2021-2022年高二2月月考数学理试题
2021-2022年高二数学第八次月考试题理

2021-2022年高二数学第八次月考试题理一、选择题(本大题共12小题,每小题5分,共60分)1、已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0. 023, 则P(-2≤ξ≤2)=( )A. 0.477B. 0.628C. 0.977D.0.9542、设服从二项分布的随机变量X 的期望和方差分别是2.4和1.44,则二项分布的参数的值为( ) A . B . C . D .3、下列说法错误的是( )A. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高B. 在线性回归分析中,回归直线不一定过样本点的中心C. 在回归分析中, 为0.98的模型比为0.80的模型拟合的效果好D. 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系 4、极坐标方程()()()100ρθπρ--=≥表示的图形是( )A. 两个圆B. 两条直线C. 一个圆和一条射线D. 一条直线和一条射线 5、以下四个命题,其中正确的个数为( )①由独立性检验可知,有的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程中,当解释变量每增加一个单位时,预报变量平均增加0.2个单位; ④对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度越大. A. 1 B. 2 C. 3 D. 4 6、在极坐标系中,点(2,)到直线的距离为( ) A .4 B .3 C .2 D .17、若是离散型随机变量,1221(),()33P X x P X x ====,且,已知,,则的值为( ) A . B. C . D.8、一个三位自然数的百位,十位,个位上的数字依次为,当且仅当且时称为“凹数”.若,且互不相同,任取一个三位数,则它为“凹数”的概率是( )A .B .C .D . 9、已知的展开式中的系数为,则 ( )A.-4B.-3C.-2D.-110、一个电路如图所示,A 、B 、C、D 、E 、F 为6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是( )A .B .C .D .11、某宾馆安排五人入住3个房间,每个房间至少住1人,且不能住同一房间,则不同的安排方法有( )种A. 64B. 84C. 114D. 14412、抛一枚均匀硬币,正反每面出现的概率都是,反复这样投掷,数列定义如下:a n n n =-⎧⎨⎪⎩⎪11,第次投掷出现正面,第次投掷出现反面,若)(...*21N n a a a S n n ∈+++=,则事件“”的概率是( )A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分)13、直线(为参数)的倾斜角为 14、是曲线上任意一点,则的最大值是 15、随机变量的分布列为()(),1,2,3,4.1cP X k k c k k ===+为常数, 则的值为16、位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P 移动5次后位于点的概率为 三、解答题(本大题共6小题,共70分)17、(10分)为考察某种药物预防疾病的效果,进行动物试验,调查了105个样本,统计结果为:服药的共有55个样本,服药但患病的仍有10个样本,没有服药且未患病的有30个样本. (1)根据所给样本数据完成2×2列联表中的数据; (2)请问能有多大把握认为药物有效? 18、(12分)已知某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:(1)画出散点图;(2)根据如下的参考公式与参考数据,求利润额y 与销售额x 之间的线性回归方程;(参考公式:1221,ni ii nii x y nxyb a y bx xnx ==-==--∑∑,其中:)(3)若该公司还有一个零售店某月销售额为10千万元,试估计它的利润额是多少?19、(12分)在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,点的极坐标为,点的极坐标为,曲线.(1)求曲线和直线的极坐标方程;(2)过点的射线交曲线于点,交直线于点,若,求射线所在直线的直角坐标方程.20、(12分)在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(Ⅰ)求曲线的直角坐标方程,并指出其表示何种曲线;(Ⅱ)设直线与曲线交于两点,若点的直角坐标为,试求当时,的值. 21、(12分)有甲、乙两个盒子,甲盒子中有8张卡片,其中2张写有数字0, 3张写有数字1,3张写有数字2;乙盒子中有8张卡片,其中3张写有数字0,2张写有数字1,3张写有数字2.(1)如果从甲盒子中取2张卡片,从乙盒中取1张卡片,那么取出的3张卡片都写有1的概率是多少?(2)如果从甲、乙两个盒子中各取1张卡片,设取出的两张卡片数字之和为X ,求X 的分布列. 22.(12分)因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施.若实施方案一,预计第一年可以使出口额恢复到危机前的1.0倍、0.9倍、0.8倍的概率分别为0.3、0.3、0.4;第二年可以使出口额为第一年的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使出口额恢复到危机前的1.2倍、l.0倍、0.8倍的概率分别为0.2、0.3、0.5;第二年可以使出口额为第一年的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立.令表示方案实施两年后出口额达到危机前的倍数. (Ⅰ)写出、的分布列;(Ⅱ)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为10万元、15万元、20万元,问实施哪种方案的平均利润更大. 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBBCBDCADBCA二、填空题(本大题共4小题,每小题5分,共20分)13. 14、36 15. 16.三、解答题(本大题共6小题,共70分)17、解:(1)解依据题意得,服药但没有病的45人,没有服药且患病的20可列下列2×2联表患病不患病合计服药 10 45 55没服药 20 30 50合计 30 75 105 (2)假设服药和患病没有关系,则Χ2的观测值应该很小,而Χ2==6.109.6.109>5.024,由独立性检验临界值表可以得出,有97.5%的把握药物有效.18、【答案】(1)散点图见解析;(2);(3).试题解析:(1)散点图(2)由已知数据计算得:,1221511256 3.40.5,20056653.40.560.4ni iiniix y xybx xa==--⨯⨯===-⨯⨯-=-⨯=∑∑则线性回归方程为(3)将x=10代入线性回归方程中得到(千万元)考点:回归分析及其应用.19、【答案】(1),;(2).试题解析:(1)点,的直角坐标分别为,,所以直线的极坐标方程为;曲线化为极坐标为(2)设射线,代入曲线得,代入直线得:依题意得32cos2tan3sinααα⋅=⇒=.))()()(()(2dbcadcbabcadn++++-所以射线所在直线的直角坐标方程为20、【答案】(Ⅰ)曲线:,可以化为,因此,曲线的直角坐标方程为它表示以为圆心、为半径的圆.为参数)代入中得设两个实数根为,则两点所对应的参数为,则,21、【答案】(1)取出3张卡片都写有1的概率为=.(2)X所有可能取的值为0,1,2,3,4.P(X=0)===,P(X=1)=+=,P(X=2)=++=,P(X=3)==,P(X=4)==.∴X的概率分布为:22、【答案】(Ⅰ)的所有取值为0.8,0.9,1.0,1.125,1.25, 其分布列为:0.8 0.9 1.0 1.125 1.25P 0.2 0.15 0.35 0.15 0.15的所有取值为0.8,0.96,1.0,1,2,1.44,其分布列为 0.8 0.96 1.0 1.2 1.44 P0.3 0.20.180.240.08(2)方案一、方案二的预计利润为、,则 10 15 20 P 0.35 0.350.3∴实施方案一的平均利润更大.27777 6C81 沁29925 74E5 瓥36091 8CFB 賻9(22057 5629 嘩x38493 965D 陝30902 78B6 碶40641 9EC1 黁922950 59A6 妦21972 55D4 嗔38324 95B4 閴101520 P0. 5 0.180.32。
2021-2022年高二上学期第一次月考数学(理)试题 含答案

D CBAOyxxx 第一学期高二第一次月考2021-2022年高二上学期第一次月考数学(理)试题含答案一、选择题:(将你认为正确的答案填在答卷的表格内,每题有且只有一个正确选项)1.已知集合M={0,1,2,3,4},N={1,3,5},P=M ,则P 的子集共有:A .2个B .4个C .6个D .8个2.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。
若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是: (A )4(B )5(C )6(D )73.已知函数f (x )=。
若f(a)+f(1)=0,则实数a 的值等于: A. -3 B. -1 C. 1 D. 34.设向量则下列结论中正确的是: A. B. C. D. 垂直5、已知在上是减函数,在上是增函数,则的值是: A 、 B 、6 C 、 D 、12 6.如图所示,ABCD 是一平面图形的水平 放置的斜二侧直观图。
在斜二侧直观图中, ABCD 是一直角梯形,A B ∥CD ,, 且BC 与轴平行。
若 ,则这个平面图形的实际面积为: A . B . C . D .7.实数、满足不等式组⎪⎩⎪⎨⎧≥--≥-≥02200y x y x y 则的取值范围是:A .B .C .D .8.圆柱内有一个三棱柱,三棱柱的底面在圆柱底面内,三棱柱的底面是正三角形。
那么在圆柱内任取一点,该点落在三棱柱内的概率为: A. B. C. D.9.设,函数4sin()33ππω=+y x +2的图像向右平移个单位后与原图象重合, 的最小值是( ) A. B. C. D. 310. 数列的通项公式分别是 , ,则数列的前100项的和为: A . B . C . D .二、填空题:(将你认为正确的答案填在答卷对应题序的横线上) 11.右面的程序框图给出了计算数列的前8项 和S 的算法,算法执行完毕后,输出的S 为 .12.函数的定义域是13.已知等比数列中,前项和为 ,当 ,时,公比的值为14.下表是避风塘4天卖出冷饮的杯数与当天气温的对比气温 / 20 25 30 33 杯数20386070如果卖出冷饮的杯数与当天气温成线性相关关系,根据最小二阶乘法,求得回归直线方程是 ,则的值是 。
湖南省永州市第一中学2021-2022学年高二下学期第二次月考数学试题

永州一中2022年上期高二第二次月考试卷数 学(考试内容:新人教版必修第一册至选修三第一章)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x >1},B ={-1,0,1,2},则A ∩B =( ) A .{2}B .{1,2}C .{0,1,2}D .{x |x ≥-1}2.若复数z 满足i z ⋅=1-i ,其中i 为虚数单位,则z 的虚部为( ) A .0B .-1C .-iD .i 21 3.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ) A .2πB .πC .2D .14.设a ∈R ,直线ax +2y -1=0与直线x +ay +1=0平行,则a =( ) A .2B .2-C .2±D .±15.已知抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,若抛物线上一点P 到y 轴的距离是1,则|PF |等于( ) A .2B .3C .4D .56.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是( ) A .恰好有一个白球与都是红球 B .至多有一个白球与都是红球 C .至多有一个白球与都是白球 D .至多有一个白球与至多一个红球 7.数列{n a }的通项902+=n na n ,则数列{n a }中的最大值是( ) A .103 B .19C .191 D .6010 8.已知函数f (x )=)(21111+--++--x x e e a x x 其中a ∈R ,则( ) A .f (x )在(2,+∞)上单调递增 B .f (x )在(2,+∞)上单调递减C .曲线y =f (x )是轴对称图形D .曲线y =f (x )是中心对称图形二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间(k ,2]上的最大值为28,则实数k 的值可以是( ) A .-5B .-4C .-3D .-210.已知直线l :mx -(2-m )y +1-m =0,圆C :x 2+y 2-2x =0,则下列结论正确的是( ) A .圆心C 到直线l 的最大距离是2 B .直线l 与圆C 恒有两个公共点C .存在一个m 值,使直线l 经过圆心CD .当m =1时,圆C 与圆x 2+(y -1)2=1关于直线l 对称11.设椭圆C :)0(12222>>=+b a by a x 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足0FA FB •=,|FB |≤|F A |≤2|FB |,则椭圆的离心率可以取的值是( ) A .617 B .619 C .621 D .35 12.如图,已知直四棱柱ABCD -EFGH 的底面是边长为4的正方形,CG =m ,点M 为CG 的中点,点P 为底面EFGH 上的动点,则( )A .当m =4时,存在点P 满足P A +PM =8B .当m =4时,存在唯一的点P 满足2π=∠APMC .当m =4时,满足BP ⊥AM 的点P 的轨迹长度为22D .当334=m 时,满足2π=∠APM 的点P 的轨迹长度为π938 三、填空题:本题共4小题,每小题5分,共20分.13.把4名优秀学生A ,B ,C ,D 全部保送到甲、乙、丙三所大学,每个学校至少去一名,不同的保送方案有 种.14.已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO AP •的最大值为 .15.设x ∈R 且x ≠0,则)2(+x 5)11(-x的展开式中常数项为 .16.若关于x 的不等式xe x -a (x +3)-alnx ≥0恒成立,则实数a 的取值范围是 . 四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.设等差数列{n a }的前n 项和为n S ,8,71227=+=a a S . (1)求a n ;(2)设n an b 2=,求数列{n b }的前n 项和n T .18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A +(2c +a )cos B =0. (1)求角B 的大小;(2)若b =4,△ABC 的面积为3,求a +c 的值.19.已知向量→a =(2cos2x ,1),→b =(2cos (2x -3π),-1).令f (x )=→→⋅b a(1)求f (x )的最小正周期及单调增区间. (2)当x ∈⎥⎦⎤⎢⎣⎡2,4ππ时,求f (x )的最小值以及取得最小值时x 的值. 20.如图,在四棱锥E -ABCD 中,AB ∥CD ,AB BC CD AD 21===,E 在以AB 为直径的半圆上(不包括端点),平面ABE ⊥平面ABCD ,M ,N 分别为DE ,BC 的中点. (1)求证:MN ∥平面ABE ;(2)当四棱锥E -ABCD 体积最大时,求二面角N -AE -B 的余弦值.21.已知双曲线()0,012222>>=-b a by a x 的离心率为26,且该双曲线经过点)22,3(p . (1)求双曲线C 的方程;(2)设斜率分别为k1,k2的两条直线l1,l2均经过点Q(2,1),且直线l1,l2与双曲线C分别交于A,B两点(A,B异于点Q),若k1+k2=1,试判断直线AB是否经过定点,若存在定点,求出该定点坐标;若不存在,说明理由.22.已知函数f(x)=alnx.(1)记函数g(x)=x2-(a+2)x+f(x),当a>2时,讨论函数g(x)的单调性;(2)设h(x)=f(x)-x2,若h(x)存在两个不同的零点x1,x2,证明:2e<a<x12+x22(e为自然对数的底数).永州一中2022年上期高二第二次月考答案数学一.选择题(共12小题)1 A2 B 3A4C5B6A7 C8C二.多选题(共4小题)9.:AB.10:BD.11:BD.12:BCD.三.填空题(共4小题)13:36 14:6 15:3 16:[0,e﹣2]四.解答题(共6小题)17.【解答】解:(1)a2+a12=8⇒a7=4∵∴a1=﹣2∴∴a n=﹣2+n﹣1=n﹣3;(2)∵a n=n﹣3,∴b n=2n﹣3则.214nnT-=18.【解答】解:(1)∵b cos A+(2c+a)cos B=0,∴sin B cos A+(2sin C+sin A)cos B=0,化为sin(A+B)+2sin C cos B=0,∴sin C+2sin C cos B=0,∵sin C≠0,∴cos B=﹣,∵B∈(0,π),∴B=.(2)由余弦定理可得:42=a2+c2﹣2ac,可得a2+c2+ac=16.由S=ac sin=,可得ac=4.∴(a+c)2=16+ac=20,解得a+c=2.19.解:(1)∵向量=(2cos2x,1),=(2cos(2x﹣),﹣1).∴f(x)=•=2cos2x2cos(2x﹣)﹣1=4cos2x(cos2x cos+sin2x sin)﹣1=2cos22x+2sin2x cos2x﹣1=cos4x+﹣1=2sin(4x+)﹣1,故函数f(x)的周期为=.令﹣+2k,k∈Z,解得﹣,k∈Z,∴f(x)的增区间为[﹣,],k∈Z.(2)当x∈[,]时,4x+∈[,],﹣1,故当4x+=时,函数f(x)取得最小值为﹣2,此时x=.20.【解答】解:(1)证明:取EC中点F,连接MF,NF,∵AB∥CD,M,N分别为DE,BC的中点,∴NF∥BE,MF∥CD,∴MF∥AB,∵NF∩MF=F,BE∩AB=B,∴平面ABE∥平面MNF,∵MN⊂平面MNF,∴MN∥平面ABE;(2)当四棱锥E﹣ABCD体积最大时,E是中点,此时AE=BE,以E为坐标原点,EB为x轴,EA为y轴,过E作平面ABE的垂线为z轴,建立空间直角坐标系,如图,设=1,则AE=BE=,B(,0,0),C(,,),N(,,),A(0,,0),E(0,0,0),=(0,,0),=(,,),设平面AEN的法向量=(x,y,z),则,取x=2,得=(,0,﹣7),平面ABE的法向量=(0,0,1),设二面角N﹣AE﹣B的平面角为θ,则cosθ==755 55.∴二面角N﹣AE﹣B 755.21.【解答】解:(1)由离心率为,且c2=a2+b2,得c2=3b2,a2=2b2,即双曲线方程为.又点在双曲线C上,∴,解得b2=1,a2=2,∴双曲线C的方程为;(2)当直线AB的斜率不存在时,点A,B关于x轴对称,设A(x0,y0),B(x0,﹣y0),则由k1+k2=1,得,即,解得x0=0,不符合题意,故直线AB的斜率存在.不妨设直线AB的方程为y=kx+t,代入,整理得(2k2﹣1)x2+4ktx+2t2+2=0(2k2﹣1≠0),Δ>0.设A(x1,y1),B(x2,y2),则,由k1+k2=1,得,即,整理得(2k﹣1)x1x2+(t﹣2k+1)(x1+x2)﹣4t=0,∴,整理得:t2+(2k﹣2)t﹣1+2k=0,即(t﹣1)(t+2k﹣1)=0,∴t=1或t=1﹣2k.当t=1时,直线AB的方程为y=kx+1,经过定点(0,1);当t=1﹣2k时,直线AB的方程为y=k(x﹣2)+1,经过定点Q(2,1),不符合题意.综上,直线AB过定点(0,1).22.【解答】(1)解:因为f(x)=alnx,所以g(x)=x2﹣(a+2)x+alnx(x>0),所以g′(x)=2x﹣(a+2)+=,当a>2时,>1,所以当x∈(0,1)时,g′(x)>0,x∈(1,)时,g′(x)<0,x∈(,+∞)时,g′(x)<0,所以g(x)在(0,1)和(,+∞)上单调递增,在(1,)上单调递减.(2)证明:由h(x)=f(x)﹣x2=alnx﹣x2(x>0),则h′(x)=﹣2x=,①若a≤0,则h′(x)<0恒成立,即h(x)在(0,+∞)上单调递减,h(x)最多有一个零点,不合题意;②若a>0,令h′(x)=0得x=或x=﹣(舍去),当x∈(0,)时,h′(x)>0,h(x)单调递增,x∈(,+∞),h′(x)<0,h(x)单调递减,所以h(x)≤h()=ln﹣,若h(x)存在两个不同的零点x1,x2,则h()>0,即ln ﹣>0,所以ln>1,即a>2e,当a>2e时,又h(1)=﹣1<0,所以h(x)在∈(0,)上恰有一个零点,又e a>a(a>0),则h(e a)=a2﹣(e a)2<0,又a>,所以h(x)在(,+∞)上恰有一个零点,所以a>2e成立,由h(x1)=h(x2)可得alnx1﹣=alnx2﹣,即a(lnx1﹣lnx2)=﹣,可设x1>x2>0,则lnx1>lnx2,则a=,要证a<x12+x22,即证<x12+x22,即证ln>,设t=(t>1),即证lnt>,设m(t)=lnt﹣(t>1),可得m′(t)=﹣=>0恒成立,所以m(t)在(1,+∞)上单调递增,所以m(t)>m(1)=0,即lnt>,则a<x12+x22,综上可得,2e<a<x12+x22.。
宁夏银川市第二中学2021-2022学年高二下学期第一次月考数学(理)试题含答案

【答案】B
【7题答案】
【答案】A
【8题答案】
【答案】D
【9题答案】【答案】DFra bibliotek【10题答案】
【答案】B
【11题答案】
【答案】A
【12题答案】
【答案】A
【13题答案】
【答案】
【14题答案】
【答案】36
【15题答案】
【答案】
【16题答案】
A.6种B.11种C.12种D.16种
10.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为
A.100B.200C.300D.400
11.为有效阻断新冠肺炎疫情传播徐径,构筑好免疫屏障,从2022年1月13日开始,某市启动新冠病毒疫苗加强针接种工作,凡符合接种第三针条件的市民,要求尽快接种.该市有3个疫苗接种定点医院,现有8名志愿者将被派往这3个医院协助新冠疫苗接种工作,每个医院至少2名至多4名志愿者,则不同的安排方法共有()
A. 3B. 9C. 12D. 15
2.某邮局有4个不同的信箱,现有5封不同的信需要邮寄,则不同的投递方法共有()
A. 种B. 种C. 种D. 种
3.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()
A. B. C. D.
4.随机变量X 分布列为P(X=k)= ,c为常数,k=1,2,3,4,则 的值为()
17.已知向量 , .
(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足 的概率;
(2)若x,y在连续区间 上取值,求满足 的概率.
天津市第四十七中学2021-2022学年高二上学期第二次月考数学试题(含答案解析)

天津市第四十七中学2021-2022学年高二上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,直线l 的斜率是()ABC .D .2.已知()2,1,3=- a ,()4,2,b x =- ,且a b ∥,则x 的值为()A .103B .103-C .6D .-63.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,n S 是{}n a 的前n 项和,则9S 等于()A .8-B .6-C .10D .04.已知ABC 的两个顶点A ,B 的坐标分别是(2,0)-、(2,0),且AC ,BC 所在直线的斜率之积等于2,则顶点C 的轨迹方程是()A .22148x y -=(2x ≠±)B .2212y x -=C .22148x y -=D .2212x y -=(2x ≠±)5.在三棱锥-P ABC 中,点D ,E ,F 分别是BC ,PC ,AD 的中点,设PA a = ,PB b =,PC c = ,则EF =()A .111244a b c --B .111+244a b c- C .111+244a b c -D .111++244a b c- 6.已知过抛物线y 2=4x 焦点F 的直线l 交抛物线于A 、B 两点(点A 在第一象限),若AF = 3FB ,则直线l 的斜率为()A .2B .12C D7.直线:20l kx y --=与曲线1C x =-只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬⎩⎭D .(-8.设1F 是双曲线2222:1(0,0)y x C a b a b-=>>的一个焦点,1A ,2A 是C 的两个顶点,C 上存在一点P ,使得1PF 与以12A A 为直径的圆相切于Q ,且Q 是线段1PF 的中点,则C 的渐近线方程为A .y =B .y =C .12y x =±D .2y x=±9.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若110PF =,双曲线的离心率的取值范围为(1,2),则该椭圆的焦距的取值范围是()A .55,32⎛⎫ ⎪⎝⎭B .205,3⎛⎫ ⎪⎝⎭C .10,53⎛⎫ ⎪⎝⎭D .510,23⎛⎫ ⎪⎝⎭二、填空题10.抛物线28y x =的焦点到双曲线2213y x -=的渐近线的距离是__________.11.已知C :224630x y x y +---=,点()20M -,是C 外一点,则过点M 的圆的切线的方程是__________.12.空间直角坐标系中,四面体ABCD 的各顶点(0,0,2)A ,(2,2,0)B ,(1,2,1)C ,(2,2,2)D ,则点B 到平面ACD 的距离是_______________.13.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于A ,B 两点且线段AB 的中点为()3,2M ,则直线l 的斜率为________.14.设点P 是曲线221(0)3x y x -=>上一动点,点Q 是圆()2221x y +-=上一动点,点()20A -,,则PA PQ +的最小值是_____________15.已知抛物线C :24y x =的焦点为F ,准线与x 轴的交点为H ,点P 在C 上,且PH =,则PFH ∆的面积为______.三、解答题16.(1)已知直线1l :60x ay ++=和直线2l :(2)320a x y a -++=,若12l l ⊥,求a 值.(2)求与直线220x y --=平行且纵截距是2-的直线3l 的一般式方程.(3)若直线l 经过(2,1)A 、()21,B m (R m ∈)两点,求直线l 的倾斜角α的取值范围.17.如图,在四棱锥P ABCD -中,PA ⊥平面,//ABCD AB CD ,且2,1CD AB ==,1,,BC PA AB BC N ==⊥为PD 的中点.(1)求证://AN 平面PBC ;(2)求平面PAD 与平面PBC 所成锐二面角的余弦值;(3)在线段PD 上是否存在一点M ,使得直线CM 与平面PBC ,若存在,求出DMDP的值;若不存在,说明理由.18.已知正项等比数列{}n a 满足12a =,2432a a a =-,数列{}n b 满足212log n n b a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅求数列{}n c 的前n 项和n S .(3)设{}n b 的前n 项和为n T ,求n a T 19.(1)若圆M 的圆心在直线1y x =-上,且圆M 过点(0,1)A ,B ,求圆M 标准方程(2)已知直线0mx ny c ++=和圆O :221x y +=交于A ,B 两点,且O 到此直线的距离为12,求OA OB ⋅的值.(3)两圆1C :222240x y ax a +++-=和2C :2224140x y by b +--+=恰有三条公切线,若a ∈R ,b ∈R ,且0ab ≠,求2211a b +的最小值.20.如图,椭圆22221x y a b +=(0a b >>为A ,B ,C ,D ,且||2AB =.(1)求椭圆的方程;(2)P是椭圆上位于x轴上方的动点,直线CP,DP与直线l:4x=分别交于G、H两点.若||4GH=,求点P的坐标;(3)直线AM,BM分别与椭圆交于E,F两点,其中点1,2M t⎛⎫⎪⎝⎭满足0t≠且t贡若BME面积是AMF面积的5倍,求t的值.参考答案:1.B【分析】由图中求出直线l 的倾斜角,再根据斜率公式求出直线l 的斜率.【详解】如图,直线l 的倾斜角为30°,tan30°=l .故选:B.2.D【分析】由向量a b ∥可得21342x-==-,从而得出答案.【详解】由a b ∥,则21342x-==-,则6x =-故选:D 3.D【分析】由a1,a3,a4成等比数列,可得23a =a1a4,再利用等差数列的通项公式及其前n 项和公式即可得出.【详解】∵a1,a3,a4成等比数列,∴23a =a1a4,∴21(22)a +⨯=a1•(a1+3×2),化为2a1=-16,解得a1=-8.∴则S9=-8×9+982⨯×2=0,故选D .【点睛】本题考查了等比数列与等差数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.A【分析】首先设点(),,2C x y x ≠±,根据条件列式,再化简求解.【详解】设(),,2C x y x ≠±,2AC BC k k ⋅=,所以222y y x x ⋅=+-,整理为:22148x y -=,2x ≠±,故选:A 5.B【分析】连接DE 由中位线性质可知12DE b =-;利用空间向量的加减法和数乘运算可表示出结果.【详解】连接DE ,D ,E 分别是BC ,PC 的中点111222DE BP PB b∴==-=-()1111122444EF DF DE DA DE AD DE AB AC DE AB AC DE∴=-=-=--=-+-=---()()1111111144442244EF AB AC DE PB PA PC PA PB PA PB PC∴=---=----+=+-PA a = ,PB b =,PC c = 111111244244EF PA PB PC a b c∴=+-=+- 故选:B 6.D【分析】作出抛物线的准线,设A 、B 在l 上的射影分别是C 、D ,连接AC 、BD ,过B 作BE ⊥AC 于E.由抛物线的定义结合题中的数据,可算出Rt △ABE 中,cos ∠BAE 12=,得∠BAE =60°,即直线AB 的倾斜角为60°,从而得到直线AB 的斜率k 值.【详解】作出抛物线的准线l :x =﹣1,设A 、B 在l 上的射影分别是C 、D ,连接AC 、BD ,过B 作BE ⊥AC 于E.∵AF = 3FB,∴设AF =3m ,BF =m ,由点A 、B 分别在抛物线上,结合抛物线的定义,得AC =3m ,BD =m .因此,Rt △ABE 中,cos ∠BAE 12=,得∠BAE =60°所以,直线AB 的倾斜角∠AFx =60°,得直线AB 的斜率k =tan 60°=故选:D.【点睛】本题给出抛物线的焦点弦被焦点分成3:1的比,求直线的斜率k ,着重考查了抛物线的定义和简单几何性质,直线的斜率等知识点,属于中档题目.7.C【分析】确定直线:20l kx y --=恒过定点(0,2)-,确定曲线1C x -表示圆心为(1,1),半径为1,且位于直线1x =右侧的半圆,包括点(1,2),(1,0),由直线与圆位置关系解决即可.【详解】由题知,直线:20l kx y --=恒过定点(0,2)-,曲线1C x -表示圆心为(1,1),半径为1,且位于直线1x =右侧的半圆,包括点(1,2),(1,0),当直线l 经过点(1,0)时,l 与曲线C 有2个交点,此时2k =,不满足题意,直线记为1l ,当直线l 经过点(1,2)时,l 与曲线C 有1个交点,此时4k =,满足题意,直线记为3l ,如图,当直线l1=,解得43k =,直线记为2l ,由图知,当24k <≤或43k =,l 与曲线C 有1个交点,故选:C 8.C【分析】根据图形的几何特性转化成双曲线的,,a b c 之间的关系求解.【详解】设另一焦点为2F ,连接2PF ,由于1PF 是圆O 的切线,则OQ a =,且1OQ PF ⊥,又Q 是1PF 的中点,则OQ 是12F PF △的中位线,则22PF a =,且21PF PF ⊥,由双曲线定义可知14PF a =,由勾股定理知2221212F F PF PF =+,2224416c a a =+,225c a =,即224b a =,渐近线方程为a y x b=±,所以渐近线方程为12y x =±.故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.9.B【分析】设椭圆的焦距为2c ,双曲线的实轴长为2a ,根据双曲线的定义及双曲线的离心率的取值范围求出c 的范围,进而可得出答案.【详解】解:设椭圆的焦距为2c ,双曲线的实轴长为2a ,则1222F F PF c ==,双曲线的半实轴长为12502PF PF a c -==->,则05c <<,又双曲线的离心率的取值范围为(1,2),所以125c ca c <=<-,所以51023c <<,所以20523c <<,即该椭圆的焦距的取值范围是205,3⎛⎫⎪⎝⎭.故选:B.10【分析】先求出抛物线的焦点坐标,再求出双曲线的渐近线方程,利用点到直线的距离公式即可求解.【详解】抛物线28y x =的焦点为(2,0),双曲线2213yx -=的渐近线方程为y =,利用点到直线的距离公式可得:d =11.20x +=或724140x y ++=【分析】按切线斜率存在不存在分类讨论,利用点到直线的距离求解.【详解】由题意得圆C :22(2)(3)16x y -+-=,圆C 是以()23,为圆心,4为半径的圆.当直线的斜率不存在时,2x =-,与圆相切,满足题意,当直线斜率存在时,可设切线l 的方程为()2y k x =+.由圆C 到直线l的距离等于半径,可得4d ==.解得724k =-.所以切线方程为20x +=或724140x y ++=.故答案为:20x +=或724140x y ++=.12【分析】先求出平面ACD 的法向量n,则点B 到平面ACD 的距离是BA n n ⋅.【详解】由题可得()()121220,,,,,AC AD =-=,则设平面ACD 的法向量为(),,n x y z = ,则20220n AC x y z n AD x y ⎧⋅=+-=⎪⎨⋅=+=⎪⎩,取()1,1,1n =--.又()222,,BA =-- ,则点B 到平面ACD的距离BA nd n ⋅===13.1-【分析】由椭圆离心率和,,a b c 关系可得,a b 关系,再由点差法和中点坐标公式、两点的斜率公式可得所求值.【详解】解:由题意可得c e a ==a =,设()()1122,,,A x y B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减可得()()()()12121212220x x x x y y y y a b-+-++=,AB 的中点为(3,2)M ,12126,4x x y y +=+=∴,则直线斜率212122121226134y y x x b k x x a y y -+==-⋅=-⨯=--+.故答案为:1-.14.1【分析】通过双曲线的定义得PA PQ PQ PF +=++【详解】解:设双曲线2213x y -=的右焦点为()20F ,,圆()2221x y +-=的圆心为()02M ,,如图所示:由双曲线的定义得PA PF -=,所以PA PF =,所以2221PA PQ PQ PF FQ FM MQ +=+++-+,当且仅当P ,Q 分别为线段FM 与双曲线的右支,圆的交点时取等号.故PA PQ +的最小值为1.故答案为:1.【点睛】方法点睛:本题考查双曲线的定义,双曲线的性质和几何意义,点与圆的位置关系,属于中档题.在解决线段的和或差的最值,常运用圆锥曲线的定义,化曲为直得以解决.15.4±【解析】设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,PH =由PH =,可得2840t t -+=,解得4t =±即可求解.【详解】解:由抛物线C :24y x =,得焦点()1,0F ,准线方程为 1.x =-过P 作PM 垂直准线于M ,设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,PH =由PH =,可得2840t t -+=,解得4t =±.则PFH ∆的面积为1242t ⨯⨯=±故答案为:4±【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.16.(1)12a =;(2)240x y --=;(3)ππ0,π42α⎡⎤⎛⎫∈ ⎪⎢⎥⎣⎦⎝⎭【分析】(1)根据两直线垂直的公式求解即可;(2)设3:l 20x y a -+=,再根据截距求解即可;(3)根据倾斜角与斜率的关系可得tan 1α≤,再根据倾斜角的范围求解即可.【详解】(1)因为12l l ⊥,故()1230a a ⨯-+=,解得12a =;(2)设3:l 20x y a -+=,因为纵截距是2-,故()0220a -⨯-+=,解得4a =-.故3:l 240x y --=;(3)直线l 的斜率为221112m m -=--,因为20m ≥,故211m -≤,则tan 1α≤.因为[)0,πα∈,故ππ0,,π42α⎡⎤⎛⎫∈ ⎪⎢⎣⎦⎝⎭17.(1)见解析(2)23(3)存在M ,且23DM DP =.【分析】(1)过A 作AE CD ⊥于E ,以A 为原点建立空间直角坐标系,求出平面PBC 的法向量和直线AN 的向量,从而可证明线面平行.(2)求出平面PAD 的法向量,利用向量求夹角公式解得.(3)令DM DP λ=,[0,1]λ∈,设(),,M x y z ,求出CM ,结合已知条件可列出关于λ的方程,从而可求出DMDP的值.【详解】(1)过A 作AE CD ⊥,垂足为E ,则1DE =,如图,以A 为坐标原点,分别以AE ,AB ,AP 为,,x y z 轴建立空间直角坐标系,则()0,0,0A ,()0,1,0B,()E,()1,0D -,()C ,()0,0,1P ,N Q 为PD的中点,11,22N ⎫∴-⎪⎭,则11,22AN ⎫=-⎭ ,设平面PBC 的一个法向量为(),,m x y z = ,(0,1,1)BP =-,BC =,则00m BP y z M BC ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,,,令1y =,解得:()0,1,1m = .11022AN m =∴⋅=-+uuu r r ,即AN m ⊥uuu r u r ,又AN ⊄平面PBC ,所以//AN 平面PBC .(2)设平面PAD 的一个法向量为(,,)n a b c =,(0,0,1)AP =,1,0)AD =- ,所以00AP n c AD n b ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令1a =,解得(1,n =r .所以2cos ,3m n m n m n⋅==⋅u r ru r ru r r .即平面PAD 与平面PBC 所成锐二面角的余弦值为23.(3)假设线段PD 上存在一点M ,设(,,)M x y z ,DM DP λ=,[0,1]λ∈.(1,)(x y z λ-+=-Q,,1,)M λλ∴-,则(,2,)CM λλ=--又直线CM 与平面PBC ,平面PBC 的一个法向量()0,1,1m =CM m CM m ⋅=uuu r uuu u r r u r ,化简得22150240λλ-+=,即()()327120λλ--=,[0,1]λ∈ ,23λ∴=,故存在M ,且23DM DP =.18.(1)2n n a =,21n b n =+;(2)1(21)22n n S n +=-⋅+;(3)21222n n n n a T T +==+.【分析】(1)由等差数列的基本量法求得公比q 后可得n a ,再计算得n b ;(2)由错位相减法求和;(3)由等差数列的前n 项和公式计算.【详解】(1)设{}n a 的公比为q ,则由已知得22222a a q a q =-,20a ≠,则220q q --=,2q =或1q =-(舍去),∴1222n n n a -=⨯=,212log 221nn b n =+=+;(2)(21)2nn n n c a b n ==+⋅,23252(21)2n n S n =⨯+⨯+++⋅ ,∴23123252(21)2(21)2n n n S n n +=⨯+⨯++-⋅++⋅ ,相减得231322(222)(21)2n n n S n +-=⨯++++-+⋅ 1114(12)62(21)22(12)212n n n n n -++-=+⨯+⋅=-+-⋅-,∴1(21)22n n S n +=-⋅+;(3)由(1)21n b n =+,2n n a =,2122(3221)35(221)222n n n n nn na T T ++⨯+==+++⨯+==+ .19.(1)()2214x y ++=(2)12-(3)1【分析】(1)设圆心(),1M a a -,由MA MB =求出a ,可得圆心和半径,从而得到答案;(2)根据O 到此直线的距离为12,得到2π3AOB ∠=,再由数量积公式计算可得答案;(3)由圆和圆的位置关系判断出两圆外切,得到2249a b +=,再由基本不等式求解可得答案.【详解】(1)设圆心(),1M a a -,由MA MB ==,解得0a =,所以()0,1M -2=,圆M 标准方程为()2214x y ++=;(2)因为O 到此直线的距离为12,所以112sin 12∠==OAB ,所以π6∠=∠=OAB OBA ,即2π3AOB ∠=,1== OA OB ,所以1cos 2⋅=⋅∠=- OA OB OA OB AOB ;(3)圆1C :()224x a y ++=,圆心()1,0C a -,半径为2,圆2C :()2221x y b +-=,圆心()20,2C b ,半径为1,因为两圆1C 和2C 恰有三条公切线,所以两圆外切,所以123C C =3=,整理得2249a b +=,因为a ∈R ,b ∈R ,且0ab ≠,所以()222222222211111145994⎛⎫⎛⎫+=++=++ ⎝⎭⎝⎭a b a b a b b a a b()11559419⎛≥+=+= ⎝,当且仅当22224=a b a b即223,32==b a 时等号成立.所以2211a b+的最小值为1.20.(1)2214x y +=(2)()0,1P 或83,55P ⎛⎫⎪⎝⎭(3)1t =±【分析】(1)根据短轴,离心率的定义与椭圆的基本量的关系求解即可.(2)设直线CP 的方程为()()2,0y k x k =+>,联立直线与椭圆方程,结合韦达定理表示出点P 的坐标,从而得到点,G H 的坐标,根据4GH =列出方程即可得到结果.(3)分别设直线AM ,直线BM 的方程,联立椭圆的方程,再利用三角形的面积公式表达出BME 面积是AMF 面积的5倍,再代入韦达定理求解即可.【详解】(1)由题意可知22222c e a AB b a b c ⎧=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得222413a b c ⎧=⎪=⎨⎪=⎩所以椭圆的方程为2214x y +=(2)设直线CP 的方程为()()2,0y k x k =+>由()42x y k x =⎧⎨=+⎩得()4,6G k 联立直线CP 的方程与椭圆方程()22214y k x x y ⎧=+⎪⎨+=⎪⎩消去y 可得()222214161640k x k x k +++-=设()00,P x y ,则()202164214k x k --=+,所以20022284,1414k kx y k k -==++,即222284,1414k k P k k ⎛⎫- ⎪++⎝⎭又因为()2,0D ,所以2224142821414DPkk k k k k --+-+==,所以直线DP 的方程为()124y x k =--,由()1244y x k x ⎧=--⎪⎨⎪=⎩得14,2H k ⎛⎫- ⎪⎝⎭,所以1642GH k k =+=,因为0k >,所以12k =或16从而得()0,1P 或83,55P ⎛⎫⎪⎝⎭(3)∵()0,1A ,()0,1B -,1,2M t ⎛⎫⎪⎝⎭,且0t ≠,∴直线AM 的斜率为112k t =-,直线BM 斜率为232k t=,∴直线AM 的方程为112y x t =-+,直线BM 的方程为312y x t=-,由2214112x y y x t ⎧+=⎪⎪⎨⎪=-+⎪⎩得()22140t x tx +-=,∴0x =,241t x t =+,∴22241,11t E t t t ⎛⎫- ⎪++⎝⎭,由2214312x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩得()229120t x tx +-=,∴0x =,2129t t x =+,∴222129,99t t F t t ⎛⎫- ⎪++⎝⎭;∵1sin 2AMF S MA MF AMF =∠ ,1sin 2BME S MB ME BME =∠ ,AMF BME ∠=∠,5AMF BME S S =△△,∴5MA MF MB ME =,即5MA MB MEMF=,又t 贡∴22541219t tt t t t tt =--++,整理方程得:()22519t t +=+,解得:1t =±.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.。
2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。
宁夏银川市景博中学2021-2022学年高二上学期第二次月考数学(理)试题

根据否命题的概念即得.
命题“若 ,则 且 ”的否命题为“若 ,则 或 ”.
故答案为:若 ,则 或 .
14.已知点 是椭圆 上的一点, 分别为椭圆的左、右焦点,已知 =120°,且 ,则椭圆的离心率为___________.
设 ,由余弦定理知 ,所以 ,故填 .
15.已知 是椭圆 上的点, , 是椭圆的两个焦点, ,则 的面积=_________.
C
利用焦点在 轴上,且渐近线方程为 的双曲线的方程,结合选项,即可得出结论.
由题意,焦点在 轴上,且渐近线方程为 的双曲线的方程是 .故选:C
本题考查双曲线的方程与性质,考查对概念的理解,属于基础题.
4.若抛物线y2=2px(p>0)的焦点是椭圆 的一个焦点,则p=
A 2B.3
C.4D.8
D
利用抛物线与椭圆有共同的焦点即可列出关于 的方程,即可解出 ,或者利用检验排除的方法,如 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
(1)焦点三角形 周长为 ;
(2)当点 为椭圆短轴的一个端点时, 为最大;
(3) ,当 时,即点 为椭圆短轴的一个端点时 取最大值,为 ;
(4) .
16.过点 且被点 平分的双曲线 的弦所在直线方程为_.
由于双曲线图象关于x轴对称,且M不在x轴上,所以所求直线不平行于y轴,即斜率为实数,设所求直线斜率为a,与双曲线两交点坐标为(3+t,-1+at)和(3-t,-1-at).
A. B. C. 或 D.
C
根据双曲线标准方程的形式确定 ,求得 的取值范围
因为方程 的图像是双曲线,
所以 ,解得: 或 ,故选:C
2021-2022学年河南省灵宝市高二年级下册学期第一次月考数学(理)试题【含答案】

2021-2022学年河南省灵宝市高二下学期第一次月考数学(理)试题一、单选题1.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取到黑球,则放入袋中,直到取到红球为止,若抽取的次数为X ,则表示“放入袋中5回小球”的事件为( )A .X=4B .X=5C .X=6D .X ≤4【答案】C【分析】“放入袋中回小球”也即是第次抽取到了红球,由此求得的值.56X 【详解】根据题意可知,如果没有抽到红球,则将黑球放回,然后继续抽取,所有“放入袋中回小5球”也即是前次都是抽到黑球,第六次抽到了红球,故,所以选C.56X =【点睛】本小题主要考查对离散型随机变量的理解,考查抽样方法的理解,属于基础题.2.若,则整数( )33235n n C A =n =A .B .C .D .891011【答案】A【分析】由排列数和组合数公式计算即可得到结果.【详解】,,33235nnC A = ()()()()221223512321n n n n n n --∴⨯=⨯--⨯⨯整理可得:,解得:或或,()()3298180n n n n n n -+=--=0n =1n =8n =,.3n ≥ 8n ∴=故选:A.3.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有.A .280种B .240种C .180种D .96种【答案】B【详解】根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有种不同的情况,其中包含甲从事翻译工作有种,46360A =3560A =乙从事翻译工作的有种,若其中甲、乙两名支援者都不能从事翻译工作,3560A =则选派方案共有360-60-60=240种.故选:B.4.从2名教师和5名学生中,选出3人参加“我爱我的祖国”主题活动.要求入选的3人中至少有一名教师,则不同的选取方案的种数是( )A .20B .55C .30D .25【答案】D【分析】根据题意,用间接法分析:先计算从2名教师和5名学生中选出3人的选法,再计算其中“入选的3人没有教师”的选法数目,分析可得答案.【详解】解:根据题意,从2名教师和5名学生中,选出3人,有种选法,3735C =若入选的3人没有教师,即全部为学生的选法有种,3510C =则有种不同的选取方案,351025-=故选:D .5.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的参观方案有A .16种B .18种C .37种D .48种【答案】C【分析】根据题意,用间接法:先计算3个班自由选择去何工厂的总数,再排除甲工厂无人去的情况,由分步计数原理可得其方案数目,由事件之间的关系,计算可得答案.【详解】根据题意,若不考虑限制条件,每个班级都有4种选择,共有种情况,44464⨯⨯=其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有种方案;33327⨯⨯=则符合条件的有种,642737-=故选C .【点睛】本题考查计数原理的运用,本题易错的方法是:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有种方案;显然这种方法中有重复的计算;解题时34448⨯⨯=特别要注意.6.已知的展开式中所有项的系数和为192,则展开式中的常数项为( )()62211x a x ⎛⎫++ ⎪⎝⎭A .8B .6C .4D .2【答案】A【分析】令,可求出,再写出的通项,再考虑展开式中的每一项与中的1x =2a =6211x ⎛⎫+ ⎪⎝⎭2x a +哪项之积为常数即可.【详解】令,则,所以.1x =()612192a +⨯=2a =在中,的展开式的通项,()622121x x ⎛⎫++ ⎪⎝⎭6211x ⎛⎫+ ⎪⎝⎭216621rr r rr T C C x x -+⎛⎫== ⎪⎝⎭所以的展开式中的常数项为.()622121x x ⎛⎫++ ⎪⎝⎭2120106666228x C x C C C -+⨯=+=故选:A【点睛】方法点睛:对于求多个二项式的和或积的展开式中某项的系数问题,要注意组合知识的运用,还要注意有关指数的运算性质.7.数学老师从6道习题中随机抽3道让同学检测,规定至少要解答正确2道题才能及格.某同学只能求解其中的4道题,则他能及格的概率是( )A .B .C .D .15253545【答案】D【分析】由超几何分布的概率公式结合排列组合即可求得.【详解】由超几何分布的概率公式可得,他能及格的概率是:.213042423366C C C C 4(2)(2)(3)C C 5P X P X P X ≥==+==+=故选:D .8.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8【答案】D【解析】直接利用枚举法写出所有的等比数列即可得到答案.【详解】(2)以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.故选:D.【点睛】本题考查了等比关系的确定,考查了学生观察问题的能力,是中档题.9.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,那么甲以4比2获胜的概率为( )A .B .C .D .5641564532516【答案】C【分析】先由已知,甲、乙两名运动员在每一局比赛中获胜的概率,甲以4比2获胜,即前5局甲胜3局,最后一局甲胜,根据独立重复试验公式公式,列出算式,得到结果.【详解】解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是.12记“甲以4比2获胜”为事件,A 则.()335351115(()22232P A C -=⨯=故选:.C 【点睛】本题主要考查古典概型及其概率计算,相互独立事件的概率公式的应用,属于基础题.10.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( )A .恰有1名女生与恰有2名女生B .至多有1名女生与全是男生C .至多有1名男生与全是男生D .至少有1名女生与至多有1名男生【答案】A【分析】根据对立事件和互斥事件的概念对选项逐一分析,由此选出正确选项.【详解】“从中任选2名同学参加演讲比赛”所包含的基本情况有:两男、两女、一男一女.恰有1名女生与恰有2名女生是互斥且不对立的两个事件,故A 正确;至多有1名女生与全是男生不是互斥事件,故B 错误;至多有1名男生与全是男生既互斥又对立,故C 错误;至少有1名女生与至多有1名男生不是互斥事件,故D 错误.故选:A .11.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一次发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为,发球次数为X ,若X 的数学期望(0,1)p ∈,则P 的取值范围是( )() 1.75E X >A .B .C .D .70,12⎛⎫ ⎪⎝⎭7,112⎛⎫ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭【答案】C【分析】计算学生每次发球的概率,求出期望的表达式,求解,可解出值.() 1.75E X >p 【详解】根据题意,学生一次发球成功的概率为p ,即,发球次数为2即二次发球成(1)p X p ==功的概率为,发球次数为3的概率为,则期望(2)(1)P X p p ==-2(3)(1)P X p ==-,依题意有,22()2(1)3(1)33E X p p p p p p =+-+-=-+() 1.75E X >即,解得或,结合p 的实际意义,可得.233 1.75p p -+>52p >2p 1<102p <<故选:C .12.下列说法:①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;a a ②设有一个回归方程,变量增加1个单位时,平均减少5个单位;35y x =-x y ③线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;r ④在某项测量中,测量结果服从正态分布,若位于区域的概率为0.4,则ξ()()21,0N σσ>ξ()0,1位于区域内的概率为0.6;ξ()1,+∞⑤利用统计量来判断“两个事件的关系”时,算出的值越大,判断“与有关”的把握就2χ,X Y 2χX Y 越大其中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】利用统计的相关知识逐一分析判断即可.【详解】逐一判断所给的说法:①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍,原说法错误;a a②设有一个回归方程,变量增加1个单位时,平均减少5个单位,原说法正确;35y x =-x y ③线性相关系数的绝对值越大,两个变量的线性相关性越强;反之,线性相关性越弱,原说法错r 误;④在某项测量中,测量结果服从正态分布,若位于区域的概率为0.4,而ξ()()21,0N σσ>ξ()0,1位于区域内的概率为0.5,原说法错误;ξ()1,+∞⑤利用统计量来判断“两个事件的关系”时,算出的值越大,判断“与有关”的把握就2χ,X Y 2χX Y 越大,原说法正确.故选:B.二、填空题13.某市倡导高中学生暑假期间参加社会公益活动.据调查统计,全市高中学生参加该活动的累计时长(小时)近似服从正态分布,人均活动时间约40小时.若某高中学校1000学生中参加该活X 动时间在30至50小时之间的同学约有300人.据此,可推测全市名学生中,累计时长超过50n 小时的人数大约为________.【答案】0.35n【分析】利用正态分布的对称性求解即可【详解】解:由题意,,则,40μ=()240,X N σ 由,可得,()30500.3P X ≤≤=()10.3500.352P X ->==故累计时长超过50小时的人数大约有人.0.35n 故答案为:.0.35n 14.的展开式中,含项的系数为______.(用数字作答)()()532x y x y -+24x y 【答案】110-【分析】的展开式的通项公式为,采取赋值法令和令,进()52x y +()5152rr rr T C x y -+=51r -=52r -=一步求出答案.【详解】的展开式的通项公式为,令得,令得,()52x y +()5152rr rr T C x y -+=51r -=4r =52r -=3r =∴的展开式中,的系数为,故答案为.()()522x y x y -+24x y 42255232110C C ⋅-⋅=-110-故答案为:.110-【点睛】本题考查二项展开式的通项公式,赋值法是解决二项展开式的系数和问题的工具,属于基础题型.15.若的方差为2.则的方差为____________.128,,,k k k ()()()12823,23,,23k k k --- 【答案】8【分析】根据给定条件,利用方差的定义直接计算作答.【详解】设的平均数为,则,128,,,k k k k ()()()222128128k k k k k k ⎡⎤-+-++-=⎢⎥⎣⎦ 而的平均数为,()()()12823,23,,23k k k --- 2(3)k -则其方差为.()()()222212814444288s k k k k k k ⎡⎤=-+-++-=⨯=⎢⎥⎣⎦ 故答案为:8.16.某地区数学考试的成绩服从正态分布,正态分布密度函数为X 2~(,)X N μσ()22()2x x f x σ--=,其密度曲线如图所示,则成绩位于区间的概率是__________.(结果保留3(,)x ∈-∞+∞X (86,94]为有效数字)本题用到参考数据如下:,()0.6826,(22)0.9544P X P X μσμσμσμσ-<≤+=-<≤+=.(33)0.9974P X μσμσ-<+=≤【答案】0.0215【分析】利用图象求出,利用参考数据计算,再利用对称性即μσ,(5486)P X <<,(4694)P X <<可得出答案.【详解】由图像可知,所以,8,70σμ==(70167016)0.9544P X -<<+=即;又,(5486)0.9544P X <<=(70247024)0.9974P X -<<+=即,(4694)0.9974P X <<=故结合图形可知,1(8694)(0.99740.9544)0.02152P X <<=-=故答案为:.0.0215三、解答题17.在平面直角坐标系xOy 中,曲线C 的参数方程为(为参数),在以原点为极点,3cos sin x y αα=⎧⎨=⎩αx 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为.sin 4πρθ⎛⎫-= ⎪⎝⎭(1)求C 的普通方程和l 的倾斜角;(2)设点,l 和C 交于A ,B 两点,求.(0,2)P ||||PA PB +【答案】(1) .. (2)2219x y +=4π||||PA PB +=【分析】(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点在直线l 上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.(0,2)P 【详解】(1)消去参数α得,3cos ,sin ,x y αα=⎧⎨=⎩2219x y +=即C 的普通方程为.2219x y +=由,得,(*)sin 4πρθ⎛⎫-= ⎪⎝⎭sin cos 2ρθρθ-=将,代入(*),化简得,cos sin x y ρθρθ=⎧⎨=⎩+2y x =所以直线l 的倾斜角为.4π(2)由(1),知点在直线l 上,可设直线l 的参数方程为(t 为参数),(0,2)P cos 42sin 4x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩即(t 为参数),2x y ⎧=⎪⎪⎨⎪=⎪⎩代入并化简,得,2219x y +=25270t ++=,245271080∆=-⨯⨯=>设A ,B 两点对应的参数分别为,,1t 2t 则,,120t t +=<122705t t =>所以,,所以10t<20t<()1212 ||||PA PBt t t t+=+=-+=【点睛】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算. 18.在二项式的展开式中,n(1)若所有二项式系数之和为,求展开式中二项式系数最大的项.64(2)若前三项系数的绝对值成等差数列,求展开式中各项的系数和.【答案】(1);(2) .52-1256【详解】试题分析:(1)由所有二项式系数之和为,,根据中间项的64264n=6n∴=二项式系数最大可得结果;(2)由前三项系数的绝对值成等差数列可得n=8,,令计算的大小,即可得答案.1x=n试题解析:(1)由已知得,,0164nn n nC C C+++=264n=6n∴=展开式中二项式系数最大的项是6331130334611520282T C x x x--⎛⎫⎛⎫⎛⎫=-=⋅-⋅=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)展开式的通项为,23112r n rrr nT C x-+⎛⎫=- ⎪⎝⎭()0,1,,r n=由已知:成等差数列,∴n=8,02012111,,222n n nC C C⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12112124nnC C⨯=+在中令x=1,得各项系数和为n125619.设.求:8878710(31)x a x a x a x a-=++++(1) ;871a a a+++(2) .86420a a a a a++++【答案】(1)255;(2)32896【详解】试题分析:(1)令,求得,再令,即可求解的值;x=01a=1x=871a a a+++(2)由(1),再令,即可求解的值.=1x-86420a a a a a++++试题解析:令,得.x=01a=(1)令得,①1x =()8871031a a a a -=++++ ∴.88721022561255a a a a a ++++=-=-= (2)令得.②1x =-()88761031a a a a a --=-+--+①+②得,()8886420242a a a a a +=++++∴.()8886420124328962a a a a a ++++=+=20.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望.(注:方差,其中为,,…… 的平均数)()()()2222121n s x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦x 1x 2x n x 【答案】(Ⅰ)平均数为 方差为3541116(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P (Y=17)=同理可得所以随机变量Y 的分布列为:Y 1718192021P17(17)18(18)19(19)20(20)EY P Y P Y P Y P Y =⨯=+⨯=+⨯=+⨯=21(21)P Y +⨯===1911111171819202184448⨯+⨯+⨯+⨯+⨯【分析】(Ⅰ)当X =8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10. 所以平均数为=;x 8+8+9+1035=44方差s 2=+ ++ =.2135(8)44-235(84-235(9)4-235(10)4-1116(Ⅱ)当X =9时,由茎叶图可知,甲组同学的植树棵数是9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果.因此P (Y =17)==.21618同理可得P (Y =18)=,P (Y =19)=,1414P (Y =20)=,P (Y =21)= .1418所以随机变量Y 的分布列为Y1718192021P1814141418E (Y )=17×P (Y =17)+18×P (Y =18)+19×P (Y =19)+20×P (Y =20)+21×P (Y =21)=17×+18× +19×+20× +21×=19.181414141821.某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:喜欢不喜欢合计大于40岁2052520岁至40岁102030合计302555(1)判断是否有的把握认为喜欢“人文景观”景点与年龄有关?99.9%(2)已知20岁到40岁喜欢“人文景观”景点的市民中,有3位还比较喜欢“自然景观”景点,现在从20岁到40岁的10位市民中,选出3名,记选出喜欢“自然景观”景点的人数为,求的分布X X 列、数学期望.(参考公式:,其中)22()()()()()n ad bc K a b c d a c b d -=++++n a b c d =+++2()P K k ≥0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828【答案】(1)有的把握认为喜欢“人文景观”景点与年龄有关;(2)见解析99.9%【分析】(1)计算K 2的值,与临界值比较,即可得到结论;(2)X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和.()E X 【详解】(1)由公式,所以有的把握认为喜欢“人()22552020105K 11.97810.82830252530⨯-⨯=≈>⨯⨯⨯99.9%文景观”景点与年龄有关.(2)随机变量可能取得值为0,1,2,3.X ∴,()37310C 7P X 0C 24===,()2173310C C 21P X 1C 40⋅===,()1273310C C 7P X 2C 40⋅===,()33310C 1P X 3C 120===∴的分布列为XX 0123P72421407401120则.()72171E X 01230.9244040120=⨯+⨯+⨯+⨯=【点睛】本题考查独立性检验、离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,属于中档题.22.某生物小组为了研究温度对某种酶的活性的影响进行了一组实验,得到的实验数据经整理得到如下的折线图:(1)由图可以看出,这种酶的活性与温度具有较强的线性相关性,请用相关系数加以说明;y x (2)求关于的线性回归方程,并预测当温度为时,这种酶的活性指标值.(计算结果精确y x 30C ︒到0.01)参考数据:,.6152.5i i y ==∑()()6185i ii x x y y =--=∑ 5.5= 2.65≈参考公式:相关系数.r =回归直线方程,,.y a bx =+()()()121niii nii x x y y b x x ==--=-∑∑a y bx =-【答案】(1)详见解析(2)线性回归方程为;预测当温度为时,这种酶的活3.020.34y x =+30C ︒性指标值为13.22【解析】(1)根据题中所给数据,利用公式求得,非常接近1,从而得到酶的活性与0.97r ≈ry 温度具有较强的线性关系;x (2)根据公式求得关于的线性回归方程为,将代入回归方程,即可求得y x 3.020.34y x =+30x =结果.【详解】解:(1)由题可知,,1(81114202326)176x =+++++=,()622222221(817)(1117)(1417)(2017)(2317)(2617)252ii x x =-=-+-+-+-+-+-=∑则,0.97r ===≈因为非常接近1,所以酶的活性与温度具有较强的线性相关性.||r y x (2)由题可知,,61152.58.7566i i y y ====∑,()()()61621850.34252iii i i x x y y b x x ==--==≈-∑∑,858.7517 3.02252a y bx =-=-⨯=所以关于的线性回归方程为,y x 3.020.34y x =+当时,.30x =ˆ 3.020.343013.22y=+⨯=故预测当温度为时,这种酶的活性指标值为13.22.30C ︒【点睛】本题考查线性回归分析,线性相关关系的判断以及求线性回归方程,正确利用公式是解题的关键,考查计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高二2月月考数学理试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的).1.(5分)在直角坐标系xOy中,在y轴上截距为﹣1且倾斜角为的直线方程为()A.x+y+1=0B.x+y﹣1=0C.x﹣y+1=0D.x﹣y﹣1=0考点:直线的斜截式方程.专题:计算题;直线与圆.分析:由直线的倾斜角可求直线的斜率,根据直线方程的斜截式可求直线方程解答:解:由题意可得,直线的斜率k=﹣1根据直线方程的截距式可知所求的直线方程为y=﹣x﹣1即x+y+1=0 故选A点评:本题主要考查了直线方程的斜截式的简单应用,属于基础试题2.(5分)已知向量=(﹣1,2,1),=(3,x,y),且∥,那么实数x+y等于()A.3B.﹣3 C.9D.﹣9考点:共线向量与共面向量.专题:计算题;空间向量及应用.分析:由=(﹣1,2,1),=(3,x,y),且∥,知,由此能求出实数x+y的值.解答:解:∵=(﹣1,2,1),=(3,x,y),且∥,∴,解得x=﹣6,y=﹣3,∴实数x+y=﹣6﹣3=﹣9.故选D.点评:本题考查共线向量的性质和应用,解题时要认真审题,注意合理地进行等价转化,是基础题.3.(5分)已知一个正方体的八个顶点都在一个球的表面上,若此正方体的棱长为2,那么这个球的表面积是()A.24πB.12πC.8πD.6π考点:球的体积和表面积.专题:计算题.分析:一个棱长为2的正方体的八个顶点都在球O的球面上,球是正方体的外接球,球的直径是正方体的体对角线,勾股定理可得体的对角线,得到球的直径,求出球的表面积.解答:解:∵一个棱长为2的正方体的八个顶点都在球O的球面上,∴球是正方体的外接球,球的直径是正方体的体对角线,有勾股定理可得体的对角线是=2,∴球的半径是,球的表面积是4π()2=12π,故选B.点评:本题考查球的内接多面体,是一个空间组合体的问题,解题的关键是找出两个几何体之间的关系,数量的关系.4.(5分)若椭圆的离心率为,则实数m等于()A.3B.1或3 C.3或D.1或考点:椭圆的简单性质.专题:计算题.分析:对m分0<m<4与m>4两类讨论,利用椭圆的简单性质即可求得m的值.解答:解:∵椭圆的方程为:+=1(m>0),∴若0<m<4,则椭圆的焦点在x轴,e2==,解得m=3;若m>4,则椭圆的焦点在y轴,e2==,解得m=.综上所述,m=3或m=.故选C.点评:本题考查椭圆的简单性质,考查转化思想与分类讨论思想,考查运算能力,属于中档题.5.(5分)已知直线a和两个平面α,β,给出下列两个命题:命题p:若a∥α,a⊥β,则α⊥β;命题q:若a∥α,a∥β,则α∥β;那么下列判断正确的是()A.p为假B.¬q为假C.p∧q为真D.p∨q为真考点:复合命题的真假;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:根据面面垂直的判定定理判断命题P是否为真命题;利用平行与同一直线的两平面的位置关系来判断命题q的真假;再根据复合命题的真值表判断即可.解答:解:∵a∥α,过a作平面γ,α∩γ=b,∴a∥b,∵a⊥β,∴b⊥β,∴α⊥β,命题P为真命题;∵a∥α,a∥β,α与β的位置关系是平行或相交,∴命题q为假命题;根据复合命题的真值表,A、B、C错误,D正确故选D点评:本题借助考查真假命题的判定,考查空间平面与平面的平行与垂直.6.(5分)双曲线的离心率为,则a的值是()A.B.2C.D.考点:双曲线的简单性质.专题:计算题.分析:由双曲线的离心率为,知,由此能求出a.解答:解:∵双曲线的离心率为,∴,解得a=.故选D.点评:本题考查双曲线的简单性质的应用,是基础题.解题时要认真审题,仔细解答.7.(5分)已知数列{a n}满足a n=n•2n,则其前n项和是()A.(n﹣1)2n+1﹣2 B.(n﹣1)2n+1+2 C.(n﹣1)2n﹣2 D.(n﹣1)2n+2考点:数列的求和.专题:计算题.分析:设其前n项和为S n,S n=1•21+2•22+…+n•2n,可以用特值法排除,也可以利用错位相减法即可求得S n.解答:解:∵a n=n•2n,设其前n项和为S n,当n=1时,a1=S1=2,可排除A,C;当n=2时,a2=2×22=8,S2=a1+a2=10,排除D;故选B.点评:本题考查数列的求和,考查特值法的应用,也可利用错位相减法,属于中档题.8.(5分)直线y=x+1被椭圆x2+2y2=4所截得的弦的中点坐标是()A.()B.(﹣,)C.(,﹣)D.(﹣,)考点:直线与圆锥曲线的关系.专题:计算题;圆锥曲线的定义、性质与方程.分析:将直线y=x+1代入椭圆x2+2y2=4中,利用韦达定理及中点坐标公式,即可求得结论.解答:解:将直线y=x+1代入椭圆x2+2y2=4中,得x2+2(x+1)2=4 ∴3x2+4x﹣2=0∴弦的中点横坐标是x==﹣,代入直线方程中,得y=∴弦的中点是(﹣,)故选B.点评:本题考查直线与椭圆的位置关系,考查韦达定理的运用,属于基础题.9.(5分)以正方体ABCD﹣A1B1C1D1的顶点D为坐标原点O,如图,建立空间直角坐标系,则与共线的向量的坐标可以是()A.B.C.D.考点:向量在几何中的应用;棱柱的结构特征.专题:计算题.分析:设正方体的棱长为:1,由图形可知,B1点在正方体的上底面上,B1点的纵标同C的纵标相同,B1在面A1B1C1D1上,得到点的竖标为1,根据B1点在棱上的位置,写出B1点的横标,从而得到的B1坐标,最后写出向量的坐标及与共线的向量的坐标即可.解答:解:由图形可知,B1点在正方体的上底面上,设正方体的棱长为:1,∴B1点的坐标是(1,1,1)则与共线的向量的坐标可以是故选C.点评:本题考查共线向量、空间中点的坐标,是一个基础题,解题时借助于点在正方体的一条棱上,写出横标,纵标和竖标,注意各个坐标的符号.10.(5分)(xx•开封二模)数列{a n}满足a1,a2﹣a1,a3﹣a2,…,a n﹣a n﹣1是首项为1,公比为2的等比数列,那么a n=()A.2n﹣1 B.2n﹣1﹣1 C.2n+1 D.4n﹣1考等差数列的通项公式.分析:a n是等比数列{a n﹣a n﹣1}的前n项和,利用等比数列的前n项公式可得a n.解答:解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1==2n﹣1 故选A.点评:本题关键在于观察出所给等比数列,与a n有什么关系,观察出来,此题迎刃而解.11.(5分)已知变量x,y满足,则2x+y的最大值为()A.B.8C.16 D.64考点:简单线性规划.专题:计算题.分析:先根据约束条件画出可行域,欲求z=2x+y的最大值,即要求z1=x+y的最大值,再利用几何意义求最值,分析可得z1=x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.解答:解:作图易知可行域为一个三角形,验证知在点A(1,2)时,z1=x+y取得最大值3,∴z最大是23=8,故选B.点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.12.(5分)(xx•浙江)过双曲线﹣=1(a>0,b>0)的右顶点A作斜率为﹣1的直线,该直线与双曲线的两条渐近线的交点分别为B、C.若=,则双曲线的离心率是()A.B.C.D.考直线与圆锥曲线的综合问题;双曲线的简单性质.专题:计算题;压轴题.分析:分别表示出直线l和两个渐进线的交点,进而表示出和,进而根据=求得a和b的关系,进而根据c2﹣a2=b2,求得a和c的关系,则离心率可得.解答:解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.点评:本题主要考查了直线与圆锥曲线的综合问题.要求学生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.二、填空题:(本大题共4小题,每小题5分,共20分.把正确答案填在题中横线上)13.(5分)设,则为.考点:微积分基本定理.专题:计算题.分析:运用微积分基本定理和定积分的运算律计算即可.解答:解:=+=﹣cosx+x =.故答案为:.点评:本题主要考查了定积分,运用微积分基本定理计算定积分.属于基础题.14.(5分)已知A(4,1,3),B(2,3,1),C(3,7,﹣5),点P(x,﹣1,3)在平面ABC内,则x=11.考点:空间点、线、面的位置.专题:计算题.分析:本题利用共面定理可以解答,即若空间中四点P,A,B,C,满足,则此四点共面,于是本题可以代入点的坐标,列方程组求解.解答:解:由共面向量定理,可设,其中x,y∈R,于是代入点的坐标有:(x﹣4,﹣2,0)=y(﹣2,2,﹣2)+z(﹣1,6,﹣8),得方程组:得故答案为:11点评:本题考查了空间向量的坐标运算,共面向量定理的应用,空间向量的坐标运算等知识内容,考查了向量相等的性质.15.(5分)直线y=kx﹣2与抛物线y2=8x交于A、B两点,且AB中点的横坐标为2,则k 的值为2.考点:直线与圆锥曲线的综合问题;中点坐标公式.专题:计算题.分析:直线y=kx﹣2与抛物线y2=8x交于两点,k≠0.由,得k2x2﹣4kx﹣8x+4=0,.而A、B中点的横坐标为2,由中点坐标公式能求出k.解答:解:∵直线y=kx﹣2与抛物线y2=8x交于两点,∴k≠0.由,得k2x2﹣4kx﹣8x+4=0,∴.而A、B中点的横坐标为2,∴,解得k=﹣1或k=2.而当k=﹣1时,方程k2x2﹣4kx﹣8x+4=0只有一个解,即A、B两点重合,∴k≠﹣1.∴k=2.故答案为:2.点评:本题考直线和抛物线的位置关系的应用,解题时要注意韦达定理和中点坐标公式的合理运用.16.(5分)双曲线﹣=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率e=.考点:双曲线的简单性质.专题:计算题.分析:将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.解答:解:将x=c代入双曲线的方程得y=即M(c,)在△MF1F2中tan30°=即解得故答案为:点评:本题考查双曲线中三参数的关系:c2=a2+b2,注意与椭圆中三参数关系的区别;求圆锥曲线的离心率就是求三参数的关系.三、解答题:(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(10分)在△ABC中,角A、B、C的对边分别为a,b,c,已知.(I)求边a的长;(II)求的值.考点:解三角形;三角函数的恒等变换及化简求值.专题:计算题.分析:(I)在三角形中,应用正弦定理写出关系式,根据sin(B+C)=2sinB及B+C=π﹣A 得sinA=2sinB,表示出a得到结果.(II)根据余弦定理做出角B的余弦值,是一个正数,得到这个角是一个锐角,根据两个角之间的关系求出正弦值,再把要求的式子用两角之和的余弦公式展开,得到结果.解答:解:(I)在△ABC中,由正弦定理得.由sin(B+C)=2sinB及B+C=π﹣A得sinA=2sinB.∴.(II)在△ABC中,由余弦定理得.∴.∴.点评:本题考查解三角形的问题和三角函数的恒等变形,是一个基础题,解题的关键是正弦定理和余弦定理的综合应用,注意角的范围的分析.18.(12分)已知命题p:关于x的不等式x2+(a﹣1)x+1≤0的解集为空集∅;命题q:函数f(x)=ax2+ax+1没有零点,若命题p∧q为假命题,p∨q为真命题,求实数a的取值范围.考点:复合命题的真假.专计算题.题:分析:对于命题p:x2+(a﹣1)x+1≤0的解集为空集,△=b2﹣4ac=(a﹣1)2﹣4<0,解得﹣1<a<3;对于命题q:f(x)=ax2+ax+1没有零点等价于方程ax2+ax+1=0没有实数根,由此进行分类讨论,能求出a的取值范围.解答:解:对于命题p:∵x2+(a﹣1)x+1≤0的解集为空集∴△=b2﹣4ac=(a﹣1)2﹣4<0,解得﹣1<a<3(4分)对于命题q:f(x)=ax2+ax+1没有零点等价于方程ax2+ax+1=0没有实数根①当a=0时,方程无实根符合题意②当a≠0时,△=a2﹣4a<0解得0<a<4∴0≤a<4(8分)由命题p∧q为假命题,p∨q为真命题可知,命题p与命题q有且只有一个为真如图所示所以a的取值范围为(﹣1,0)∪[3,4)(12分)点评:本题考查复合命题真假判断的应用,解题时要注意不等式知识的灵活运用,合理地进行数形结合思想进行解题.19.(12分)抛物线顶点在原点,它的准线过双曲线﹣=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(,),求抛物线与双曲线方程.考点:抛物线的标准方程;双曲线的标准方程.专题:计算题.分析:首先根据抛物线的准线过双曲线的焦点,可得p=2c,再利用抛物线与双曲线同过交点(,),求出c、p的值,进而结合双曲线的性质a2+b2=c2,求解即可.解答:解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.设抛物线方程为y2=4c•x,∵抛物线过点(,),∴6=4c•.∴c=1,故抛物线方程为y2=4x.又双曲线﹣=1过点(,),∴﹣=1.又a2+b2=c2=1,∴﹣=1.∴a2=或a2=9(舍).∴b2=,故双曲线方程为:4x2﹣=1.点评:本题考查了抛物线和双曲线方程的求法:待定系数法,熟练掌握圆锥曲线的性质是解题的关键,同时考查了学生的基本运算能力与运算技巧.20.(12分)(xx•吉安二模)某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为t元(t为常数,且2≤t≤5),设该食品厂每公斤蘑菇的出厂价为x元(25≤x≤40),根据市场调查,销售量q与e x成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(Ⅰ)求该工厂的每日利润y元与每公斤蘑菇的出厂价x元的函数关系式;(Ⅱ)若t=5,当每公斤蘑菇的出厂价x为多少元时,该工厂的利润y最大,并求最大值.考点:函数模型的选择与应用.专题:应用题.分析:(I)由条件“日销售量与e x(e为自然对数的底数)成反比例”可设日销量为,根据日利润y=每件的利润×件数,建立函数关系式,注意实际问题自变量的范围.(II)先对函数进行求导,求出极值点,讨论极值是否在25≤x≤40范围内,利用单调性求出函数的最值.解答:解:(Ⅰ)设日销量,∴k=100e30,∴日销量∴.(Ⅱ)当t=5时,由y'≥0得x≤26,由y'≤0得x≥26∴y在[25,26]上单调递增,在[26,40]上单调递减.∴当x=26时,y max=100e4.当每公斤蘑菇的出厂价为26元时,该工厂的利润最大,最大值为100e4元.点评:解决实际问题的关键在于建立数学模型和目标函数,把“问题情境”译为数学语言,找出问题的主要关系,并把问题的主要关系抽象成数学问题,在数学领域寻找适当的方法解决,再返回到实际问题中加以说明.21.(12分)四棱锥P﹣ABCD中,PA⊥面ABCD,底面ABCD为菱形,且有AB=1,,∠BAD=120°,E为PC中点.(Ⅰ)证明:AC⊥面BED;(Ⅱ)求二面角E﹣AB﹣C的平面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:计算题;证明题.分(I)因为菱形的对角线互相垂直,所以AC⊥BD,再由△PAC的中位线,得到EO∥PA,析:结合PA⊥面ABCD,所以EO⊥面ABCD,从而AC⊥EO.最后根据直线与平面垂直的判定定理,得到AC⊥面BED;(II)以A为原点,AD、AP所在直线分别为y轴、z轴,建立如图所示坐标系,则可得到A、B、C、E各点的坐标,从而得到向量、、的坐标,然后利用垂直向量数量积为零的方法,分别求出平面ABE和平面ABC的一个法向量,结合空间向量的夹角公式计算出它们的夹角的余弦值.最后根据题意,二面角E﹣AB﹣C是锐二面角,得到二面角E﹣AB﹣C平面角的余弦值为余两个法向量夹角余弦的绝对值.解答:解:(Ⅰ)设O为底面ABCD的中心,连接EO,∵底面ABCD为菱形,∴AC⊥BD∵△PAC中,E、O分别是PC、PA的中点∴EO∥PA又∵PA⊥面ABCD,∴EO⊥面ABCD∵AC⊂面ABCD,∴AC⊥EO又∵BD、EO是平面BED内的两条相交直线∴AC⊥面BED(6分)(Ⅱ)以A为原点,AD、AP所在直线分别为y轴、z轴,建立如图所示坐标系,则可得∴(8分)设是平面ABE一个法向量由,解得,所以取x1=1,,,可得,因为PA⊥平面ABC,所以向量即为平面ABC的一个法向量,设=(10分)∴根据题意可知:二面角E﹣AB﹣C是锐二面角,其余弦值等于|cos<n1,n2>|=∴二面角E﹣AB﹣C的平面角的余弦值为.(12分)点评:本题给出底面为菱形,一条侧棱垂直于底面的四棱锥,证明线面垂直并且求二面角所成角的余弦之值,着重考查了线面垂直的判定与性质和用空间向量求平面间的夹角的知识点,属于中档题.22.(12分)在直角坐标系中,O为坐标原点,直线l经过点P(3,)及双曲线的右焦点F.(1)求直线l的方程;(2)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程;(3)若在(1)、(2)情形下,设直线l与椭圆的另一个交点为Q,且=λ,当||最小时,求λ的值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)确定双曲线的右焦点坐标,利用两点式,可求方程;(2)设出椭圆的标准方程,利用焦点坐标及点P在椭圆上,求出几何量,即可得到椭圆的标准方程;(3)直线方程,代入椭圆方程,求出Q的坐标,进而可的坐标,求模长,利用配方法求最值,即可得到结论.解答:解:(1)由题意双曲线的右焦点为F(2,0)∵直线l经过点P(3,),F(2,0)∴根据两点式,得所求直线l的方程为即y=(x﹣2).∴直线l的方程是y=(x﹣2).(2)设所求椭圆的标准方程为∵一个焦点为F(2,0)∴c=2,即a2﹣b2=4 ①∵点P(3,)在椭圆上,∴②由①②解得a2=12,b2=8所以所求椭圆的标准方程为;(3)由题意,直线方程代入椭圆方程可得x2﹣3x=0 ∴x=3或x=0∴y=或y=﹣2∴Q(0,﹣2)∴∴=λ=,∴=∴∴当λ=时,最小.点评:本题考查直线与椭圆的方程,考查向量知识,考查学生分析解决问题的能力,属于中档题.。