声波测井仪器的原理及应用

声波测井仪器的原理及应用
声波测井仪器的原理及应用

声波测井仪器的原理及应用

单位:胜利测井四分公司

姓名:王玉庆

日期:2011年7月

摘要

声波测井是石油勘探中专业性很强的一个领域。它是一门多学科的应用技术,已经成为油田勘探、储量评估、油气开采等方面不可缺少的工具。声波速度测井简称声速测井是利用声波在岩石中传播的速度来研究钻井剖面的一类物探方法,其方法是测量滑行波通过地层传播的时差 t(声速的倒数,单位us/ft)。目前主要用以估算孔隙度、判断气层和研究岩性等方面,是主要测井方法之一。

数字声波测井仪,其中包括66667声波数字化通用短节和6680声波探头2部分。能完成声波时差测井和水泥胶结测井,能与SL6000型地面系统和进口的5700型地面系统相配接。

正交多极子阵列声波测井(XMACII)将新一代的偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。当偶极子声源振动时,使井壁产生扰动,形成轻微的跷曲,在地层中直接激发出横波和纵波,根据正交多极子阵列声波资料得出的纵横、波速度比可识别与含气有关的幅度异常。

关键词:数字化;声波时差;声波变密度;阵列声波;声波全波列;

目录

第1章前言 (1)

第2章岩石的声学特性 (2)

第3章数字声波测井原理及应用 (3)

3.1 数字声波测井原理 (3)

3.2仪器的工作模式 (5)

3.3时差计算 (5)

3.4 数字声波测井仪器的性能 (6)

3.5 SL6680测井仪器的不足 (7)

3.6数字声波仪器小结 (7)

第4章正交多极子阵列声波测井 (8)

4.1 XMACII多极子阵列声波测井原理 (8)

4.2 XMACII多极子阵列声波仪器组成 (9)

4.3 XMACII多极子阵列声波的使用及注意事项 (10)

4.4 应用效果及结论 (14)

第5章声波测井流程及注意事项 (15)

5.1 声波测井流程 (15)

5.2 注意事项 (16)

参考文献 (17)

第1章前言

第1章前言

声波测井是近年来发展较快的一种测井方法。由最早的声速测井、声幅测井发展到后来的声波全波列测井、偶极子和多极子测井、声波成像测井、井间声波测井及随钻声波测井等。

常用的声波测井,如声波测井和声幅测井,是记录滑行纵波首波的传播时间和第一个波得波幅。利用井孔中的信息非常少。随着声波在裸眼井中传播理论的研究如果把声波全波列都记录下来,通过数字信号处理可获得纵波横波和斯通利等波形信息,由此展开地层弹性特性、破裂压力、地层渗透性、裂缝及油气识别等方面研究,有利于扩大声波测井在石油勘探中的应用。

正交多极子阵列声波测井是当今测量地层纵波、横波和斯通利波的最好方法之一,无论在大井眼井段还是非常慢速的地层中都能得到较好的测量结果,另外探测深度也有所增加。根据正交多极子阵列声波资料得出的纵横、波速度比可帮助地球物理学家识别与含气有关的幅度异常。对于裂缝性储层,裂缝发育带的划分及裂缝类型的识别是测井资料评价的重点,而裂缝发育程度及裂缝类型在波形幅度及衰减上具有不同的测井响应特征,因此,可根据纵、横、斯通利波的波形幅度及衰减程度划分裂缝发育井段、识别裂缝类型、判断裂缝有效性;根据地层速度各向异性百分比大小和方向确定现今最大水平主应力方向,分析与裂缝系统走向的一致性,进一步判断裂缝系统的区域有效性,寻找储层有利相带。

目前测井四分公司主要以Eclips5700和SL6000为主要地面系统,常用到声波测井仪器主要以数字声波和正交多极子阵列声波为主。

第2章 岩石的声学特性

第2章 岩石的声学特性

首先,先让我们来了解一下岩石的声学特性。声波是物质运动的一种形式,它是由物质的机械振动而产生的,通过质点间的相互作用将振动由近及远的传递而传播的。人耳听到的声波频率在20HZ 至20KHZ 之间,频率大于20KHZ 的机械波称为超声波。声波测井是研究介于声波和超声波之间的机械波的传播特性。

对于声波测井发射的声波来说,井下岩石可以认为是弹性介质,在振动作用下能产生切变弹性形变和压缩弹性形变。所以岩石既能传播横波又能传播纵波,岩石中横波与纵波速度和岩石的弹性有密切关系。

声波测井中声源发射的声波的能量较小,作用在岩石上的时间很短,所以对声波速度测井来讲,岩石可以看作弹性体。可以用弹性波在介质中的传播规律来研究声波在岩石中的传播特性。

在均匀无限的岩石中,声波速度只要取决于岩石的弹性和密度。作为弹性介质的岩石,其弹性可以用以下的参数来描述:

杨氏模量E = 应力(F/A )/应变(△L/L ) 泊松比

L D D L L L D D ????-=??-=//σ (值为0-0.5之间) 式中:D D /?为横向相对减少量 ;L L /?为纵向相对减少量。

下面我们在说下声波在岩石中的传播特性,当我们把岩石看成弹性体,我们就可以运用弹性波在介质中的传播规律来研究。弹性波在介质中的传播实质上是质点的振动的依次传递。当波的传播方向和质点的运动方向一致的时候叫纵波,因其在传播过程中,介质发生压缩和扩张的体积形变,又叫压缩波。我们测井只要应用的就是纵波,其在弹

性介质中的传播速度主要取决于弹性模量和密度,在均匀各向同性介质中,纵波速度p

v 与杨氏弹性模量E 、波松比σ、密度ρ之间的关系式为:

p v =()()()σσσρ2111-+--

E

从式中我们可以看出声速主要与杨氏模量和密度有关。

第3章数字声波测井原理及应用

3.1 数字声波测井原理

数字声波是一种对阵列声波信号进行数据采集,将采集后的数据按照要求编码并通过仪器接口上传到地面系统的声波测井仪器。它可以进行不同源距和间距的声波测井,用于测量井眼周围从发射器到接收器之间一段地层的声波旅行时间,其测量结果用来计算地层孔隙度,或直接用来进行地层对比;也可以用来对声信号可进行全部记录,提取更多的,包括纵波、横波的幅度和速度在内的各种信息。

总之,数字声波测井仪可广泛应用于时差测井、固井质量以及裂缝性地层的证实等。它由三大部分组成,即SL6667通讯和信号采集、SL6680高压发射控制及信号处理以及声系组成等。数字声波测井仪机构如图1-1所示,主要包括以下几个部分:测井数据采集模块、时序逻辑控制模块、曼彻斯特编译码、数据压缩。

图1-1 数字声波仪结构框图

总体方案采用DSP芯片,并配合单片机和外围电路实现。DSP的运算速度快,可以用软件实现多种功能,如曼彻斯特码的编解码、软件滤波等,而且DSP是专用数字处理芯片,在数字信号处理方面有着独特的优势。这种方案电路简洁、功能强大。

时序逻辑控制模块接收解码后的井上控制命令,产生控制上下发射的控制信号及控制接收电路的的接收逻辑,以及必要的各种控制信号。

整个电子线路短节采用了当今高速单片机处理技术、高速A/D采样技术和大规模的可编程器件,结构紧凑,集成度高。它由两块电路板组成:一是主控板,该板包含单片机及相关外围电路、遥测通信接口及驱动电路、采样数据双缓存SRAM、对6680仪器进行控制的串行通信接口电路及A/D转换脉冲产生电路;另一块是A/D采集板,该板包含4道12bits采样速率高达1.5MHz的A/D转换通道、采样结果缓存FIFO和A/D转换的控制电路。

SL6680EA负责发射控制、信号采集等功能,包括升压稳压、发射选择、接收多路传输、接收增益控制。同步信号与发射控制信号共同触发点火电路,相应的发射探头被高压触发,这样便完成了一次发射,SL6680EA电子线路的两个接收板接收到地面发送来的数据采集中断时,对四道接收信号同时进行接收,接收到的声波信号由SL6680EA电子

线路进行转换和处理。

SL6680MA声系主要由两个发射换能器和四个接收换能器构成。探头结构:T1与T2距离2英尺,T2与R1距离3英尺;R1、R2、R3、R4各距离0.5英尺。排列在上端的为发射晶体XMIT1、XMIT2,两个发射晶体之间为2个发射变压器。接收阵列位于仪器的最下端,包括四个响应频率范围在1-20KHz接收晶体。6个换能器同轴,靠固定支架支撑。发射换能器的高压输入引线采用双芯屏蔽导线,可以避免磁场对接收道的干扰。接收换能器的输出引线也用双层屏蔽导线提供静电屏蔽。为了和其他测井仪器组合,声系内部有19条贯通线。

上述全部器件、机械零部件以及导线等装载一皮囊内,囊内充以硅油,既保护了囊内的零部件,又使声波信号能很好的向外耦合。橡皮囊外部是刻槽的钢保护壳,支持整个声系。在换能器的位置开有窗口,保证声能波能向地层辐射和地层传播返回的声信号得以到达接收探头。

声系能通过上接头与SL6680电子线路短节连接。上接头的安排使得发射脉冲的密封插头与接收信号的密封插头安装在两个面上,有效的避免了连接处发射对接收的磁干扰。

图1-2 数字声波测井仪器设计与实现

3.2仪器的工作模式

Subset2:DELTA-T测井,TX1发射,RX1、RX2、RX3和RX4接收

Subset3:DELTA-T测井,TX2发射,RX1、RX2、RX3和RX4接收

Subset5:VDL和CBL测井,TX2和TX1交替发射、RX1接收Subset6:DELTA-T测井,TX2和TX1交替发射,RX1、RX2、RX3和RX4接收工作模式的选择由串行数据来控制。

3.3时差计算

声波采集处理卡定时按井下仪器需要的逻辑方式向井下仪器发出逻辑信号,启动井下仪器不同的发射探头发射声波,同时启动声波声波采集卡开始AD采样,常规的采样频率1MHZ,采样时间2ms,每个AD采样间隔1us,一个声波信号需要采集2000个点,

一般声波信号频率基本是18khz-20,波形与正弦波类似,一个波完整周期是50us,大致相当于50个采样点。

图1-4 单次记录声波信号

对于声波测量数据只取少数特征点的幅度值以及时间间隔,地面将根据所得到的数据进行线性拟合,还原声波曲线。每个周期一般需要6个8位参数描述:正负峰值点的幅度、时间间隔,一个声波信号需要传输的最大原始数据量位6*8*40=1920bits。考虑到发射标志与首波之间大量零值点,使用Huffman编码进行无损压缩之后进行传输。3.4 数字声波测井仪器的性能

数字声波测井仪可以同时与伽马、连斜、高分辨率感应测井仪并联。这样大大缩短了测井时间,优其是在较深的井效果比较明显。且抗干扰能力强。与补偿声波相比还较具有以下几个优点:

①数字信号便于存储,可以单发多收,同时存储四路声波信号,这样,测一个点只需发射一次声波,大大提高了测井的速度;

②相对模拟信号而言,数字信号的抗干扰能力很强,传送时干扰的影响会小得多,从而大大提高了信道传输时信息的准确性;

③可以采用数字信号处理方法,来增强系统性能和扩展功能。

单发双收声系测井受到井眼扩大和井下仪器倾斜的影响一而产生测量误差。如果两个单发双收声系的源距和间距相同,仅发射器位置颠倒,则两者在声速曲线上造成的假异常完全是相反的,两者在声速曲线的平均值是正常值。据此,发展了双发双收声速测井;两个接收器在中间,上下各有一个发射器,源距相同。T1和T2交替发射声脉冲,并分别在接收器测量时差,再取其平均值记录时差;这种方法不仅能消除井眼扩大的影响,而且能消除仪器记录点与井壁实际采样点在深度上的误差。不过双发双收声速测井的缺点是纵向分辨率降低,容易出现低速地层的盲区和井下仪器长度偏大等。从技术上说,数字声波测井技术先进、功能强大、测井质量高,同时具有传输和处理方便等特点,是声波测井的新一代技术。由于数字声波测井仪的信号处理能力和质量得到明显提高,可以通过数字声波测井仪更快更好的获取地层的物理、化学特性,进而对石油勘探的决策提供准确可靠的依据。

在砂泥岩剖面中,补偿声波与数字声波资料吻合,而在复杂岩性剖面井中,数字声波采用井下数字化上传,减小了干扰,更具有优势但从总体上来说数字声波较补偿声波要稳定的多,抗干扰能力强,对测井资料的准确性提供保障。

3.5 SL6680测井仪器的不足

SL6680在油田勘探开发中获得了广泛的应用,在完井测井和固井测量中均得到了广泛的应用,并取得了很好的效果,在对油气的开发的过程中,获得了良好的经济效益,但该仪器在实际应用中也出现了一些使用方面的问题:

1、在浅部地层声波衰减变化比较大的层段,常常发生跳跃现象,声波增益值只能用手动方法调节,在实际操作过程中不能及时调节来适应该变化层段,在测井过程中我们需要对比其它电阻率曲线来打之判断言行,提前根据经验修正声波增益数值。

2、在固井评价测井中有时出现相互干扰现象,后面的声波变密度数值对声波幅度测量有影响,在示波器上显示M2和M5数据存在毛刺现象。

3、在固井测井变密度图中有时与套管接箍CCL深度不一致。

3.6数字声波仪器小结

1、SL6680针对井下岩性复杂和作业现场环境恶劣等情况,采用阵列接收探头、高速数字化采集和传输方式的新一代数字声波测井仪器。采用阵列信号处理技术来校正由于各种原因造成的测量误差,极大地提高了测井数据的有效性与准确性;直接在井下仪器中对采集到的声波信号进行数字化,将数字声波信号通过数字遥传系统传送到地面设备,提高了仪器的可靠性和抗干扰能力。

2、采用数字遥传仪器总线标准,可与多种仪器进行组合,提高了仪器使用的灵活性。现场实验表明,该仪器设计合理,在完井声波时差的测量中取得了很好的效果。

第4章正交多极子阵列声波测井

4.1 XMACII多极子阵列声波测井原理

1、单极子声源

单极子声源相当于一个点声源在裸眼井中可激发纵波、横波、伪瑞利波和斯通利波等波形,通过波形处理技术即可提取接收波形中的纵波、横波和斯通利波的波速,但这种声源有其难以克服的自身缺点:①工作频率(15~25 kHz) 太高,声波穿透地层的深度较小、信号的传播距离较小,使全波波形中纵波、横波难以在时域中分辨开来,尤其是横波测量不够准确(波至点难以准确拾取) ;②在软地层(横波波速比井内流体波速小的地层) 不能激发横波,因而无法测量这种地层的横波波速。

2、偶极声源

偶极声波源很象一个活塞,它能使井壁一侧压力增加,而另一侧压力减小,从而产生扰动,形成轻微的挠曲,在地层中直接激发出纵波与横波。这种挠曲波的振动方向与井轴垂直,但传播方向与井轴平行。这种声波发射器的工作频率一般低于4kHz ,而且它还具有低频发射功能,其工作频率可低于1 kHz ,这在大井眼和速度很慢的地层中可得出很好的测量结果,同时也增大了探测深度。

3、偶极子横波测井基本原理

图2-1 为地层中的单极波形和偶极波形图。从图中可以看到,在软地层单极波形中没有出现横波,纵波之后跟随着幅度很大的斯通利波;在软地层偶极波形中也没有出现横波,纵波受到抑制,在纵波之后跟随着幅度很大的挠曲波。因此,偶极横波测井的基本原理,其一是偶极发射器能产生沿井壁传播的挠曲波;其二,挠曲波是一种频散界面的波,它在低频下以地层横波的速度传播,在高频下则以低于地层的横波速度传播;其三,偶极横波测井实际上是通过挠曲波的测量来计算地层的横波速度;其四,为减小频率的影响,应尽量降低偶极发射器的发射频率,以确保横波速度的测量精度。

图2-1 地层中单极和偶极波形

4、四极子声波原理

四极子声源是由相邻点声源的振动相位相反的4 个点声源组成,换能器在X 与Y 方向上是反位相振动状态。四极子声源在井眼中激发螺旋波单一模式波及其高阶模式,较低频率的四极子源有抑制纵波的作用,对于横波测井非常有利。XMACII多极子阵列声波测井仪的测量原理是为了适应各种地层情况,将单极子、偶极子和四极子声波测井技术进行有效组合,更好的获得硬地层和软地层的纵、横波和斯通利波等特征参数。

4.2 XMACII多极子阵列声波仪器组成

XMACII主要由五个部分组成:数字声波电子线路、接收器短节、声波隔声体、发射短节以及发射控制电子线路短节。此外,测量时应当配合使用3514数据传输短节以及1329伽马,4401井斜方位仪,4430电源适配器,4341灯笼体扶正和防转。

1、XMACII 多极子阵列声波测井仪声系

XMACII多极子阵列声波测井仪声系由发射声系、隔声体和接收声系组成。其中发射声系由1 组单极子发射、1 组相互垂直的压电式偶极换能器(同深度偶极子发射: X 方向偶极发射器和Y 方向偶极发射器) 和1 组四极子发射换能器组成。接收声系由8 组口字形多极子接收换能器接收声波信号,每组有2 对接收器。一对同X 方向偶极发射器在一条直线上,用于接收X 偶极信号;另一对同Y 方向偶极发射器在一条直线上,用于接收下偶极信号;交叉偶极时,每组接收器产生1 对相交叉的偶极信号。当单极或四极声波源工作时,将每个接收器组的所有输出进行组合和得出相应模式的声波信号。隔声体是多节合瓣组成的机械衰减结构,它能在整个频率范围内有效地隔离声能量,保证仪器能在时差很大的软地层中进行慢度测量

2、XMACII 多极子阵列声波测井仪电子线路

XMACII多极子阵列声波测井仪的由数据采集短节和发射控制短节构成其电子线路部分。数据采集短节除了电源模块外,整个电子线路由三块电路板组成:一块CPU模块,

两块DSP采集模块。CPU模块完成与地面系统的数据传输、对声系的控制及数据采集的控制和处理等功能。每块从DSP采集模块包含四个DSP采集通道,每个通道完成对一道声波信号的采集和处理。两块从DSP模块在CPU模块的控制下可同时实现对8道声波信号的采集。发射控制短节根据数据采集短节的命令为发射短节提供发射高压脉冲(如图2-2)。整套仪器设计有贯通线,使得仪器可以与其他仪器进行组合测井。

图2-2 XMACII多极子阵列声波仪器组合

4.3 XMACII多极子阵列声波的使用及注意事项

1、 XMACII多极子阵列声波生产准备(方位刻度)

XMACII接受声系在测量交叉偶极模式是需要方位的。这意味着正交的偶极列需要精确的参考到贮能结构上,必须用4401XB来完成这个功能,且要进行4401XB特有的刻度。测量其方位传感器和XMACII接收声系之间的方位偏移,如果服务表内没有刻度,接收器和4401XB之间的偏移量手工测量并标注到测井图头和工作注释上。

2、XMACII接收器的4401方位(单独的方位设备)

推荐4401直接接在XMACII的电子线路上部。在这种连接下,将水平指示仪放置在XMACII接收部分的标志指示"mark"上,测量并标注出方位仪器和XMACII接收器之间的RB偏移。

3、XMACII方位和其他方位设备

有时XMACII接收器和其他方位或其他成像设备进行组合,这种复杂的方位及调用需要一个更复杂的方位获得超过一种设备的方位。推荐从上到下的仪器串为XMACII-4401-其他方位仪器,服务表将给成像设备所用的适合的4401刻度。用4401的刻度器来测量和

标注出4401标志和XMACII发射部分的偶极调整线之间的RB偏移量。

4、XMACII的自检

由于XMACII新的固件不允许通过下传命令来重显井下增益,因此,下传命令不会导致任何增益及ΔT尖峰改变。如果有任何关于已下传命令的疑问,新的状态表可用于确定井下仪器的状态,图4给出的是新的状态表。

图2-3 XMACⅡ状态表

5、XMACII的模式选择:

XMACⅡ仪器控制和井下固件支持三个subset模式。

1、XMACⅡ subset5:单极ΔT,4个叠加,4个信号,1个仪器子循环。

2、XMACⅡ subset6:单极全波,4个叠加,8个信号,1个仪器子循环;偶极同向全

波,4个叠加,8个信号,1个仪器子循环;单极ΔT,4个叠加,8个信号,1个仪器子循环

3、XMACⅡ subset 10:偶极16个同向及16个交叉全波,4个叠加(32个信号),4

个仪器子循环;单极全波,4个叠加,8个信号,1个仪器子循环;单极ΔT,4个叠加,4个信号,1个仪器子循环。

其中,4个叠加用于提高数据质量,减小在不良井眼条件和/或井壁壁碰撞下

产生的随机噪声。

通过模式选择可以得到以下波形图,单极ΔT波形图(图2-4),全波单极波形图(图2-5),全波偶极XX(YY)波形图(图2-6),同向偶极XX-YY波形(图2-7),交叉偶极XY(YX)波形图(图2-8)。

图2-4 单极ΔT波形图

图2-5 全波单极波形图

图2-6 全波偶极XX(YY)波形图

图2-7 同向偶极XX-YY波形图

图2-8 交叉偶极YX及XY波形图

4.4 应用效果及结论

通过在东北外部市场的测井作业, XMACII多级阵列声波都取得了令人满意的测井资料,且测量的波形信噪比高,波形特征清楚、正确,为进一步的波形处理奠定了良好的基础。

多极子阵列声波测井仪是目前国际上较先进的声波测井仪,是声波测井技术的重大突破,它是把单极、偶极和交叉偶极声波技术结合在一起的新一代测井技术。声波换能器的响应频带较宽,低频响应更好,在井下实现数字化,信号动态范围更大,记录的波形更完整,有利于获得准确的纵波、横波、斯通利波的时差、幅度等参数,特别是在分

析地层速度各向异性方面具有独特的优势。

第5章声波测井流程及注意事项

5.1 声波测井流程

1、生产准备在测井工作中极为重要,没有的生产准备是不可能顺利进行测井的。测井行业是服务性的行业,我们的宗旨是最大限度的提高服务质量,提高客户的满意度,只有在测井过程中顺利进行的情况下,才会有良好的服务质量,才可能有良好的信誉。所以生产准备一定要做好做细才行,声波仪器在车间检验的方法是将仪器接好后放在水槽中,将水槽加满水,向仪器供电,供电到180V左右,检查仪器是否运行正常,测量值是否是57±2us/ft。

2、在生产准备充分的情况下到达井场后,要合理的做好施工前的布置,宣布施工方案,一切就绪后开始测井。

首先,在滑板上组装好仪器串,做下井前做后一遍检查。在仪器下井的过程中操作员应观察测井曲线,作好记录前的准备工作:可适当的调节显示和出图曲线及曲线的显示、出图参数,设置好千米校正值,选择好绘图仪,检查绘图纸和硬盘空间是否够用。下放过程中还应注意遇阻情况。

3、仪器下井后,要着重注意声波仪器的调节,加载服务表后,检查DCT,PCT窗口是否被加载过,若检查无误,向仪器供电,供电到180V左右,进入测井界面,调出补偿声波计算参数窗口,检查首波位置是在正峰还是负峰,将声波信号档位调到合适的位置(一般情况下是在5挡6挡上),调节噪声门槛值,压低噪声,使信号能有很好的同步并咬住首波相应的波峰或波谷。信号调试好后,进行套管值测量,在测量的过程中,应注意观察波形变化,适时的调节声波的接收增益的大小,保证能够咬到首波。测量声波的套管值在套管中测声波的套管数值,一般57±2us/ft,曲线上要拉出两个套管接箍。

4、重复曲线的测量将仪器下放到测量井段的上半部,选取有特征的井段,用合适的测速进行重复曲线的测量,测量记录至少50m重复曲线井段。

5、测量主曲线当仪器下到井底后,作好深度的校正。点击入上提记录,开始测量,在此过程中,按相应的仪器操作规程实施测井,并通知绞车操作手测速,注意观察张力和测速的变化,期间绝对不能超速测量(由于与伽玛并测测速<10m/min。)同时,注意记号,适时的调节千米修正值;注意提醒绞车操作手在井底、电缆接头、套管接头等特殊位置适当的放慢测速。发现曲线跳动、异常和可疑井段,进行重复测量。主曲线测量完毕后,再次测量声波的套管值,要求同上。

6、将声波曲线与以测曲线合并,完成声波测量任务。

5.2 注意事项

测井仪器造价昂贵,制作精密,任何一个部件的损坏都有可能导致其他不可挽回的损失。因此在使用过程中要严格按照标准来进行施工作业。同时要格外注意以下几点:

1、禁止使用任何尖锐物品接触发射、XMACⅡ的接收声系的皮囊部分,上井运输途中以及下井之前都应使用皮囊可靠包覆在声系外壳的皮囊外露部分。

2、使用该仪器测井、调试时必须配接电源适配器(直接连接于马笼头之后)以免损坏电缆。

3、声波仪器的部分电路存在超过400V的高压,仪器通电时请不要直接触及以免发生电击事故。

4、声波测井必须安装一些扶正器,主要是由于其接收窗口的像胶皮囊均是没有任何保护的。在小井眼的井径中,薄的橡胶扶正器用于进行测量居中,防止碰撞的噪声干扰。

5、声波仪器由于其机械强度不够,声波的探头及XMACⅡ声波隔声体在井下更容易受坏损。进行测井过程中要格外注意,高速下放遇阻就可能导致损坏。钻杆传输测井同样需要格外注意,因为仪器根本不能承受哪怕是一部分钻杆吊的重量。用化学放射性源的任何仪器(CN、ZDL)不能接在任何声波仪器(包括XMACⅡ)的下面。

6、仪器的发射及接收部分严禁在太阳下暴晒,特别是XMACⅡ发射和接收部分的皮囊下注有硅油,阳光直射极易导致硅油的热涨,将皮囊涨破。因此要避免阳光直射和高温。仪器在测井完毕(尤其是井比较深或温度较高时),起出井口时井口工要及时检查皮囊,若皮囊鼓起,应及时拧开注油嘴进行放气,在测井结束后还要对硅油进行循环。

参考文献

[1] 楚泽函·声波测井原理[M].北京:石油工业出版社,1987

[2] 洪有密·测井原理与综合解释[M].北京:中国石油大学出版

[3] SL6680数字声波操作维修手册

[4] 章成广.声波测井原理及应用.石油工业出版社.2009

[5] 胡澍.地球物理测井仪器[M].北京:石油工业出版社,1991

[6] 董经利.多极子阵列声波测井资料处理及应用.测井技术,2009,33 (3)

Geolog-全波列声波测井中文手册-

Geolog软件技术手册Full Sonic Wave Processing -SWB 帕拉代姆公司北京代表处 2006年12月

1、综述................................................................................................................................................................................ - 1 - 1.1 预备知识..................................................................................................................................................................... - 1 - 1.2数据 ............................................................................................................................................................................... - 1 - 2、阵列声波全波形........................................................................................................................................................... - 2 - 2.1数据准备 ...................................................................................................................................................................... - 3 - 2.1.1查看/创建一个声波列阵工具模版.......................................................................................................... - 3 - 2.1.2 练习指导2-创建其他波形属性.............................................................................................................. - 5 - 2.1.3波形分解.......................................................................................................................................................... - 6 - 2.1.4深度转换.......................................................................................................................................................... - 7 - 2.2 处理 .............................................................................................................................................................................. - 8 - 2.2.1数据分析......................................................................................................................................................... - 8 - 2.2.2去噪................................................................................................................................................................ - 11 - 2.2.3 设计滤波器................................................................................................................................................. - 17 - 2.2.4 振幅恢复 ..................................................................................................................................................... - 19 - 2.3阵列声波处理.......................................................................................................................................................... - 20 - 2.3.1处理模块简介 ............................................................................................................................................. - 20 - 2.3.2偶极波形处理 ............................................................................................................................................. - 21 - 2.3.3 单极波形处理 ............................................................................................................................................ - 23 - 2.3.4 拾取标志波至 ............................................................................................................................................ - 26 - 2.4后期处理 (32) 2.4.1综述 (32) 2.4.2频散校正 (33) 2.4.3 传播时间叠加 (36) 2.4.4 相关性显示 (38) 2.4.5 阵列声波重处理 (39) 3、机械性质 (44) 3.1综述 (44) 3.2 计算动力学弹性性质 (44) 附录I-快速运行 (46) 附录II-频散校正讨论 (47)

仪器原理

1.侧向测井(电流聚焦测井)采用电屏蔽方法,使主电流聚焦后水平流入地层,减小井眼和围岩影响。主电流线沿井轴径向成饼状流入地层。 2.理想的侧向测井组合是双侧向加微球形聚焦,可较准确地确定地层电阻率、冲洗带电阻率和侵入带直径,是计算地层含油饱和度、判断地层含油性的重要参数。 3.侧向测井电极系的主电极A0位于电极系中心,两端有屏蔽电极A1、A2,呈对称排列。 七侧向电极系主电极A0,屏蔽电极A1、A2,两对监督电极M1N1和M2N2;Um1=Un1或Um2=Un2,使主电流沿水平方向流入地层。 七侧向四个参数:①电极系长度: 210A A L =影响侧向测井的径向探测深度。电极系长度越大,探测越深;②电极距:21O O L =影响纵向分辨率。L 越小纵向分层能力越强。③分布比:L L s /0=影响电流层的形状,一般取s 为3左右较适宜。④聚焦系数:L L L q /)0(-= 1-=s q 影响电流层的形状。 双侧向电极系由9个电极组成,第二屏蔽电极A1’、A2’有着双重的作用。 4. 如何保证屏流和主电流同极性? 用同一电流源供给屏流和主电流。屏流大于主电流,在测井过程中屏流是浮动的。所以,屏流要由平衡放大电路输出的信号加以调制后通过功率放大后加到屏蔽电极上;二是用跟踪主电流来产生屏流,或用跟踪屏流来产生主电流,这种方式用在双侧向仪器中。 5.双侧向测井仪器中,增加屏蔽电极的长度可以加大聚焦能力,而增加仪器探测深度。相反,在屏蔽电极两端设置回流电极,可使主电极和屏流流入地层的深度变浅,降低探测深度。 6.侧向测井仪器工作方式:恒流式(高阻地层),恒压式(低阻地层),自由式(1229、JSC801)和恒功率式(DLT-E )。 恒流式:保持主电流恒定,测量主电极(通常用监督电极M1或M2代替)至远处电极N 之间的电位差U 。地层的电阻率越高测量电压信号越大,测量误差越小。 恒压式:保持主电极电位恒定,测量主电流。地层的电阻率越低测量电流信号越大,测量误差越小。 自由式:电流和电压按一定规律浮动,同时测量电流、电压两个量,可以得到较宽的测量动态范围。 恒功率式或可控功率式:测量过程中使最高和最低电阻率的两个极点保持功率(IU 乘积)不变,让测量电压和电流保持在仪器可测量的范围之内(不被限幅)。比自由式仪器有更宽的测量动态范围。 7.1229双侧向测井仪采用屏流主动式供电,即先有屏流后又主电流,用屏流来激励产生主电流。工作方式为自由式,为提高仪器测量动态范围用U2D 来控制深、浅屏流、屏压的变化幅度在于此。 频分双侧向供电式,fS = 4fD ,深、浅侧向供电频率分别为32Hz 和128Hz 。使深、浅侧向两个系统相对独立地控制和测量。

声波测井仪器的原理及应用

声波测井仪器的原理及应用 单位:胜利测井四分公司 姓名:王玉庆 日期:2011年7月

摘要 声波测井是石油勘探中专业性很强的一个领域。它是一门多学科的应用技术,已经成为油田勘探、储量评估、油气开采等方面不可缺少的工具。声波速度测井简称声速测井是利用声波在岩石中传播的速度来研究钻井剖面的一类物探方法,其方法是测量滑行波通过地层传播的时差 t(声速的倒数,单位us/ft)。目前主要用以估算孔隙度、判断气层和研究岩性等方面,是主要测井方法之一。 数字声波测井仪,其中包括66667声波数字化通用短节和6680声波探头2部分。能完成声波时差测井和水泥胶结测井,能与SL6000型地面系统和进口的5700型地面系统相配接。 正交多极子阵列声波测井(XMACII)将新一代的偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。当偶极子声源振动时,使井壁产生扰动,形成轻微的跷曲,在地层中直接激发出横波和纵波,根据正交多极子阵列声波资料得出的纵横、波速度比可识别与含气有关的幅度异常。 关键词:数字化;声波时差;声波变密度;阵列声波;声波全波列;

目录 第1章前言 (1) 第2章岩石的声学特性 (2) 第3章数字声波测井原理及应用 (3) 3.1 数字声波测井原理 (3) 3.2仪器的工作模式 (5) 3.3时差计算 (5) 3.4 数字声波测井仪器的性能 (6) 3.5 SL6680测井仪器的不足 (7) 3.6数字声波仪器小结 (7) 第4章正交多极子阵列声波测井 (8) 4.1 XMACII多极子阵列声波测井原理 (8) 4.2 XMACII多极子阵列声波仪器组成 (9) 4.3 XMACII多极子阵列声波的使用及注意事项 (10) 4.4 应用效果及结论 (14) 第5章声波测井流程及注意事项 (15) 5.1 声波测井流程 (15) 5.2 注意事项 (16) 参考文献 (17)

2006-考试题(测井原理与综合解释)答案

2006 一、名称解释(每题3分,共15分) 康普顿效应:康普顿效应:在康普顿效应中,伽马光子与原子的核外电子发生非弹性碰撞,一部分能量转移给电子,使它脱离原子成为反冲电子,而散射光子的能量和运动方向发生变化。 挖掘效应:具有相同含氢指数的岩石,由于含有天然气而使得用中子测井测得的孔隙度比实际的含氢指数要小的现象。 地层因素:岩石电阻率与该岩石中所含水的电阻率的比值就是岩石的地层因素(或相对电阻率)。该比值只与岩样的孔隙度、胶结情况和孔隙形状有关,而与孔隙中所含水的电阻率无关。 电极系互换原理:把电极系中的电极和地面电极功能互换(原供电电极改为测量电极,原测量电极改为供电电极),各电极相对位置不变,所测得的视电阻率和原来的完全相同,这就叫电极系互换原理。 含油气孔隙度:油气体积占岩石体积的百分数(V油气/V岩石)。 体积物理模型:见参考书46 周波跳跃:周波跳跃是指声波时差比邻近的值高出一个或几个波长,而出现周期性增大的现象。 横向各项异性:是指在沿井轴方向和与井轴垂直方向(水平方向)上,地层的声波速度、弹性力学性质有差异,而在与该轴垂直的平面(水平面)上,在各个方向上的声波速度和弹性力学性质相同,就是横向各项异性。 二、选择题(每题1分,共12分):下面每题有4个答案,选择正确的答案填入括号中。 1、岩性密度测井主要利用伽马射线与地层之间的(B)作用来进行测量的。 A:电子对效应与康普顿效应B:光电效应与康普顿效应C:康普顿效应与俘获效应 D:光电效应与弹性散射 2、对于普通电阻率测井,电极系的电极距增大,(B) A:其探测深度会增大,纵向分辨率会增高。 B:其探测深度会增大,纵向分辨率会降低。 C:其探测深度会减小,纵向分辨率会增高。 D:其探测深度会减小,纵向分辨率会降低。 3、利用中子测井曲线进行读值,下面哪句话表述不正确( D )。 A:砂岩的孔隙度总是大于它的真孔隙度。 B:白云岩的孔隙度总是小于它的真孔隙度。 C:石灰岩的孔隙度总是等于它的真孔隙度。 D:中子测井读值受岩性的影响较大,不同岩性的地层均需校正才能得到较准确的地层孔隙度值。 4、在相同情况下,含泥质地层的自然电位负异常幅度( A ) A:低于纯砂岩地层的自然电位负异常幅度。 B:高于纯砂岩地层的自然电位负异常幅度。 C:与纯砂岩地层的自然电位负异常幅度相等。 D:可能高于、也可能低于纯砂岩地层的自然电位负异常幅度。 5、自然伽马能谱测井是根据(A)的特征伽马射线的强度测定地层中铀的含量的。 A:214Bi B:235U C:214Pb D:208TI

《测井仪器原理》习题答案

《测井仪器》习题答案 二、试画出2435补偿中子仪器原理框图,并说明各部分的作用。(10分) 高压电源:输出+1150V直流高压供探测器。 低压电源:输出+24V直流低压供给个单元电路。 前置放大器:将探测器输出的微伏级脉冲信号放大到可处理的电平。 鉴别器:从背景噪声中取出信号脉冲。 分频器:使长短计数道分别将计数减少到原来的1/4和1/6,避免了高计数率情况下,因电缆充电和衰减影响会造成信号首尾重叠而产生漏记。 缆芯驱动器:将脉冲信号功率放大后送上测井电缆。 三、试画出CNT-G补偿中子仪器原理框图,并说明各部分的功能。(10分)

低压电源:输出±5V 、±15V 和+24V。 高压电源:输出四路直流高压(可调)供探测器使用。 测量电路:由探测器、前置放大器、鉴别器、分频器构成,其作用是:将探测到的中子射线转换为脉冲信号。 计数器:脉冲计数。 移位寄存器:实现计数结果的并—串转换。 仪器总线接口:实现与遥测短节的命令/数据通讯。 诊断电路:用于仪器测试。 四、试画出CNT-G补偿中子仪器中的高压电源电路框图。(10分)

五、试述CNT-G补偿中子仪器中的低压电源的稳压原理。(10分) CNT-G补偿中子仪器中低压电源是一个开关型稳压电源,它通过利用误差电压的大小改变控制串联开关通断的矩形波的占空比,从而改变串联开关的接通时间而调节电源的输出电压,使其保持稳定输出+24V。 六、LDT岩性密度测井仪器为什么要进行稳谱?怎样进行稳谱?(10分) 由于LDT岩性密度测井仪器不但要探测反应来自地层伽马射线强度的计数率,同时还要根据伽马射线的能量进行分开计数,因此对伽马射线产生的脉冲幅度进行放大必须是固定的放大倍数,因而在仪器测量过程中需要确保放大倍数的稳定,这就是稳谱。仪器采用一个固定的伽马源产生一个能谱峰,然后通过在该峰中心位置两侧分别开窗计数,然后根据这两个计数率的差异来调整伽马探测器的高压以稳定探测器的放大倍数。 七、试画出LDT岩性密度测井仪器原理框图,并说明各部分的功能。(10分) 仪器总体由地面仪器、井下仪器和连接它们的CCC短节组成。 地面仪器:控制整个系统的正常运行。 CCC短节在CSU和NSC-E/PGD-G之间。它向上传输下井仪器获得的数据,向下传输来自地面的指令 井下仪器则完成信号的测量及向地面传送的任务。 八、试画出LDT岩性密度测井仪器接口电路组成框图,并说明各混合电路功能。(10 分)

测井仪器方法及原理重点

精品课程作业: 第一章双测向测井 习题一 1.为什么要测量地层的电阻率? 2.测量地层电阻率的基本公式是什么? 3.普通电阻率测井测量地层电阻率要受到那些因素的影响? 4.聚焦式电阻率测井是如何实现对主电流聚焦?如何判断主电流处于聚焦 状态? 5.画出双测向电极系,说明各电极的名称及作用。 6.为什么双测向的回流电极B和参考电极N要放在无限远处?“无限远处” 的含义是什么? 7.为什么说监控回路是一个负反馈系统?系统的增益是否越高越好? 8.为什么说浅屛流源是一个受控的电压源? 9.试导出浅屛流源带通滤波器A3的传递函数。 10.已知该带通滤波器的中心频率为128Hz,求带通宽度、 11.为什么说深测向的屛流源是一个受控的电流源。 12.监控回路由几级电路组成?各起何作用? 13.试画出电流检测电路的原理框图,说明各单元的功用? 14.双测向测井仪为什么要选用两种工作频率? 15.测量地层冲洗带电阻率的意义是什么? 16.和长电极距的电阻率测井方法相比,微电阻率测井方法有什么异同? 17.为了模拟冲洗带电阻率R xo为1000Ω·m和31.7Ω·m,计算出微球形聚 焦测井仪的相应刻度电阻值R(K=0.041m)。 18.为了测量地层真电阻率,应当选用何种电极系? 19.恒流工作方式有什么优点? 20.求商工作方式有什么有缺点? 21.给定地层电阻率变化范围为0.5~5000Ω·m,电极系常数为0.8m,测量 误差δ为5%,屛主流比n为103,试计算仪器参数:G、G v、G I、W0max、W lmax、r、E(用求商式)。 第二章感应测井 习题二 1.在麦克斯韦方程组中,忽略了介质极化的影响,试分析这种做法的合理 性。 2.已知感应测井的视电导率韦500(Ms/m),按感应测井公式计算地层的真 电导率,要求相对误差小于1%。 3.单元环的物理意义是什么? 4.相敏检波器可以从感应测井信号中检出有用信号,那么,为什么在设计 线圈系时好要把信噪比作为一个重要的设计指标? 5.画出1503双感应测井仪深感应部分的电路原理框图,说明各部分电路功 能。 6.证明:在发射线圈两端并接谐振电容可以提高发射电流强度。 7.补偿刻度法的应用范围σ<X L,其中σ为电导率刻度值,X L为刻度环感抗, 用阻抗圆图的方法证明之。 8.在线圈系对称的条件下,试导出五因子褶积滤波因子的计算公式。

测井仪器认识实验报告

《测井方法原理》实验报告 一、实验目的 认识一种型号测井系统组成;结合组合测井仪器的操作规范,理解仪器操作要领。分小组进行仪器操作实验,确保学生学习效果。通过本实验教学使学生更具体、生动地理解测井基本方法原理及仪器实现,使学生初步掌握组合测井仪器的一般操作方法和注意事项。 二、实验内容 (一)典型测井仪器简介 现代常规测井方法按照测井系列可分为岩性测井系列、孔隙度测井系列、电阻率测井系列等三大类。 岩性测井系列包括自然电位、自然伽马、井径测井。 孔隙度测井系列包括声波时差测井、密度测井、中子测井。 电阻率测井系列包括深、中、浅探测的普通视电阻率测井、侧向测井以及感应测井等。 常用测井仪器原理介绍: 常用测井仪器探管照片 1.岩性测井系列 自然电位测井:因为井内存在扩散电动势和吸附电动势,在进行自然电位测井时,将测量点击N放在地面,用电缆将M电极送至井下,提升M电极沿井轴测量自然电位

随井深的变化曲线,用以区别岩性。 自然伽马测井:井下仪器在井内由下向上提升时,来自岩层的自然伽马射线穿过井内泥浆和仪器外壳进入探测器。探测器将接收到的一连串伽马射线转换成一个个的电脉冲,然后经井下放大器加以放大,由电缆送到地面仪器,地面仪器把每分钟接收到的电脉冲数(计数率)转变为与其成比例的电位差进行记录。 井径测井:将一起下到预计的深度上,然后通过一定的方式打开井径腿,于是,互成90°的四个井径腿便在弹簧的作用下向外伸张,其末端紧贴井壁。随着一起的向外提升,井径腿就会由于井径的变化而发生张缩,并带动连杆做上下运动,将连杆同一个电位器的滑动端相连,则井径的变化便可转换成电阻的变化。给该滑动端通以一定强度的电流,滑动电阻的某一固定端与滑动端之间的电位差便可间接反映井径的大小。 2.孔隙度测井系列 声波时差测井:电子线路每隔一定的时间给发射换能器一次强的脉冲电流,使换能器晶体受到激发而产生振动,从而引起周围介质质点发生振动,产生向井内泥浆及岩层中传播声波。由于泥浆声速v1与地层声速v2不同,所以在泥浆和井壁上将发生声波反射和折射,故必有以临界角i方向入射到井壁面上的声波,折射产生沿井壁在地层中传播的滑行波。该滑行波必然引起泥浆中质点振动(形成首波),并先后传到两个接收器Rl、R2上,从而可测量出地层的声波速度。 密度测井:由于地层密度不同,对伽马射线的散射和吸收能力不同,探测器接收到的散射伽马射线计数率也就不同。在离伽马源距离为L处,探测器所接收到的散射伽马射线强度N 就是介质体积密度的函数。在源距选定后,对仪器进行刻度,找到散射伽马射线强度N和介质体积密度ρb的定量关系,则记录散射伽马射线强度(记数率)就可以测得地层的密度。 中子测井:探测探测器周围快中子变为热中子之前的超热中子密度或直接探测热中子密度,以反映地层的中子减速特性,进而计算储层孔隙度和对储集层进行评价。 3.电阻率测井系列 普通视电阻率测井:通过供电线路上的电极A、B供给电流,在井内建立电场,然后测量在测量回路上电极M、N的电位差ΔUMN,所测ΔUMN大小取决于周围介质电阻率。ΔUMN的变化则反映了沿井孔(筒)剖面上岩石电阻率的变化。 侧向测井:主电极发车主电流,屏蔽电极发出与主电流相同极性的屏蔽电流,并使他们处于等电位状态。由于主电流被屏蔽电流屏蔽,沿水平方向呈圆盘发散状流入地层。 感应测井:把装有发射线圈T和接收线圈R的感应测井探管放入井中,给发射线圈通交流电,在发射线圈周围地层中产生交变磁场Φ1,这个交变磁场通过地层,在地层中感应出电流I1,此电流环绕井轴流动,称为涡流。涡流在地层中流动又产生

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。 储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。 碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。 ?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层

?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。 ?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型 常规测井在孔隙型/裂缝型碳酸盐岩中的特征(简答): 孔隙型储集层:在曲线形状方面表现为圆滑的“U”字形,如电阻率呈“U”字形降低,这与裂缝发育段的尖刺状电阻率起伏形成强烈的反差;在测井值方面表现为二高两低,即时差、中子孔隙度增高,电阻率和岩石体积密度降低。特点:曲线光滑,单层明显是以小孔为主的储层的主要特征,分层明显,表面看较好。 裂缝型储集层: 电阻率测井响应:微电极测井曲线在裂缝发育段呈现明显的正幅度差,且常伴有显著的锯齿

声波测井技术在岩土工程勘察中应用

现代物业?新建设 2012年第11卷第9期 浅谈声波测井技术在岩土工程勘察中的应用 张建宏 (新疆新地勘岩土工程勘察设计有限公司,新疆 乌鲁木齐 830002)摘 要:伴随着不断发展的数字测井技术,在测井当中,声速测井已经成为重要的方式之一。对岩体工程勘察中声波测井技术的应用进行了分析。 关键词:岩土工程;勘察;声波测井 中图分类号:[P258] 文献标识码:A 文章编号:1671-8089(2012)09-0047-02 声波测井主要分为声幅测井与声波测井两大类。一般来说,我们说的声波测井指的是对地层当中声波传播速度进行测量。 1 声波测井 在不同的介质当中,声波传播会有明显的差别,岩石当中的裂缝、风化以及溶洞对声波速度都有影响,因此对岩层物性特征的了解可以通过声波测试来进行。而声速测井测的是地层中声波传播的时间。 声波测井一般是对纵波速度进行测量,声波耦合通过仪器发射晶体声波,然后通过仪器接收晶体声波。由于接收晶体与发射晶体之间存在一定距离,所以传播速度与所测得的声波传播时差成反比。根据实际需要,也可以将传播时差换算成声波速度,然后再与其余的物理参数进行结合,也能够将横波速度计算出来,从而对弹性参数以及岩性的划分进行计算,这样更有利于岩土工程勘察工作的进一步开展。 2 岩石中声波的传播 我们所研究的是不同地质年代在地壳中的矿物成分以及结构各异的岩石,并且在岩石当中还存在裂隙与孔隙,但是它们的分布、大小、形状并非固定,而这些因素对岩石的物理性质都有不同程度的影响。岩石的声速指的是在岩石当中声波的传播速度,理论支持与实践证明:随着岩石密度的不断增大,声波速度也会随着提升。 2.1 岩性 如果岩石的岩性不同,那么声波传播速度也会有明显的区别。岩性不同,岩石密度就存在差异,一般来说,岩石密度从大到小依次为:石灰岩→砂岩→泥岩,而声波速度也会随着密度的减少而降低。 2.2 岩石结构 如果岩石的胶结性较差、较为疏松,声波速度也会降低;反之,声波速度则会升高。对于声波速度来说,岩石当中存在的溶洞与裂隙等也会产生一定程度的影响。 2.3 岩石孔隙间的储集物 岩石声波速度也会受到岩石孔隙当中不同储集物的影响。 2.4 地质时代以及地层埋藏深度 声波在地层当中的传播会受到地层时代以及地层埋藏实际深度的影响。当地质时代与岩性相同,那么埋藏的深度越大,声波传播的速度也就越大;反之,埋藏的深度越小,那么声波速度也会随着减小。在岩性相同的情况下,相比新地层,老地层的声波传播速度更快,这主要是由于在漫长的地质年代中,老地层受到了覆盖岩层长期性压实产生的结果。此外,由于长期地壳运动,岩石骨架颗粒的排列也会越来越紧,其弹性与密度都会不同程度地增加。 3 声波测井的应用范围 3.1 钻孔岩性的划分 由于不同的岩层所具有的声波传播速度是不同的。所以,地层岩性可以通过声速测井来进行判断。在钻孔岩性的划分当中,也可以结合自然伽玛、电阻率等有关的参数。 3.2 岩层风化、氧化带的确定 由于受到了氧化与风化,岩石的胶结程度会受到不同程度的影响,甚至会出现破碎,从而导致强度减弱、密度减小、波速减小,将完整的岩石声波速度与所测得的声波速度进行比较就会发现。岩石的疏松与破碎的程度能够通过波速的减少量来判断,因此对岩层的氧化带、风化都能够加以确定。 Engineering Construction 工程施工 – 47 –

测井方法原理全面.doc

测井方法原理 一名词解释 R0孔隙中100%含水时的地层电阻率;R w地层水电阻率 地层因素:F=R0 R w 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势 摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要

的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。 一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。

声波测井技术在岩土工程勘察中的应用

浅谈声波测井技术在岩土工程勘察中的应用摘要:本文首先论述了声速测井的测试原理,进而论述了影响岩石声波速度的主要因素,第三以工程实例,利用声波测井技术得到了评价岩土动力学特征的参数,既校正地解释岩性和岩层,还反映了岩土层的相对强度,为建筑设计提供一定的参考依据;最后,文章还阐述了当前声波测井技术在岩土工程勘察中存在的不足之处,以供参考。 关键词:声波测井技术;岩土工程勘察;应用 abstract: this paper first discusses the velocity measurement principles of well logging, and then discusses the influence of the main factors rock acoustic velocity, and the third by engineering example, the acoustic logging technology got the evaluation of the parameters of the dynamic characteristics of rock, both correction to explain the lithology and rocks, but also reflect the relative strength of geotechnical layer, for building design provides some reference basis; finally, the paper also expounds the current acoustic logging technology in geotechnical engineering investigation in existence deficiency, for reference. keywords: acoustic logging technology; geotechnical engineering; application 中图分类号:tu74文献标识码:a 文章编号:

声波变密度测井技术及其应用

声波变密度测井技术及其应用 目前油田固井质量检查的主要方法是声波幅度测井和声波变密度测井。声波变密度测井是由声幅测井发展而来的,其原理是利用水泥和泥浆(或水)声阻抗的较大差异对沿套管轴向传播的声波的衰减影响,来反映水泥与套管间、套管与地层的胶结质量。井下仪器主要包括声系和电子线路两部分。声系的功能是为了进行声波测井,它包括发射探头和接收探头,仪器的源距有两种,3ft和5ft,3ft的用于声幅测量,5ft的用于变密度测量。电子线路可以挂接连续测斜仪、高分辨率声波、双侧向和双感应等探头,实现多探头组合测井。 一、声波变密度下井仪 测井仪的声系由两个压电晶体组成,一个发射,一个接收。声源的工作频率为20KHz,重复频率15-20Hz。测井时,声源发出的声脉冲在井内各个方向传播,当传播到两种介质的交界面时,会发生声波的反射和折射。 井下仪电路主要由4个单元电路组成,即逻辑单元、接收单元、低压电源及信号衰减单元、发射控制及换档脉冲检测单元。逻辑信号首先进入半峰值再生电路,检测出的逻辑信号进入逻辑形成电路,产生发射、接收直流逻辑方波,并形成同步脉冲。同步脉冲与发射逻辑共同进入逻辑控制电路,产生各种控制信号,触发脉冲送发射电路,经换能器转换成声波信号,经地层传播,被接收换能器转换成电信号而送入预放级,经隔离选择,控制晶体发射、接收,然后接收信号经增益控制、发射干扰抑制等处理,最后与发射标志脉冲经电缆传输到地面。 二、声波变密度测井能够解决的问题 1、全波列分析 全波列测井包含声波的速度、幅度、频率等信息,我们主要对前12-14个波的幅度及到达时间进行分析。一般情况下,前3个波与套管波有关,反映套管与水泥环的胶结状况;第4-6条相线与水泥环中传播的声波信号有关,它反映水泥环与地层的胶结状况。 2、声波变密度测井检查固井质量 (1)套管外无水泥。这种情况下,套管波反射能力很强,地层波较弱或没有,变密度的相线差别不大,基本均匀分布,套管接箍明显,固井声幅为高幅值。 (2)水泥与套管和地层胶结良好。这种情况下,由于套管和固结水泥的差别较小,声波大量进入地层,因而套管波很弱,地层波很强,固井声幅为低幅值。 (3)水泥仅与套管胶结良好,与地层胶结差。这种情况声波不在套管界面反射而是进入水泥环,水泥环对声波能量衰减很大,传给地层的声波能量很小,所以套管波和地层波都很弱,但固井声幅显示低幅值。 (4)水泥与套管胶结一般。这种情况下套管把大部分声波能量反射回来,只有小部分声波能量进入地层,套管波和地层波都有一定的幅度。 3、声波变密度测井的优点 (1)能够对即套管与水泥和水泥与地层两个界面进行胶结状况的评价。 (2)施工效率提高。采用组合测井方式,缩短了作业时间,降低了劳动强度,缩短了完井周期。

测井原理与应用

测井原理与应用 测井技术:应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找并监测油气层开发的一门应用技术。Well drilling 测井:矿场地球物理物探:地面地球物理 地层地球物理特性:1、电化学特性2、导电特性3、介电特性4、声学特性5、核特性6、磁特性7、热特性 特性随岩层的岩性、物性及所含流体特性的不同而变化。 测井方法:物理方法:1、电法测井2、声波测井3、核测井4、生产测井 测井用途: 一、评价油气层;(1)定性分析,划分渗透层、裂缝带,地层对比 地层对比:在横向上进行地层追踪的过程 (2)定量计算参数,储集层是具有一定的孔隙度和渗透率的地层(3)确定油气层的有效厚度(4)预测产能(5)研究构造和沉积环境 二、油藏描述;研究油气藏的生储盖条件,储量计算; 三、油气田开发的问题;(1)剩余油的确定及分布预测(2)开发井网调整措施研究(3)水淹层识别及水淹级别的判别 四、油气井工程中的问题;(1)地层压力,岩石强度,井壁稳定,固井质量(2)评价压裂酸化和封堵效果(3)注采井的流体动态监测(4)随钻实现了地质导向,消除了以往的盲目钻井(5)检查套管损伤 五、其他作用 电法测井:以研究岩石及其孔隙流体的导电性,介电特性及电化学特性为基础的一大类测井方法。 电化学特性:自然电位测井(SP) 介电特性:电磁波传播测井(EPT) 导电特性:双侧向电阻率测井(DLL)=聚焦测井、微球开聚焦电阻率测井(MSFL)、感应测井(DIL)、阵列感应式成像测井(AIT)、随钻电阻率测井(LWD)、套管电阻率测井(CHFR)、方位电阻率测井(ARI)、地层倾角测井(SHDT)、地层微电阻率扫描测井(FMS)井径曲线(CAL)钻头直径(BITS) 自然电位:井中自然电场产生的电位

相关文档
最新文档