电路分析与仿真

电路分析与仿真
电路分析与仿真

课程设计任务书

学院信息工程学院班级自动化2班姓名XXX 设计起止日期2012.12.24~~2012.12.28

设计题目:电路分析与仿真

设计任务(主要技术参数):

指导教师评语:

成绩:签字:

年月日

课程设计说明书

一、课程设计的目的

电路原理是本专业以后所涉及到专业课的基础,将电路原理的理论知识弄懂、弄明白是为了以后学习专业课的时候能够更好的去实践。理论是实践的基础,只有掌握了基本的电路分析、计算的方法才会将以后的专业课融会贯通。

电路原理课程设计是理论教学之后的一个综合性实践教学环节,是对课程理论和课程实验的综合和补充。学会并利用一种电路分析软件,对电路进行分析、计算和仿真,通过查找资料,选择方案,设计电路,撰写报告,完成一个较完整的设计过程,将抽象的理论知识与实际电路设计联系在一起,使学生在掌握电路基本设计

方法的同时,加深对课程知识的理解和综合应用,培养学生综合运用基础理论知识和专业知识解决实际工程设计问题的能力,以及工程意识和创新能力。

二、课程设计的基本要求

通过本次的课程设计可以更娴熟的掌握一些电路分析的基本方法,更进一步掌握所学的理论知识。完成指定的题目和仿真任务,掌握仿真方法和学会写设计报告。1.明确设计任务

对设计任务进行具体分析,充分了解性能,指标,内容以及要求,明确应完成的任务。

2.方案选择与论证

通过查阅资料对不同的设计方案进行比较论证,根据现有的条件选择合适的设计方案,力争作到合理,可靠,经济,先进,便于实现,绘制出整体框图。

3.单元电路设计

确定各个单元的电路结构,计算元件参数(写出主要计算过程和公式),选择器件。

4.绘制原理图

用MATLAB绘制完整的原理图,在图中表明主要测试点以及理想情况下的参数值(或波形),列出元件表。

5.仿真验证

有条件时应该对所设计电路进行仿真,记录仿真结果,注意和理论值相比较,相差过大时应查明原因并即使修正,直到满足设计要求。

三、设计任务

本次课设采用一个电流源is1,两个电压源us1和us4,is1=1A,us1=30V,us4=5V,R1至R4的阻值分别为5Ω,5Ω,30Ω,20Ω,求流经R3的电流I,并仿真。

电路图连接如下

四、课程设计的主要内容

仿真软件的选择:

1、仿真软件的功能及特点:

MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

电路的仿真软件使用MATLAB,其特点:采用直观电路连接方法,可对电路进行科学仿真并自动计算出所需元件值以及各支路电流值,该软件采用全英文操作界面,所提供的电路元件比较全面,操作简单,仿真后效果较好,非常清晰,适用于电路的仿真及计算。

2、仿真软件的任务:

采用本软件对所设计的电路进行电路图的绘制,然后对绘制出的电路图进行仿真,得出所需数值。

3、仿真方案确定:

使用MATLAB对所设计的支路电流法电路进行科学仿真,将各支路数值列出如下:

五、电路理论分析

利用公式编辑器mathtype:

由回路电流法

六、电路的原理图设计

打开MATLAB软件,

在Simulink元件库

进行元件的选择。首先选择电压源元件,电流源元件双击元件名,在图纸上就出现了电压源电流源的图标,将其

拖放到适当位置,在Simulink元件库中找到电阻元件,双击元件名,在图纸中出现电阻元件图标,将其拖放到适当位置,输入此电阻元件的名字R1,在目录中对电阻值赋值为5Ω。其他电阻元件的制作方法如上。

完成电路图,所截得的电路图如下:

七、仿真分析

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号:

年月日 实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个

平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图:

五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

各种电路仿真软件的分析与比较

一.当今流行的电路仿真软件及其特性 电路仿真属于电子设计自动化(EDA)的组成部分。一般把电路仿真分为三个层次:物理级、电路级和系统级。教学中重点运用的为电路级仿真。 电路级仿真分析由元器件构成的电路性能,包括数字电路的逻辑仿真和模拟电路的交直流分析、瞬态分析等。电路级仿真必须有元器件模型库的支持,仿真信号和波形输出代替了实际电路调试中的信号源和示波器。电路仿真主要是检验设计方案在功能方面的正确性。电路仿真技术使设计人员在实际电子系统产生之前,就有可能全面地了解电路的各种特性。目前比较流行的电路仿真软件大体上说有:ORCAD、Protel、Multisim、TINA、ICAP/4、Circuitmaker、Micro-CAP 和Edison等一系列仿真软件。 电路仿真软件的基本特点: ●仿真项目的数量和性能: 仿真项目的多少是电路仿真软件的主要指标。各种电路仿真软件都有的基本功能是:静态工作点分析、瞬态分析、直流扫描和交流小信号分析等4项;可能有的分析是:傅里叶分析、参数分析、温度分析、蒙特卡罗分析、噪声分析、传输函数、直流和交流灵敏度分析、失真度分析、极点和零点分析等。仿真软件如SIMextrix只有6项仿真功能,而Tina6.0有20项,Protel、ORCAD、P-CAD等软件的仿真功能在10项左右。专业化的电路仿真软件有更多的仿真功能。对电子设计和教学的各种需求考虑的比较周到。例如TINA的符号分析、Pspice和ICAP/4的元件参数变量和最优化分析、Multisim的网络分析、CircuitMaker的错误设置等都是比较有特色的功能。 Pspice语言擅长于分析模拟电路,对数字电路的处理不是很有效。对于纯数字电路的分析和仿真,最好采用基于VHDL等硬件描述语言的仿真软件,例如,Altera公司的可编程逻辑器件开发软件MAX+plusII等。 ●仿真元器件的数量和精度: 元件库中仿真元件的数量和精度决定了仿真的适用性和精确度。电路仿真软件的元件库有数千个到1--2万个不等的仿真元件,但软件内含的元件模型总是落后于实际元器件的生产与应用。因此,除了软件本身的器件库之外,器件制造商的网站是元器件模型的重要来源。大量的网络信息也能提供有用的仿真模型。设计者如果对仿真元件模型有比较深入的研究,可根据最新器件的外部特性参数自定义元件模型,构建自己的元件库。对于教学工作者来说,软件内的元件模型库,基本上可以满足常规教学需要,主要问题在于国产元器件与国外元器件的替代,并建立教学中常用的国产元器件库。 电路仿真软件的元件分类方式有两种:按元器件类型如电源、二极管、74系列等分成若干个大类;或按元器件制造商分类,大多数仿真软件有电路图形符号的预览,便于选取使用。

电路计算机仿真实验报告

电路计算机仿真分析 实验报告

实验一直流电路工作点分析和直流扫描分析 一、实验目的 1、学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 2、学习使用Pspice进行直流工作点分析和直流扫描分析的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。PSPICE软件是采用节点电压法对电路进行分析的。 使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE 的元件符号库绘制电路图并进行编辑、存盘。然后调用分析模块、选择分析类型,就可以“自 动”进行电路分析了。需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电 压方程的,因此,在绘制电路图时,一定要有参考节点(即接地点)。此外,一个元件为一 条“支路”(branch),要注意支路(也就是元件)的参考方向。对于二端元件的参考方向定 义为正端子指向负端子。 三、示例实验 应用PSPICE求解图1-1所示电路个节点电压和各支路电流。 图1-1 直流电路分析电路图

4.000V R2 1 2.000A 0V Idc2 4Adc 4.000A 6.000V R1 1 4.000A Idc1 2Adc 2.000A R3 3 2.000A 图1-2 仿真结果 四、选做实验 1、实验电路图 (1)直流工作点分析,即求各节点电压和各元件电压和电流。 (2)直流扫描分析,即当电压源Us1的电压在0-12V之间变化时,求负载电阻R L中电流I RL随电压源Us1的变化曲线。 R4 3 Is3 2Adc 0Vs2 10Vdc RL 1 Is1 1Adc Is2 1Adc R1 4 I Is5 3Adc R2 2 12Vdc IPRINT Vs3 5Vdc Vs4 7Vdc 图1-3 选做实验电路图 2、仿真结果

模拟电路_Multisim软件仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件, 本章节讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

电子电路仿真分析与设计

上海大学 模拟电子技术课程 实践项目 项目名称:_电子电路仿真分析与设计_指导老师:_______李智华________ 学号:______12122272_______ 姓名:_______翟自协________ 日期:_____2014/1/27______

电子电路仿真软件PSPICE 题目一:放大电路电压增益的幅频响应与相频响应 电路如图所示,BJT为NPN型硅管,型号为2N3904,放大倍数为50,电路其他元件参数如图所示。求解该放大电路电压增益的幅频响应和相频响应。 步骤如下: 1、绘制原理图如上图所示。 2、修改三极管的放大倍数Bf。选中三极管→单击Edit→Model→Edit Instance Model, 在Model Ediror中修改放大倍数Bf=50。 3、由于要计算电路的幅频响应和相频响应,需设置交流扫描分析,所以电路中需要有交流源。 双击交流源v1设置其属性为:ACMAG=15mv,ACPHASE=0。 4、设置分析类型: 选择Analysis→set up→AC Sweep,参数设置如下:

5、Analysis→Simulate,调用Pspice A/D对电路进行仿真计算。 6、Trace→ Add(添加输出波形),,弹出Add Trace对话框,在左边的列表框中选中v(out),单击右边列表框中的符号“/”,再选择左边列表框中的v(in),单击ok按钮。 仿真结果如下:

上面的曲线为电压增益的幅频响应。要想得到电压增益的相频响应步骤如下:在probe下,选择Plot→ Add Plot(在屏幕上再添加一个图形)。如下图所示: 单击Trace→ Add(添加输出波形),弹出Add Trace对话框,单击右边列表框中的符号“P”,在左边的列表框中选中v(out),单击右边列表框中的符号“-”,再单击右边列表框中的符号“P”,再选择左边列表框中的v(in),单击ok按钮。函数P()用来求相位。

怎样利用电路仿真软件进行模拟电路课程的学习

怎样利用电路仿真软件进行模拟电路课程的学习电路分析实验报告 实验二 学习用multisim软件对电路进行仿真 一.实验要求与目的 1.进一步熟悉multisim软件的各种功能。 2.巩固学习用multisim软件画电路图。 3.学会使用multisim里面的各种仪器分析模拟电路。 4.用multisim软件对电路进行仿真。 二、实验仪器 电脑一台及其仿真软件。 三.实验内容及步骤

(1)在电子仿真软件Multisim 基本界面的电子平台上组建如图所示的仿真电路。双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”栏改成“1”,将“Label”选项卡的“RefDes”栏改成“RP。 ” 2)调节RP大约在35%左右时,利用直流工作点分析方法分析直 流工作点的值。直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 自动将电路分析条件设为电感、交流电压源短路,电容断开。 单击Multisim 菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。单击Simulate 按钮进行直流工作点分析。分析结果如图3所示。列出了

单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。 表1 静态工作点数据 电压放大倍数测试 (1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。 (2)开启仿真开关,双击虚拟函数信号发生器图标“XFG1”,将打开虚拟函数信号发生器放大面板,首确认“Waveforms”栏下选取的是正弦信号,然后再确认频率为1kHZ”;再确认幅度为 10mVp,如图5所示。 四.仿真分析 动态测量仿真电路

AltiumDesigner中的电路仿真

今天看了下Altium Designer的电路仿真功能,发现它还是蛮强大的,按着help里面的文档《TU0106 Defining & running Circuit Simulation 》跑了一下,觉得还行,所以就把这个文档翻译下。。。。。 其中包含了仿真功能的介绍,元件仿真模型的添加与修改,仿真环境的设置,等等。本人对SPICE仿真了解的不多,里面涉及到SPICE的文件如果有什么错误,欢迎提出! 一、电路仿真功能介绍 Altium Designer的混合电路信号仿真工具,在电路原理图设计阶段实现对数模混合信号电路的功能设计仿真,配合简单易用的参数配置窗口,完成基于时序、离散度、信噪比等多种数据的分析。Altium Designer 可以在原理图中提供完善的混合信号电路仿真功能 ,除了对XSPICE 标准的支持之外,还支持对Pspice模型和电路的仿真。 Altium Designer中的电路仿真是真正的混合模式仿真器,可以用于对模拟和数字器件的电路分析。仿真器采用由乔治亚技术研究所(GTRI)开发的增强版事件驱动型XSPICE仿真模型,该模型是基于伯克里SPICE3代码,并于且SPICE3f5完全兼容。 SPICE3f5模拟器件模型:包括电阻、电容、电感、电压/电流源、传输线和开关。五类主要的通用半导体器件模型,如diodes、BJTs、JFETs、MESFETs和MOSFETs。 XSPICE模拟器件模型是针对一些可能会影响到仿真效率的冗长的无需开发局部电路,而设计的复杂的、非线性器件特性模型代码。包括特殊功能函数,诸如增益、磁滞效应、限电压及限电流、s域传输函数精确度等。局部电路模型是指更复杂的器件,如用局部电路语法描述的操作运放、时钟、晶体等。每个局部电路都下在*.ckt文件中,并在模型名称的前面加上大写的X。 数字器件模型是用数字SimCode语言编写的,这是一种由事件驱动型XSPICE模型扩展而来专门用于仿真数字器件的特殊的描述语言,是一种类C语言,实现对数字器件的行为及特征的描述,参数可以包括传输时延、负载特征等信息;行为可以通过真值表、数学函数和条件控制参数等。它来源于标准的XSPICE代码模型。在SimCode中,仿真文件采

数电仿真实验报告

数字电子技术仿真 实验报告 班级: 姓名: 学号:

实验一组合逻辑电路设计与分析 一、实验目的 1.掌握组合逻辑电路的特点; 2.利用逻辑转换仪对组合逻辑电路进行分析与设计。 二、实验原理 组合逻辑电路是一种重要的、也是基本的数字逻辑电路,其特点是:任意时刻电路的输出仅取决于同一时刻输入信号的取值组合。 对于给定的逻辑电路图,我们可以先由此推导出逻辑表达式,化简后,由所得最简表达式列出真值表,在此基础上分析确定电路的功能,这也即是逻辑电路的分析过程。 对于组合逻辑电路的设计,一般遵循下面原则,由所给题目抽象出便于分析设计的问题,通过这些问题,分析推导出真值表,由此归纳出其逻辑表达式,再对其化简变换,最终得到所需逻辑图,完成了组合逻辑电路的设计过程。 逻辑转换仪是在Multisim软件中常用的数字逻辑电路设计和分析的仪器,使用方便、简洁。 三、实验电路及步骤 1.利用逻辑转换仪对已知逻辑电路进行分析。 (1)按图1-1连接电路。 图1-1 待分析的逻辑电路 (2)通过逻辑转换仪,得到下图1-2所示结果。 由图可看到,所得表达式为:输出为Y, D'+ABCD CD'+ABC' AB' + D C' BCD'+AB' A' + D BC' A'+ CD B' D'+A' C' B' A' Y

图1-5 经分析得到的真值表和表达式 (3)分析电路。观察真值表,我们发现:当输入变量A、B、C、D中1的个数为奇数时,输出为0;当其为偶数时,输出为1。因此,我们说,这是一个四输入的奇偶校验电路。 2.根据要求,利用逻辑转换仪进行逻辑电路的设计。 问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾推测器。为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才会产生报警控制信号,试设计报警控制信号的电路。 具体步骤如下: (1)分析问题:探测器发出的火灾探测信号有两种情况,一是有火灾报警(可用“1”表示),一是没有火灾报警(可用“0”来表示),当有两种或两种以上报警器发出报警时,我们定义此时确有警报情况(用“1”表示),其余以“0”表示。由此,借助于逻辑转换仪面板,我们绘出如图1-3所示真值表。 图1-3 经分析得到的真值表

计算机仿真实验-基于Simulink的简单电力系统仿真参考资料

实验七 基于Simulink 的简单电力系统仿真实验 一. 实验目的 1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用; 3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。 二.实验内容与要求 单机无穷大电力系统如图7-1所示。平衡节点电压044030 V V =∠?。负荷功率10L P kW =。线路参数:电阻1l R =Ω;电感0.01l L H =。发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流70 fn i A =;额定频率50n f Hz =。发电机定子侧参数:0.26s R =Ω,1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。发电机阻尼绕组参数:0.0224kd R =Ω,1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。发电机转动惯量和极对数分别为224.9 J kgm =和2p =。发电机输出功率050 e P kW =时,系统运行达到稳态状态。在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。

G 发电机节点 V 负 荷 l R l L L P 图 7.1 单机无穷大系统结构图 输电线路 三.实验步骤 1. 建立系统仿真模型 同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。模块的第1个输入端子(Pm)为电机的机械功率。当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。在发电机模式下,输入可以是一个正的常数,也可以是一个函数或者是原动机模块的输出;在电动机模式下,输入通常是一个负的常数或者是函数。模块的第2个输入端子(Vf)是励磁电压,在发电机模式下可以由励磁模块提供,在电动机模式下为一个常数。 在Simulink仿真环境中打开Simulink库,找出相应的单元部件模型,构造仿真模型,三相电压源幅值为4403,频率为50Hz。按图连接好线路,设置参数,建立其仿真模型,仿真时间为5s,仿真方法为ode23tb,并对各个单元部件模型的参数进行修改,如图所示。

Matlab第五章 Simulink模拟电路仿真

第五章Simulink模拟电路仿真 武汉大学物理科学与技术学院微电子系常胜

§5.1 电路仿真概要 5.1.1 MATLAB仿真V.S. Simulink仿真 利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。 武汉大学物理科学与技术学院微电子系常胜

ex5_1.m clear; V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5; R1=(Rb*Rc)/(Ra+Rb+Rc); R2=(Rc*Ra)/(Ra+Rb+Rc); R3=(Ra*Rb)/(Ra+Rb+Rc); Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd)); I=V/Req 武汉大学物理科学与技术学院微电子系常胜

ex5_1 武汉大学物理科学与技术学院微电子系常胜

武汉大学物理科学与技术学院微电子系常胜

注意Simulink仿真中imeasurement模块 /vmeasurement模块和Display模块/Scope模块的联合使用 Series RLC Branch模块中R、C、L的确定方式 R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0 C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0 L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值 武汉大学物理科学与技术学院微电子系常胜

方波逆变电路的计算机仿真课案

电力电子系统仿真 题目:单相方波逆变电路仿真 院系:电气工程学院 班级:电气F1305 学号:201323010209 学生姓名:蒋广敬

单相方波逆变电路仿真 实验步骤 ①设计一单相桥式方波逆变电路,开关器件选用IGBT,直流电压为300V,电阻负载,电阻1欧姆,电感2毫亨。根据上述要求完成主电路设计。 ②完成上述单相桥式方波逆变电路的计算机仿真,观察输出电压波形。系统输入电流波形,电压电流波形的谐波情况、不同仿真条件时系统输入输出的变化情况和理论分析的结果进行比较。 仿真软件简介 MATLAB 是一种适用于工程应用各领域分析设计与复杂计算的科学计算软件,由美国MathWorks公司于1984年正式推出,1988年推出3.X(DOS)版本,1992年推出4.X(Windows)版本;近几年来,Mathworks公司将MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。MATLAB 已成为美国和其他发达国家大学教学和科学研究中最常用而且必不可少的工具。 MATLAB时“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需求。在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数,所有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。 MATLAB主要包括MATLAB和Simulink两大部分。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便

电路仿真实验报告

本科实验报告 实验名称:电路仿真 实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或

AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。 TRAN分析:分析5个周期输出节点为Vout的时域响应。 实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。 根据并联谐振电路原理,谐振时节点out电压最大且谐振频率为w0=1/LC=1000 10,f0=w0/2 =503.29Hz 谐振时节点out电压 * 理论值由分压公式得u=2000/(2000+10)*5=4.9751V.

电路仿真实验报告

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。 (5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。

四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化 曲线。 曲线如图: 直流扫描分析的输出波形 3、数据输出为: V_Vs1 I(V_PRINT1)

0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00 从图中可得到IRL与US1的函数关系为: IRL=1.4+(1.2/12)US1=1.4+0.1US1 五、思考与讨论 1、根据仿真结果验证基尔霍夫定律 根据图1-1,R1节点:2A+2A=4A,R1,R2,R3构成的闭合回路:1*2+1*4-3*2=0,满足基尔霍夫定律。 U呈线性关系,3R I=1.4+(1.2/12) 1S U=1.4+0.11S U,式中1.4A表2、由图1-3可知,负载电流与1S U置零时其它激励在负载支路产生的响应,0.11S U表示仅保留1S U,将其它电源置零(电示将1S 压源短路,电流源开路)时,负载支路的电流响应。 3、若想确定节点电压Un1随Us1变化的函数关系,应如何操作? 应进行直流扫描,扫描电源Vs1,观察Un1的电压波形随Us1的变化,即可确认其函数关系! 4、若想确定电流Irl随负载电阻RL的变化的波形,如何进行仿真? 将RL的阻值设为全局变量var,进行直流扫描,观察电流波形即可。 六、实验心得 1、由实验图形和数据可知实验中的到的曲线满足数据变化规律,得到的函数关系式是正确的。 2、通过仿真软件可以很方便的求解电路中的电流电压及其变化规律。 实验二戴维南定理和诺顿定理的仿真 一、实验目的 (1)进一步熟悉仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。学习Probe窗口的简单设置。 (2)加深对戴维南定理与诺顿定理的理解。 二、原理与说明 戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻的串联的支路来代替,该电路的电压等于原网络的开路电压,电阻等于原网络的全部独立电压源置零后的输入电阻。诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电流源与电导的并联的支路来代替,该电路的电流等于原网络的短路电流,电导等于原网络的全部独立电源置零后的输入电导。。

2 Multisim 电路仿真分析(一)

Multisim 电路仿真分析(一) Multisim 12.0提供了多种电路仿真引擎,包含Xspice、VHDL和Verilog等。电路仿真分析的一般流程为: (1)设计仿真电路图; (2)设置分析参数; (3)设置输出变量的处理方式; (4)设置分析项目; (5)自定义分析选项 开始/终止仿真分析,可以单击仿真运行开关按钮,或者执行主菜单的Simulate|Run命令。 暂停/继续仿真分析,可以单击仿真运行开关按钮,或者执行主菜单的Simulate|Pause命令。 1. Multisim 1 2.0的仿真参数设置 在使用Multisim12.0进行仿真分析时,需要对各类仿真参数进行设置,包含仿真基本参数(仿真计算步长、时间、初始条件等)的设置;仿真分析参数(分析条件、分析范围、输出结点等)设置;仿真输出显示参数(数据格式、显示栅格、读数标尺等)设置。 1)仿真基本参数的设置 仿真基本参数的设置,可以通过执行Simulate|Interactive Simulation Settings 命令,打开交互式仿真设置对话框,如图2-1所示,通过修改或者重设其中的参数,可以完成仿真基本参数的设置。

图3-1 仿真基本参数设置对话框 2)仿真输出显示参数的设置 仿真输出参数的设置,是通过执行View|Grapher命令,打开Grapher View 仿真图形记录器,对话框如图3-2所示。 图3-2 Grapher View仿真图形记录器 2. Multisim 12.0的仿真分析 Multisim12.0提供了多种仿真分析方法,如图3-3所示,主要包含:直流工作点分析(DC Operation Point Analysis),交流分析(AC Analysis),单频交流分析( Single Frequency AC Analysis),瞬态分析( Transient Analysis),傅立叶分析( Fourier Analysis),噪声分析(Noise Analysis),噪声系数分析( Noise Figure Analysis),失真分析( Distortion Analysis),直流扫描分析( DC Sweep Analysis),灵敏度分析( Sensitivity Analysis),参数扫描分析( Parameter Sweep Analysis),温度扫描分析(Temperature Sweep Analysis),极点-零点分析( Pole-Zero Analysis)),

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

仿真分析步骤

例2:以P214例3.2.1说明仿真过程。 仿真分析步骤(P214例3.2.1) 1、选择菜单:放置(Place)\元件(Component)… 数据库(Database):主数据库(Master Database)组(Group):电源(Sources) 系列(Family):电源(POWER_SOURCES) 元件(Component):直流电压源(DC_POWER),单击OK按钮。 Ctrl+M设置属性后放置(或放置后,双击该元件设置属性): 在参数(value)属性页中V oltage(V)选2V,单击OK(确定)按钮。 同法放置接地:GROUND, 同法放置直流电压源:DC_POWER为4V。 在value属性页中V oltage(RMS)选4V。 同法放置直流电流源:系列(Family):电源(SIGNAL_CURRENT_SOURCES) 元件(Component):DC_CURRENT为3A。 双击该元件,在参数(value)属性页中Current(A)选2V,单击OK(确定)按钮。 同法放置直流电流源:DC_CURRENT为2A。 2、选择菜单:放置(Place)\元件(Component)… 数据库(Database):主数据库(Master Database)组(Group):Basic 系列(Family):RESISTOR 元件(Component):1Ω,单击OK按钮。 Ctrl+M设置属性后放置(或放置后,双击该元件设置属性): 在参数(value)属性页中Resistance选2Ω(Ohm),单击OK(确定)按钮。 按Ctrl+R旋转900。 同法放置其余电阻。 3、选择菜单:放置(Place)\导线(Wire) 连线如图所示,在需要的地方放置节点:放置(Place)\节点(Join)。 4、选择菜单“仿真(Simulate)/分析(Analyses)/ 直流工作点分析(DC Operation Point Analysis)”,弹出图3.2.5 所示分析参数设置对话框,“输出(Output variables)”用于选择所 要分析的结点、电源和电感支路。“电路变量(Variables in circuit)”栏中列出了电路中可以

电路仿真实验报告.pdf

实验1 叠加定理的验证 一、电路图 二、实验步骤 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(注意电流表和电压表的参考方向),并按上图连接; 2.设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为 10A。 3.实验步骤:

1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 根据电路分析原理,解释三者是什么关系?并在实验报告中验证原理。 三、实验数据: 电压电流U/V I/A 第一组12V 10A 6.800 -1.600 第二组0V 10A 2.000 -4.000 第三组12V 0A 4.800 2.400 四、实验数据处理: U2 + U3 = 2.000V + 4.800V = 6.800V = U3 I2 + I3 = (-4.000A) + 2.400A= -1.600A = I1 五、实验结论: 由电路分析叠加原理知:由线性电路、线性受控源及独立源组成的电路中,每一元件的电流或电压可以看成是每一个独立源单独作用

时,在该元件上产生的的电流或电压的代数和。 本次实验中,第一组各数据等于第二组与第三组各对应实验数据之和,与叠加原理吻合,验证了叠加原理的正确性,即每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的的电流或电压的代数和。

反相比例运算电路仿真分析.doc

1 反相比例运算电路 1.1 综述 反相比例运算电路实际上是深度的电压并联负反馈电路。在理想情况下,反相输入端的电位等于零,称为“虚地”。因此加在集成运放输入端的共模电压很小。 输出电压与输入电压的幅值成正比,但相位相反,因此,电路实现了反相比例运算。比例系数的数值决定于电阻RF与R1之比,而与集成运放内部各项参数无关。只要RF 和R1的阻值比较准确和稳定,即可得到准确额比例运算关系。比例系数的数值可以大于或等于1,也可以小于1。 由于引入了深度电压并联负反馈,因此电路的输入电阻不高,而输出电阻很低。1.2 工作原理 1.2.1 原理图说明 图1.2.1.1 反相比例运算电路 如图所示,输入电压V1经电阻R1接到集成运放的反相输入端,运放的同相输入端经电阻R2接地。输出电压经反馈电阻RF引回到反相输入端。 集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。为使差分放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。因此,通常选择R2的阻值为R2=R1∥RF 经过分析可知,反相比例运算电路中反馈的组态是电压并联负反馈。由于集成运放

的开环差模增益很高,因此容易满足深度负反馈的条件,故可以认为集成运放工作在线性区。所以,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反相比例运算电路的输出输入关系。 由于“虚断”,U +=0 又因“虚短”,可得 U - =U + =0 由于 I -=0 , 则由图可见 I I =I F 即(U I -U - )/R1=(U—U )/RF 上式中U - =0,由此可求得反相比例运算电路的输出电压与输入电压的关系为 U 0=-RF·U I /R1 1.2.2 元件表 元件名称大小数量 集成运算放大器741 1 直流电源1V 1 电阻 6.8K 1 10K 1 20K 1 1.3 仿真结果分析 图1.3.1 仿真分析结果图 由于输入电压为1V,所以根据公式可得输出电压为-1.997,符合理论。

相关文档
最新文档