structural Mechanics Model.The reservoir geological structural mechanics model is a mathematical model that describes the mechanical behavior of a reservoir rock under the influence of geological forces. The model is used to predict the deformation and failure of the reservoir rock, and to assess the stability of the reservoir.The reservoir geological structural mechanics model is based on the principles of continuum mechanics. The model assumes that the reservoir rock is a continuous material, and that it can be described by a set of constitutive equations. The constitutive equations relate the stress and strain in the reservoir rock to its material properties.The reservoir geological structural mechanics model isa complex model, and it is typically solved using numerical methods. The model is used in a variety of applications, including:Predicting the deformation and failure of reservoir rock during production.Assessing the stability of reservoirs.Designing reservoir development plans.中文回答:储层地质结构力学模型。
基于一种单向滑模的某巡飞弹过载控制仿真

收稿日期:2020-01-05修回日期:2020-02-10作者简介:马越(1990-),男,山西长治人,硕士研究生。
研究方向:弹箭飞行与控制。
摘要:以某巡飞弹为研究对象,将法向过载作为控制对象,采用普通滑模控制理论设计了控制系统,仿真计算发现舵偏角存在剧烈的抖振,严重影响了飞行稳定性。
为了抑制抖振,在此基础上采用了一种单向滑模控制方法重新设计了控制器,并推导证明了该控制系统的渐进稳定性。
仿真结果表明单向滑模控制系统具有振荡次数少,收敛速度快,无抖振的优点,该方法在飞行器控制领域有很好的应用前景。
关键词:巡飞弹,单向滑模,飞行控制,系统仿真中图分类号:TJ413文献标识码:ADOI :10.3969/j.issn.1002-0640.2021.02.011引用格式:马越,傅健,王泽璞,等.基于一种单向滑模的某巡飞弹过载控制仿真[J ].火力与指挥控制,2021,46(2):64-67.基于一种单向滑模的某巡飞弹过载控制仿真马越1,傅健2,王泽璞1,梁建辉1,梁美美1(1.北方自动控制技术研究所,太原030006;2.南京理工大学,南京210094)Research on Overload Control Simulation of Cruise Missile Based on a Unidirection Sliding ModeMA Yue 1,FU Jian 2,WANG Ze-pu 1,LIANG Jian-hui 1,LIANG mei-mei 1(1.North Automation Control Technology Institute ,Taiyuan 030006,China ;2.Nanjing University of Science and Technology ,Nanjing 210094,China )Abstract :Taking certain cruise missile as a research object ,rearding the normal overload of cruisemissile as a control object ,the normal sliding mode control theory is used to design the control system.The simulation calculation shows that rudder angle chatters violently ,which affects the stability of flight.In order to eliminate the chattering phenomenon ,a unidirectional sliding mode control method is used to redesign a controller the asymptotic stability of system is deduced and proved.The simulation results show that this unidirectional sliding mode control system has such advantages as less ocillation times ,faster convergence speed ,no chattering.The method has a good application prospect in the field of aircraft control.Key words :cruise missile ,unidirectional sliding mode ,flight control ,system simulation Citation format :MA Y ,FU J ,WANG Z P ,et al.Research on overload control simulation of cruise missile based on a unidirection sliding mode [J ].Fire Control &Command Control ,2021,46(2):64-67.0引言巡飞弹是无人机技术和智能弹药技术相结合的产物,它与常规弹药相比,具有在战场上空巡飞的能力,能够完成侦察监视、目标威胁、压制摧毁等任务,同时具有造价便宜,效费比高的特点,是我国新型武器装备发展的重要趋势[1-3]。
地下结构地震破坏机理研究

完成了可液化砂土层中地下结构大型模拟振动台试验。通过对比可 液化砂土层中和粘土层中地下结构振动台试验中加速度数据放大系数可 以发现:相同峰值地震动输入时,相同埋深处的粘土层中地下结构加速 度放大系数大于砂土层中地下结构加速度放大系数,这说明砂土液化对 地下结构有减震作用。从试验后检验也可以发现,液化后的土体中,试 验模型没有明显的破坏,但液化后由于孔隙水压力的增加,使得模型结 构产生了明显的上浮现象,对于本次试验,由于砂土层是水平成层的, 试验模型仅是独立的地铁车站模型,结构上浮基本上是均匀的,可以推 断:在实际地铁工程中,如果隧道或地铁车站处于不均土层中,液化后 将导致严重的不均匀上浮或沉降,将引起隧道或结构的断裂等严重破坏。
中国地震局工程力学研究所 博士学位论文
地下结构地震破坏机理研究 姓名:孙海峰
申请学位级别:博士 专业:岩土工程 指导教师:王宁伟 2011-05
摘要
摘要
Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。
假设未损伤材料为线弹性材料。
因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。
Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。
另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。
本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。
损伤与失效模型的通用框架Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。
材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。
刚度逐渐减弱的过程采用损伤力学建模。
为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。
如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。
材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。
超过c点后,材料的承载能力显著下降直到断裂(c-d段)。
最后阶段的变形仅发生在样品变窄的区域。
C点表明材料损伤的开始,也被称为损伤开始的标准。
超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。
根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。
图19.1.1-1 金属样品典型的轴向应力-应变曲线因此,在Abaqus中失效机制的详细说明里包括四个明显的部分:●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘)●损伤开始的标准(如图19.1.1-1中c点)●损伤发展演变的规律(如图19.1.1-1中曲线c-d)●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1中的d点)。
基于单极冷冻法的南疆咸水淡化及应用

已严重制约居民生活与农业生产。 然而,在淡水缺乏 的同时,丰富的农 田 排 水 资 源 并 未 被 重 视, 反 而 对 灌 区排水载 体 造 成 严 重 污 染[2] 。 目 前, 农 田 排 水 再 利 用作为缓解水资源紧张、减轻水体污染有效途径,被 众多学者所重视[3] 。
第 12 期
杨玉辉,等:基于单极冷冻法的南疆咸水淡化及应用
表 1 室内模拟单极受冷试验方案设置
Table 1 Schemes of the indoor simulated unidirectional
freezing experiments
试验 方案
容器面积
冷冻温度
T1
T2
T3
T4
T5
( -5 ℃ ) ( -10 ℃ ) ( -15 ℃ ) ( -20 ℃ ) ( -25 ℃ )
D1 10 cm×10 cm √
√
√
√
√
D2 15 cm×15 cm √
√
√
√
√
D3 20 cm×20 cm √
√
√
√
√
D4 25 cm×25 cm √
√
√
√
√
D5 30 cm×30 cm √
√
√
√
√
1. 2 试验材料 试验原水取自阿拉尔灌区塔南总排渠,取水点选
取在 210 省道 192 km 处( 40°32′32″N,081°34′45″E) 。 塔南总排渠是阿拉尔灌区标志性总排渠,所取农田排 水具有一定代表性,试验原水水质如表 2 所示。
DOI:10. 13205 / j. hjgc. 201912022
DESALINATION AND APPLICATION OF SALINE WATER IN SOUTHERN XINJIANG BASED ON UNIDIRECTIONAL FREEZING
基于剪滞模型的复合材料细观力学特性Monte_Carlo模拟

最后,利用有限差分模型结合 Monte-Carlo 模拟方法预报了复合材料 的内部应力场和强度值。模拟结果显示,新的剪滞模型较普通剪滞模型 得到应力场具有一定的特点,并且最终影响了对强度值的限差分方法,应力 场,强度预报
第I页
上海交通大学工学硕士学位论文
目录
The Monte-Carlo Simulation of Unidirectional Composites Mesomechanics Characteristics Based on the Shear-lag Model
ABSTRACT
As a method to predict the mechanical properties and reveal the damage essences of composites, meso-mechanics has the significant meaning in studying and designing composites. Previous work has proved that it was a mature way to predict the ultimate tensile strength of unidirectional composite with shear-lag model and Monte-Carlo simulation.
A Dissertation Submitted to Shanghai Jiao Tong University for the Degree of Master
Structuralmechanics中的专业词汇

Structural mecha nics 中的专业词汇PREFACE AND CHAPTER 1Structural mecha nics 结构力学Structural an alysis 结构分析Statically determ in ate structures 静定结构Statically in determinate structures 超静定结构Matrix an alysis of structures 结构矩阵分析Plastic an alysis of structures 结构塑性分析Dyn amic an alysis of structures 构动力分析Illustrative example Problems 习题In civil con structi on 设中Geometric dime nsion结例题在土木工程建几何尺度Framed structure 杆系结构Cross-secti on 横截面Rectan gular cross-sect ion 矩形截面Radius半径Diameter 直径Slab 板Shell 壳Thi n-walled structure 薄壁结构Massive structure 块体结构The same order of magn itude 大小同量级Theory of Elasticity 弹性力学Aspect 方面Application of loads 荷载的作用Forces and deformati ons 力和形变In ternal forces 内力Reaso nable simplicity 合理的简化Computi ng model 计算模型In structural engin eeri ng 在结构工程中Dead loads 静荷载Live loads 活荷载Dy namic loads 动力荷载Movable loads 移动荷载Movi ng loads 运动荷载Static loads 静力荷载Resp onse of a structure 结构响应Blast loads 爆炸荷载Impact loads 冲击荷载Ce ntrifugal force 离心力External effect 外部作用Flexural member 受弯构件Support settleme nt 支座沉陷Tran sverse force 横向力Manu facture discrepa ncy 制造误差Frame框架Shrin kage of material 材料收缩Bend 弯2In gen eralized sense 在广义上Behavior of a structure 结构的行Shear 剪为Tense 拉Members 构件Compress 压Arch 拱Bending moment 弯矩Reacti on 反力Sheari ng force 剪力Truss桁架Normal force 轴力Composite structure 组合结构In ternal force comp onent 内力分Superpositi on prin ciple 叠加原理量Be subjected to 承受……Lateral dime nsion 横向尺寸Lin early 线性地Rein forced con crete beam 钢筋砼Lin early elastic 线弹性的梁In creme nt 增量Engin eeri ng structure 工程结构Be proporti onal to 与…成正比Three dime nsional 三维的Stress 应力Pla nar(pla ne) structure 平面结构Strai n 应变To lie in the same pla ne 处在同CHAPTER 2一平面Geometric stability 几何稳定性Space structure 空间结构Geometrically stable 几何稳定的Simplificati on of supports 支座Un stable system 不稳定体系的简化Degrees of freedom 自由度Restrai nt 约束By defi nition 根据定义Stati onary foun dati on 固定的基础In depe ndent coord in ate 久独立坐标Roller support 辊柱支座(链杆支Pla nar coord in ate system 平面坐标系座)Three dimensional coord in ate system Link support 链杆支座三维(空间)坐标系Perpe ndicular to 垂直于…Rigid body 刚体Hinge support 固疋铰支座Joi nt 节(结)点Horizo ntal 水平的Mutual (relative )displacement 相对Vertical 竖直的位移Be parallel to each other 相互平Be equivale nt to 等价于…行Multiple hi nge 多重铰Displaceme nt 位移Multiple rigid joint 多重刚结点Links 链杆Imposed restra int 施加的约束Rotation 转角,转动In sufficie nt 不足的A couple 一个力偶Sufficie nt 足够的Fixed support 固定支座Redundant多余的Tran slati on 平移Redundant restraint多余约束Isometrically 等距地Arran geme nt of restra ints 约束的布置Respectively 分别地Necessary con dition必要条件Simplificatio n of joi nts 节点的Sufficie nt con dition充分条件简化Geometric con structi on an alysis 几何Hi nge joi nt 铰结构造分析Rigid joi nt 刚结Defin ite con clusion确定的结论Mo nolithic body 整体,一体Substitute into 代入…Beam 梁Assembly 集合Kin ematic an alysis 机动分析A hin ged trian gle 一个铰接三角形Lying on the same straight line 位于同一直线Infin itesimal displaceme nt 无穷小位移Infin itesimal rotati on 无穷小转角In sta ntan eously un stable system 瞬变体系Joi nted pairwise 两两相连的Statically determ in ate multi-spa n beam多跨静定梁In ternal stable 内部稳定的In ternal stability 内部稳定性Disregard 忽视,不考虑AB and CDIntersecting at point O AB 和CD相交于点OInstantaneous centre of rotation 瞬时转动中心In sta ntan eous hinge 瞬铰Static determ inacy 静力确定性Static equilibrium equati on 静力平衡方程Arbitrary cross section 任意横截面Isolated free body 脱离(隔离)体Un ique solution 唯一的解Coupled equation 耦合的方程Con tradictory 矛盾的Infin ite nu mber of soluti ons 无穷多个解Simulta neous equati ons 联立方程In qua ntitative sense 在数量上Project ion equilibrium equati on 投影平衡方程Determi nant method 行列式法则(克莱母法则)Determ inant 行歹U式Coefficie nt of the equati ons 方程未知量的系数Static characteristic 静力特性Space system 空间体系Infin itely far away 无穷远处CHAPTER 3Fun dame ntal基础,基本原理In dividual member 单一的构件Element 单元Resulta nt 合力Axial directi on 轴向3 Axial ten sion 轴向拉伸To the immediate left and tight of P P Positive 正的的左邻和右邻Negative 负的Abrupt cha nge 突变Compression in the upper fibers Abruptly 突然地上边受压In tegral relati on 积分关系Tension in the lower fibers 下边Difference betwee n A and B A 禾口B的差受拉Sum of A and B A 和B 的和Normal direct ion 法向Figure 图形Axis轴线Con struct ion of sheari ng force diagram Clockwise mome nt 顺时针力矩剪力图的绘制Coun ter clockwise mome nt 反时钟Terminal point 终点力矩End couple 杆端力矩Free body 隔离体Dashed line 虚线Sign conven ti on 符号规疋Ordi nate 纵坐标Moment diagram 弯矩图Superimpose 叠力口Ten sile side of a member 构件的Con cave parabola 下凸抛物线受拉边Corresp onding ordin ate 相应的纵坐标Method of section 截面法Similar tria ngle 相似三角形Mon olithic system 整体系统In cli ned member 斜杆Algebraic sum 代数和Per meter 每米Magnitude 大小Curved member 曲杆Moments about the centroid of Tangen tial direct ion 切向cross section 对截面中心的力矩Normal direct ion 法向Mathematical relation 数学关系Curvature radius 曲率半径In ternal force diagram 内力图Infini tesimally small 无穷小Differe ntial eleme nt 微分单元Approach to infinity 趋于无穷As in dicated 正如所示Radial distributed 径向分布的Distributed loads 分布荷载Arc弧Inten sity 集度Basic stable porti on 基本部分Summing moments about an axis Subsidiary portio n 附属部分through the left hand face of the Symmetrical 对称的element关于穿过该单兀左截面的Un symmetrical 非对称的某轴求力矩之和Horiz on tal thrust 水平推力Higher-order term 高阶项Con struct M and Q diagrams 绘制M和QA segme nt —段图Rightward 向右CHAPTER 4Dow nward 向下Statically determ in ate multispa n beam Separately 分别地静定多跨连续梁Slope斜率Static method 静力法Extreme moment 极值弯矩Co nstitue nt 组成的Curvature 曲率Can tilever beam 悬臂梁Un iformly distributed 均匀分布Similarly 同样地(同理)Linear fun ctio n 线性函数Overha ng beam 伸臂梁In cli ned straight line 斜直线Simple supported beam 简支梁Quadratic function 二次函数Method of virtual work 虚功法Parabolic curve 抛物线Ki nematic method 机动法Con cave下凸的Prin ciple of virtual displaceme nt 虚Concen trated load 集中何载位移原理4In creme ntal relati on 增量关系Prin ciple of virtual work 虚功原理Virtual displaceme nt 虚位移Con siste nt with 与…相容的Mecha nism 机构Virtual work equati on 虚功方程Unknown未知的Projectio n along the force 在力方向上的投影Product of magn itude of the forceand the magn itude of the displaceme nt 力的大小与位移大小的乘积An gular displaceme nt 角位移Corresp onding displaceme nt 相应的位移Substitute for 替换…Infin itesimal virtual displaceme nt无穷小虚位移In this circumsta nee 在这种情况下Deflect 偏转Equal in magn itude but opposite in direction 大小相等方向相反In structive 有启发的CHAPTER 5Pinned joi nt 铰接Subscript 下标Con trol section 控制截面Foun dati on 基础Order of calculation 求解顺序Differential relation between M and external loads M 和外力的微分关系Tension in the right fiber 右边纤维受拉Reserve 保留End bending mome nt 杆端弯矩Sign in dicati on 符号标定Associate sheari ng force 相应的剪力Keep bala nee 保持平衡Uniformly distributed loads 均布荷载Satisfacti on of the project ion equilibrium equati ons 平衡方程的满足Control ordi nate 控制坐标Be perpe ndicular to 垂直于…CHAPTER 6Span of an arch 拱跨Rise of an arch 拱的矢高Symmetrical axis 对称轴Horizo ntal thrust 水平推力A three arched arch with a tie 拉杆三铰拱Flatte n out 变平Arbitrary cross section 任意截面Axis of abscissa 横坐标轴First derivative 一阶导数Co nic parabola 二次抛物线Tabulate 把…制成表格Table表格Colu mn 列The cipher of column 9 第9 列的值Lay off 画出…Masonry con struct ion 砌石建筑Abutment底座,桥墩Line of pressure 压力线Resulta nt 合力By graphical method 利用几何法Force Polygon 力多边形Pole极点In tersect ion point 交点Funi cular polygo n 索多边形Polygon of resulta nts 合力多边形Action line for resulta nt 23 合力23的作用线Respective stri ng 各自的索线In direct proporti on to 正比于…Optimal cen tre line of arch 合理拱轴线Theoretical volume 理论值Primarilystati onary load 主要由固定荷载作用Reckon from 从…开始算Con figurati on 形状As a con seque nee 结果,因而Hydraulic pressure 静水压力Circulararc 圆弧A curve of circular arc 圆弧曲线Bisector 二等分线,平分线Annu lar shape 圆环状Un der earth pressure 在土压力作用下Crow n hinge 顶铰Un der this circumsta nee 在这种情况下Differe ntiate with respect to x关于x求导Differe ntial equatio n 微分方程Hyperbolic fun ction 双曲函数Boundary con diti on 边界条件Whe nee据此,由此Catenoid 悬链线5Cable吊索Suspe nsion system 悬挂体系A series of lin ear segme nts —系歹U直线段Distortio n 变形Deflection 挠度Sag下垂度Assumption 假定Unknown force 未知力CHAPTER 7Conn ected by pins 用铰连接Tower 塔Roof structure 屋架(屋面)结构Frict ionl ess pin 光滑铰Two-force member 二力杆Heavy bolted joi nt 强螺栓连接节点Welded joi nt 焊接节点Primary stress 主要应力Subsidiary stress 次要(附加)应力Topchord 上弦杆Bottom chord 下弦杆web member 腹杆Diag on als and verticals 斜杆和竖杆Panel point 节点Panel节间Through truss 穿越(下承式)桁架Desk truss 上承式桁架Simple truss 简单桁架In alphabetical order 以字母顺序Compo und truss 联合桁架Rigid framework 刚性构架Non parallel noncon curre nt links 不相互平行也不相交于一点的链杆Cross-hatched 画阴影线的Complex truss 复杂桁架Joint method 节点法Secti on method 截面法con curre nt forces 汇交力系Expedie nt 方便的In active member 零杆Mome nt centre 力矩中心Projectio n axis 投影轴线Pass a secti on 做一个截面Excepti onal member 单杆Subdivided truss 再分式桁架In flue nee coefficie nt 影响系数Decreme nt 减量Sub-diago nal 辅助(次)斜杆Dimension 量纟冈Reverse 逆Sub-vertical 辅助(次)竖杆Dimensionless 无量纲的6 Reverse condition (d) 条件(d)的逆Sub-truss 辅助(次,子)桁架Expressi on 表达式The peak of the tria ngular in flue neeSub-member辅助(次)杆Most un favorable positi on 最不利diagram三角形影响图的顶点Sub-joi nt 辅助(次)节点位置Numerically greatest 数量上最大的Horseshoe-shaped 马蹄形的Behavior of the structure 结构的Extreme value 极值Graphical method 作图法行为Vertexes of the in flue nee diagram 影Algebraic method 代数方法Con struct ing in flue nee line 作影响图的顶点vertex of the polygon 多边形的顶点响线Absolute maximum bending mome nt 绝对arrow of a force 力的箭头In flue nee line for internal force 最大弯矩successively 连续地内力影响线Derivative 导数by scali ng 通过度量Virtual work 虚功Equidista nt 等距离的repetiti onal work 重复性的工作Prin ciple of virtual work 虚功原Without any loads going on or off the suppleme nt 补充理span没有任何何载进入和离开梁跨method of substitute member 替换杆Abscissa横坐标 A continu ous fun cti on of x x 的连续函法Sign in dicati on 符号标注数method of in itial parameter 初参数To draw in flue nee line 画影响线Mid-po int of the spa n 跨中法To be confined to 被限制在Midpo int of the spa n 跨中closed loop 闭合圈Floor beam 楼面梁Dan gerous section 危险截面space truss 空间桁架Girder 大梁,主梁Crane beam 吊车梁dome圆屋顶Floor slab 楼板En velope for bending mome nt 弯矩包罗derrick 塔架Without ambiguity 显然图spherical hinge 球形铰Elim in at ing a n ecessary restrai nt En velope for sheari ng force 剪力包罗trian gular pyramid 三棱锥,1 四面形,去除一个必要的约束图四面体Infin itesimal virtual An arbitrary sect ion —个任意截面odd member 单杆displaceme nt 无穷小虚位移In flue nee diagram 影响图colli near 在同一直线上的Vertical scale 竖标Desig nated qua ntity 指定量值forego ing discussi on 前述的讨论Relative an gular displaceme nt 相Bound of the bending mome nt variati on beam member 梁式杆对角位移弯矩变化的边界flexural member 受弯杆Relative tran sverse displaceme nt CHAPTER 9composite joint 复合节点相对横向位移In structural desig n 在结构设计中self-equilibrium force system 自平 A unit tran sverse sliding Elastic displaceme nt 弹性位移衡力系displaceme nt —个单位横向滑动位In determi nate structure 超静定结构statically equivale nt load 静力等移Most versatile method 最通用的方法效何载In tact 未动的,完好的Uni t load method 单位何载法girder 桁架梁Three hin ged arch 三铰拱Reciprocal theorem 互等定理parallel chord truss 平行弦桁架 A corresp onding simple beam 一个Illustration of unit load method 单位non- parallel chord truss 非平行弦相应的简支梁荷载法的例子桁架Critical position 临界位置Supported settleme nt 支座沉降roof truss 屋面桁架Most severe effect 最不利的影响Lin eardiplaceme nt (tra nslati on) 线位arched truss 拱桁架(桁架拱)Trial aided 试算移polygo nal li ne truss 折线桁架By use of criteria 利用判据 A compatible displaceme nt 相容性位移desig nated member 指定的杆Sta ndard truck 标准卡车Fictitious=virtual 虚的absolute value 绝对值Average loads 平均何载Virtual force 虚力CHAPTER 8 In equality 不等式Appropriate choice 适当的选择In flue nee line 影响线Critical load position 临界何载Sectio ns adjace nt to hin ge C 铰C 的相Most severe internal forces 最不利位置邻截面内力In creme nt 增量 A un it virtual load —个单位竖向位移A pair of un it couple Real work 实功 An elastic prismatic bar 等截面杆 Elasticity modulus Cross-secti on area Generalized force Gen eralized displaceme nt 广义位移Statically in terdepe ndent forces 静力相关力系Corresp ondinggen eralizeddisplaceme nt 相应的广义位移 The angle of rotation0 转角 B 7External work 夕卜(力)功 Internal work 内(力)功To be ide ntical to 与… A differe ntial eleme nt 元 Differe ntial virtual work Strain energy 应变能 Virtual stai n en ergy Lin ear elastic structure 构 In ternal virtual work Con servati on law of en ergy 恒定理External real work 外力实功 The in verse of the curvature radius 曲率半径的倒数 Compatible relati ons Vanish 趋于零 iden tityrelati on un it virtual force virtual forcesystem real displaceme nt real strain comp onents an actual geometrical problem 实际的几何问题a fictitious equilibrium problem 个虚平衡问题differe nee of temperature coefficie nt of thermal expa nsion 度膨胀系数 axial strain 轴向应变likewise 同理saggi ng sense 下凸的 mome nt of in ertia 惯性矩 axial rigidity抗拉压刚度shearing rigidity flexural rigidity prin cipalaxis截面主轴 twisti ng mome nt twisti ng an glediffere ntial segme nt torsional con sta ntsection 截面扭转常数neutral axis 中性轴 area moment 面积矩 con crete member 砼凝土构件 steel member 钢构件 Poisson ratio 泊松比 depth-spa n ratio 高跨比 to be inversely proportional 与……成反比 in paren theses在括号中graph multiplicatio n 图乘法 the moment of the differential area with respect to y axis微分面积对y 轴的矩 magn itude of areas 面积的大小locatio n of their cen troids它们的形心位置 3d-degree parabola 3 additi onal proviso rein forced con crete cross-sect ional dime nsion 尺寸 elasto-plastic behaviour 弹塑性 行为 reduction factor折减系数a pair of concen trated un it loads 一对单位集中力 reciprocal theorem 互等定理 theoremofreciprocaldisplaceme nts 位移互等定理 theorem of reciprocalreactions反力互等定理 react ion in flue nee 反力影响系数 theorem of displaceme nt-react ion 互等定理support moveme nt 支座移动 to develop a gen eral formula 导通用公式 column 柱 CHAPTER 10 Force method 力法 Method of consistent deformation —致变形法Redundant structure Unknown force 未知力 Compatibility con diti ons Redundant unknown force Degree of in determi nacy In ternally in determi nate Primary system 基本体系Primary unknowns 基本未知量 Passive force Active force Incon siste ncy Embody 体现 Superimpose Flexibility coefficie nt Canoni cal equati on Propped can tilever beam 梁,有支(承)伸臂梁 Highly in determi nate structures 超静定结构8Square matrix 方阵 Symmetrical component对称分量An tisymmetrical comp onent 反对称分量Asymmetrical 不对称的 Inflection point 反弯点 Odd nu mber of spa n 奇数跨 Even nu mber of spa n 偶数跨 Method of elastic cen ter弹性中心法Rigid arm 刚臂 Hin geless arch 无铰拱 Numerator 分子 Denomin ator 分母 Quotie nt 商 Central an gle 中心角Non prismatic member 变截面杆(构件) Trapezoid formula 梯形公式 Parabolic formula抛物线公式Reacta nt bending mome nt 抵抗弯矩 Stiffness factor 刚度系数 Non yieldi ng support 刚性支座Lack of fit 误差Redundant beam 超静定梁 Qualitative in flue nee li ne 定性影响线 Quan titative in flue nee line 定量影响线CHAPTER 11一对单位力偶 一个弹性弹性模量 横截面面积 广义力••一致(样) 一个微分单 微分虚功 内力虚功能量守虚应变能线弹性结 相容关系恒等关系式 单位虚力 虚力系 实位移实应变分量温差一个抗剪刚度 抗弯刚度 of cross sect ion 扭矩 扭转角微分段 of the crossto次抛物线 附加条件 钢砼横截面coefficie ntsreciprocal 反力位移超静定结构相容性条件 多余未知力 超静定度 内部超静定被动力 主动力n.不相容性,不一致性叠加 柔度系数 标准方程 有支(承)悬高阶Slope-Deflection method 位移法(转角位移法)Displaceme nt method 位移法Mome nt distributi on method 弯矩分配法Varying section 变截面Slope-deflecti on equati on 转角位移方程Rotatio n stiffness 转动刚度Slidely fixed 双链杆支座的Alo ngside 在旁边的Analogy模拟,类比Portal frame 门形刚架Bent frame 排架Sideway 侧移Notion=con ceptStiffness matrix 刚度矩阵Coefficient of thermal expansion 温度膨胀系数CHAPTER 12Systematic approach 系统化的方法Matrix algebra 矩阵代数Routi nely programmed 常规地编程discretizati on 离散化beam eleme nt 梁单元truss eleme nt 桁架单元flexural eleme nt 弯曲单元eleme nt an alysis 单元分析global an alysis 整体分析no dal displaceme nt vector . 节点位移向量no dal resulta nt vector 节点力向量global stiffness equati on 整体刚度方程gover ning equati on 控制方程end force 杆端力end displaceme nt 杆端位移stiffness matrix 刚度方程starti ng point 起点terminal point 终点the four en tries 4 项orie nted in positive coord in ate directio n 指向坐标轴的正方向subvector 子向量main diag onal 主对角线main coefficients 主元素(主系数)sec on dary coefficie nts 副系数sin gular 奇异的determ inant 行歹U式ide ntity matrix 恒等矩阵submatrix 子矩阵stiffness method 刚度法no dal displaceme nt vector 节点位node number 节点编号9 local nu mber局部码local code nu mber 局部编码global code nu mber 整体编码en circled superscript 画圈的上标a sparse matrix 一个稀疏矩阵a ban ded matrix 一个带状矩阵semi-ba ndwidth 半带宽loadi ng con ditions 荷载条件support arran geme nt 支座布置CHAPTER 13Method of mome nt distributi on 弯矩分配法A procedure of successive approximation —个逐步近似的过程Joint tran slati on 节点平移Rotatio nal stiffness 转动刚度Distribution factor 分配系数Fraction of total mome nt 总弯矩的百分比The ratio of the far end moment to the n earend mome nt 远端弯矩与近端弯矩的比值Carry-over factor 传递系数Basic moment distributionprocess 基本的弯矩分配过程An exter nal n o dal moment —个外加的节点弯矩Artificial restrai nt 人为的约束在锁定状态释放弯矩Elim in at ing the artificialrestrai nt解除人为约束Carry-over mome nt 传递弯矩in verse of the matrix 矩阵的逆the orig in of the system 坐标系的原点transformation matrix 坐标转换矩阵移向量in the assembly 在集成过程中element contribution matrix 单元贡献矩阵global stiffness matrix 整体刚度矩阵gover ning equati on 控制方程equivale nt no dal loads 等效节点何载non-no dal loads 非节点何载artificial rotation restraint 人为的转动约束post-process ing method 后处理法pre-process ing method 前处理法pla ne truss 平面桁架coord in ate tran sformation坐标变换Successive cycle逐次的计算循环of computationUnbalaneed moment 非平衡弯矩Distribution moment at the near end 在近端的分配弯矩At the far end 在远端In the lock stateUn locki ng moment。