线性分类器-模式识别

线性分类器-模式识别
线性分类器-模式识别

作业2-线性分类器

第一章感知机算法 (2)

1.1算法原理 (2)

1.2程序代码 (2)

1.3运行结果及解释 (4)

第二章最小二乘算法 (6)

2.1算法原理 (6)

2.2程序代码 (7)

2.3运行结果及解释 (8)

第三章支持矢量机算法 (10)

3.1算法原理 (10)

3.2程序代码 (11)

3.3运行结果及解释 (13)

第四章三种方法比较 (16)

理解和体会 (18)

附录 (18)

主程序代码:stp2.m (18)

生成样本数据代码createSample.m (20)

绘图代码plotData.m: (21)

第一章 感知机算法

1.1 算法原理

对于两类的情况,线性分类器是一个超平面: *T =w x 0 ,其中*w 是法向量,x 是训练集的增广向量(每一个训练样本的最后一维值为1),应该满足如下条件:

*1

*2

T T w w >?∈

x

该算法的代价函数定义为()()T

Y

J δ∈=

∑x

x w w

x 其中Y 是所有的被分错的训练样本

的集合,而针对每一个分错的样本x ,其对应的δx 满足:

12

11

w w δδ=-∈=+∈x x x x ,因

此()J w 一定大于0的。现在的目标就是求解优化函数min ()J w ,为了简单起见,采用梯度下降法,()()Y

J δ∈?=

∑w x

x w x ,迭代步骤为(1)()()t

Y

t t αδ∈+=-∑x

x w w x ,

其中t α是迭代步长,同样为了简单起见,可以取一个较小的常数(太大会导致迭代在最小值附近振荡,太小会导致迭代很慢)

1.2 程序代码

function [w, ws, miss] = perceptron( data, nSample, dim, alpha, nStep) %% 感知机算法 %% 输入 % data 训练数据

% nSample 训练的个数,是一个向量(每个类的个数) % dim 代表特征的个数 % alpha 迭代步长 % nStep 迭代次数 % %% 输出

% w 线性分类结果 w'x = 0; (x 是增广向量) % ws 迭代过程ws 的变化情况 % miss 迭代过程中分错数的变化情况

%% 初始化权重向量 w = rand(dim+1, 1); ws = zeros(dim+1, nStep);

miss = zeros(1, nStep);

data1 = data{1, 1};

data2 = data{1, 2};

%% 感知机算法流程

for i = 1 : nStep

% 做第i次迭代

ws(:, i) = w; % 存储当前w的值

missNum = 0;

% 第一类分错统计

for k = 1 : nSample(1)

% 遍历当前组的第k个实例

x = data1(:, k);

if(w' * x < 0)

w = w + alpha * x; % 修改w,分错了x,(x属于第一类,本应该满足w'x > 0)

missNum = missNum + 1;

end

end

% 第二类分错统计

for k = 1 : nSample(2)

% 遍历当前组的第k个实例

x = data2(:, k);

if(w' * x > 0)

w = w - alpha * x;

missNum = missNum + 1;

end

end

miss(i) = missNum;

end

end

1.3运行结果及解释

对上述函数,生成实例的系数为{[2.0 0.8; -1.5 1.7;], [-1.7 1; 1.3 -0.6;]};

分别代表两类数据的两个特征的正太分布的均值和系数。

α=,迭代201次的结果如下图1-1:

当算法取步长0.001

图1-1 感知机算法结果图

图1-1的左边部分为分错次数变化图,说明了算法效果还不错,分错次数一开始降得很快,但因为两类数据不能完全分开,导致错误次数始终不能降到0,从右图中也可以看出,决策线从初始的绿色逐渐变回红色,不断地调整。

α=时,迭代201次结果如下图1-2所示:

当取算法步长1

图1-2 感知机算法结果图

可以发现,由于步长太大的时候,分错样本数发生振荡,因此,梯度下降法不能把步长取太大。

α=,迭代201次的结果如下图1-1:生成样本系数修改为

当算法取步长0.001

{[2.0 0.8; -1.8 0.9;],[-1.9 1; 1.9 -0.6;]};时候两类可以完全分开,发现算法很快就得到了一条决策线(但是这根线离蓝色类很近,直观上讲并不是最佳的线)

图1-3 感知机算法结果图

下面给出三维的分类结果:

图1-4 感知机算法三维分类结果图

第二章 最小二乘算法

2.1 算法原理

此算法采用了不一样的代价函数,定义为:2

2()T

J =w y -w x ,其中y 的第i 项

i y 代表每一个样本对应的函数值,可以用两种方式定义,

第一种:

12

11

T i i i T

i i i w w ==+?∈==-?∈y w x x y w x x (此种情况,就不考虑两类的权重),

第二种:

21211122

/()/()

T i i i T

i i i N N N w N N N w ==+?∈==-+?∈y w x x y w x x (此种情况,考虑了两类的权重)

第二种方法中,12,N N 分别代表第一类和第二类的样本数量。

分析优化函数min ()J w ,目的是求解T =y x w ,则有:

1()T T T -=?=?=y x w xy xx w w xx xy ,这个叫做求伪逆。

下面思考,这两种方法有什么不同呢?事实上,对于第一种方案,min ()J w 的

效果就是得到三条平行的超平面,1

2

1

1

T T T w w =+∈==-∈w x x w x w x x ,第一个平面是第一类的

线性拟合结果,第二个平面是决策面,第三个平面是第二类的线性拟合结果,这种情况下,决策面刚好位于两个拟合平面的中央。

对于第二种情况,得到的三个超平面变为2121

1122

/()

/()

T T T N N N w N N N w =+∈==-+∈w x x w x w x x ,

故而当12N N > 时, 决策面就更靠近第一类所拟合的超平面这是因为此时:

212112/()/()N N N N N N +<+

2.2程序代码

function [w, ww] = meanSquareError( data, nSample, dim) %% mse算法最小化 ||y - w'x||

%% 输入

% data 训练数据

% nSample 训练的个数,是一个向量(每个类的个数)

% dim 代表特征的个数

%

%% 输出

% w 线性分类结果 w'x = y; (y 值为1,或-1)

% ww 带权重的,(y 值为 n1/n, -n2/n)

%% 最小二乘流程

n1 = nSample(1);

n2 = nSample(2);

n = n1 + n2;

x = zeros(dim+1, n);

y = zeros(n, 1);

x(:, 1 : n1) = data{1, 1};

x(:, n1+1 : n) = data{1, 2};

%% 没有权重的情况

y(1:n1, 1) = 1;

y(n1+1 : n) = -1;

% 最小二乘公式,伪逆

w = inv(x * x') * x * y;

%% 有权重的情况

y(1:n1, 1) = n2 / n;

y(n1+1 : n) = -n1 / n;

% 最小二乘公式,伪逆

ww = inv(x * x') * x * y;

end

2.3运行结果及解释

针对生成系数{[2.0 0.8; -1.8 0.9;], [-1.9 1; 1.9 -0.6;]}; 一类有1000个样本,二类只有300个样本时,运行结果如下:

图2-1 最小二乘算法结果图

可以看到,两种方法生成了同样的拟合直线,但是在不带权重的条件下,决策面在两条拟合线的中央,而带权重的时候,决策面偏向了蓝色区域(第一类)。

当两类的样本数量一样的时候,就可以得到一样的结果。

图2-2 最小二乘算法结果图

图中‘+’型黄色直线和实型黄色直线也重合了,验证了2.1节中理论的正确性。下面给出三维的结果图:

图2-3 最小二乘算法三维结果图

图2-4 最小二乘算法三维结果图

第三章 支持矢量机算法

3.1 算法原理

目的是最大化每一类的所有样本点到决策面的欧几里得距离中的最小距离。可以参考july 的博客https://www.360docs.net/doc/042331838.html,/v_july_v/article/details/7624837。

决策面函数()T g =x w x ,那么样本点x 到决策面的欧几里得距离是

()g x w

我们可以通过缩放w ,使得第一类最接近决策面的样本点1x 满足是1()1g =x ,第二类最接近决策面的样本点2x 满足是2()1g =-x 。也就是说优化问题变成了

2

2

1()2

()1

J subject to Y =

?≥T minimize w w w x , 这是一个凸优化的问题,可以用cvx 工具箱解决。cvx 工具箱的下载地址:https://www.360docs.net/doc/042331838.html,/cvx/download/,当样本不可分的时候,如下图:

图3-1 svm 算法不可分情况图

使用凸优化求解的时候会发生不可解的情况。就需要把优化问题转换为

2

21

1()2()11,2,...,01,2,...,N

i

i i i J C Y i N subject to

i N

ξξξ==+?≥-=≥=∑T

minimize w w w x 其中C 是一个常量,用于

控制决策面的结果(具体效果见3.3节),这也是一个凸优化的问题,可直接使用cvx 工具箱求解。

3.2 程序代码

function [ out, cvx_optval] = stpCvxSvm(data, nSample, dim, type) %% svm 的优化求解,使用cvx 工具箱

% min ||w|| s.t. y .* (w' * x) >= 1 (x 是增广向量) % %% 输入

% data 训练数据

% nSample 训练的个数,是一个向量(每个类的个数) % dim 代表特征的个数

% type 表示svm 类型,如果为1表示训练集完全可分,否则不可分 % %% 输出

% out 线性分类结果 out'x = y; (y 值为1,或-1) % cvx_optval cvx 输出结果

%% 初始化数据 n1 = nSample(1); n2 = nSample(2); n = n1 + n2;

x = zeros(dim+1, n); y = zeros(n, 1);

x(:, 1 : n1) = data{1, 1}; x(:, n1+1 : n) = data{1, 2};

y(1:n1, 1) = 1; y(n1+1 : n) = -1;

%% 核心代码,调用cvx 工具箱,优化该QP 问题 if type == 1 cvx_begin

variable w(dim+1, 1);

minimize( norm(w, 2));

subject to

y .* (x' * w)>= 1;

cvx_end

else

cvx_begin

variables w(dim+1, 1)rho(n);

minimize( norm(w, 2) + 1 * sum(rho) ); subject to

y .* (x' * w) >= 1 - rho;

rho >= 0;

cvx_end

end

out = w;

end

3.3运行结果及解释

对于二维情况,在线性可分的时候,结果如下:

图3-2 svm算法线性可分结果图

可以看到,决策线(黄色线)位于两类的支持向量的中央。

调整生成参数,使得二类线性不可分时,使用cvx工具箱就会不可解:

图3-3 svm算法线性不可分时cvx输出结果图

C=时,运行结果如下:

为此,采用3.1节中的第二种方案,当1

图3-4 svm算法线性不可分时法二结果图

C=时,得到如图3-5:可以看出,程序成功对二类分离了,当调整0.001

图3-5 svm算法线性不可分时法二结果图

对比图3-4,可以看到C的目的是调整支持向量的位置。Svm算法的三维结果图如下:

图3-6 svm算法三维分类结果图

当线性不可分的时候,第二种方案的三维结果图如下:

图3-7 svm算法三维分类结果图

第四章三种方法比较

对于这三种方法来说,个人认为svm算法是比较好的方法。下面给出三种方法的对比图:生成系数为:{[2.0 0.7; -1.8 0.6;], [-1.9 0.6; 1.9 -0.7;]}

图4-1 三种算法对比图

生成系数为:{ [2.0 1.3; -1.8 1.1;], [-1.9 1.2; 1.9 -0.7;]},三种算法的结果相对比较接近。

图4-2 三种算法对比图

三维情况如下:

图4-3 三维情况下三种算法对比图

理解和体会

分类算法根据不同的优化需求,转化为数学的优化问题之后,再进行求解。目前仅仅对两类进行分类,且相对的线性可分,对于下图的这种完全线性不可分的情况将完全无法使用,分类问题还有更多的知识需要学习和了解。而且svm算法中使用了凸优化的相关知识及cvx 工具箱(当然也可以使用libsvm工具箱),需要更多的掌握这方面的知识。

图5-1线性不可分图

附录

主程序代码:stp2.m

%% 模式识别第二次作业

% 作者:厍斌

% 学号:201511010202

% 时间:2015-10-08 18:44

close all;

clear;

clc;

%% 创建初始数据

nSample = [1000, 1000];

% 三维情况

dim = 3;

coeff = {

[1.1 0.8; -1.5 0.7; 1.4 -1;], ...

[-1.7 1; 1.6 -1.2; -1.5 1.1;]};

%

% 二维情况

% dim = 2;

% coeff = {

% [2.0 1.7; -1.8 1.1;], ...

% [-1.9 1.8; 1.9 -1.7;]};

%

data = createSample(nSample, dim , coeff);

%% 感知机算法

nStep = 201;

[wn1, ws, miss] = perceptron( data, nSample, dim, 1, nStep);

% 感知机算法绘图

subplot(1, 2, 1);

plot(1:nStep, miss);

title('分错次数变化图');

swn1 = wn1;

subplot(1, 2, 2);

if dim == 2

%% 二维绘制情况

nout = 10; % 输出10条线

iterval = floor(nStep / 10);

% 绘制迭代过程权重w的变化情况

for i = 1 : nout

swn1(:, i) = ws(:, (i-1)*iterval+1 );

end

if mod(nStep, 10) ~= 0

swn1(:, nout+1) = ws(:, nStep);

end

end

% 绘图

plotData( data, swn1, dim);

title('感知机线性分类器');

%% 均方差算法s

[wn2, ww] = meanSquareError( data, nSample, dim);

% 均方差方法绘图

figure;

% 绘图

w1 = wn2; w1(dim+1) = w1(dim+1) - 1;

w2 = wn2; w2(dim+1) = w2(dim+1) + 1;

w3 = ww; w3(dim+1) = w3(dim+1) - nSample(2)/(nSample(1) + nSample(2)) ;

w4 = ww; w4(dim+1) = w4(dim+1) + nSample(1)/(nSample(1) + nSample(2)) ;

swn2 = [wn2, ww, w1, w2, w3, w4];

plotData( data, swn2, dim);

title('mse算法');

legend(sprintf('%d个一类', nSample(1)), sprintf('%d个二类', nSample(2)), ...

'类别不带权重的结果', '类别带权重结果'...

, '不带权重一类拟合', '不带权重二类拟合', '带权重一类拟合', '带权重二类拟合');

% legend(sprintf('%d个一类', nSample(1)), sprintf('%d个二类', nSample(2)), '类别不带权重的结果', '类别带权重结果');

%% svm 算法

[ wn3, optval] = stpCvxSvm(data, nSample, dim, 2);

if optval == Inf

fprintf('cvx优化错误\n');

else

figure;

w1 = wn3; w1(dim+1) = w1(dim+1) - 1; % 一类边界

w2 = wn3; w2(dim+1) = w2(dim+1) + 1; % 二类边界

swn3 = [wn3, w1, w2];

plotData( data, swn3, dim);

legend(sprintf('%d个一类', nSample(1)), sprintf('%d个二类', nSample(2)), ...

'svm算法分类结果', '一类支持向量', '二类支持向量');

title('svm算法');

end

%% 三种算法比较

figure;

swn4 = [wn1, wn2, wn3];

plotData( data, swn4, dim);

legend(sprintf('%d个一类', nSample(1)), sprintf('%d个二类', nSample(2)), ...

'感知机算法', 'MSE最小二乘算法', 'svm算法');

title('三种算法对比');

生成样本数据代码createSample.m

function [data] = createSample(nSample, dim, coeff)

%% 创建训练集合的函数

%% 输入

% nSample 训练的个数,是一个向量(每个类的个数)

% dim 代表特征的个数

% coeff 是生成训练结合的系数,是一个cell类型的

%

多元统计分析课后习题解答_第四章

第四章判别分析 简述欧几里得距离与马氏距离的区别和联系。 答:设p维欧几里得空间中的两点X= 和Y=。则欧几里得距离为 。欧几里得距离的局限有①在多元数据分析中,其度量不合理。②会受到实际问题中量纲的影响。 设X,Y是来自均值向量为,协方差为 的总体G中的p维样本。则马氏距离为D(X,Y)= 。当 即单位阵时,

D(X,Y)==即欧几里得距离。 因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。 试述判别分析的实质。 答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。设R1,R2,…,Rk是p维空间R p的k个子集,如果 它们互不相交,且它们的和集为,则称为的一个划分。判别分析问题实质上就是在某种意义上,以最优的性质对p维空间 构造一个“划分”,这个“划分”就构成了一个判别规则。 简述距离判别法的基本思想和方法。 答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。

①两个总体的距离判别问题 设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是 1 和 2, 对于一个新的样品X ,要判断它来自哪个总体。计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则 X ,D 2(X ,G 1)D 2(X ,G 2) X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析, 2212(,)(,) D G D G -X X 111122111111 111222********* ()()()() 2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2() 22()2() ---''=-++-' +? ?=--- ??? ''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为 X ,W(X)

模式识别第二章-2.K-均值分类算法

模式识别第二章 2. K-均值分类算法 1. 实验原理和步骤 以初始化聚类中心为1x 和10x 为例。 第一次迭代: 第一步:取K=2,并选T x z )00()1(11==,T x z )67()1(102==。 第二步:因)1()1(2111z x z x -<-,故)1(11S x ∈ 因)1()1(2212z x z x -<-,故)1(12S x ∈ 因)1()1(2313z x z x -<-,故)1(13S x ∈ …… 得到:},,,,,,,{)1(876543211x x x x x x x x S = },,,,,,,,,,,{)1(201918171615141312111092x x x x x x x x x x x x S =。 第三步:计算新的聚类中心: ??? ? ??=+??++==∑∈125.1250.1)(811)2(821)1(111x x x x N z S x ???? ??=+??++==∑∈333.7663.7)(1211)2(20109)1(2 22x x x x N z S x (1N 和2N 分别为属于第一类和第二类的样本的数目)。 第四步:因)2()1(z z ≠,返回第二步。 第二次迭代(步骤同上): 第二次迭代得到的???? ??=125.1250.1)3(1z ,??? ? ??=333.7663.7)3(2z ,)3()2(z z ≠,结束迭代,得到的最终聚类中心为:???? ??=125.1250.11z ,??? ? ??=333.7663.72z 。 2. 实验结果截图 (1)初始化聚类中心为1x 和10x 时:

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract: The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology,

多元统计分析课后习题解答_第四章知识讲解

第四章判别分析 4.1 简述欧几里得距离与马氏距离的区别和联系。 答:设p维欧几里得空间中的两点X=和Y=。则欧几里得距离为 。欧几里得距离的局限有①在多元数据分析中,其度量不合理。②会受到实际问题中量纲的影响。 设X,Y是来自均值向量为,协方差为 的总体G中的p维样本。则马氏距离为D(X,Y)= 。当 即单位阵时, D(X,Y)==即欧几里得距离。 因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。 4.2 试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。设R1,R2,…,Rk 是p 维空 间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一 个划分。判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划 分”,这个“划分”就构成了一个判别规则。 4.3 简述距离判别法的基本思想和方法。 答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。 ①两个总体的距离判别问题 设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X , 要判断它来自哪个总体。计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2 (X ,G 2),则 X ,D 2 (X ,G 1) D 2(X ,G 2) X ,D 2(X ,G 1)> D 2 (X ,G 2, 具体分析, 2212(,)(,) D G D G -X X 111122111111 111222********* ()()()() 2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2() 22()2() ---''=-++-' +? ?=--- ?? ?''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

什么是模式识别

什么是模式识别 1 模式识别的概念 模式识别[8]是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分析、化学模式识别等等。计算机模式识别实现了部分脑力劳动自动化。 模式识别--对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。 模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下4种方法进行分析处理。 统计模式识别方法:统计模式识别方法是受数学中的决策理论的启发而产生的一种识别方法,它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。统计模式识别中个应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。 人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。 句法结构模式识别:句法结构模式识别着眼于对待识别对象的结构特征的描述。 在上述4种算法中,统计模式识别是最经典的分类识别方法,在图像模式识别中有着非常广泛的应用。 2 模式识别研究方向 模式识别研究主要集中在两方面,即研究生物体(包括人)是如何感知对象的,属于认知科学的范畴,以及在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作着近几十年来的努力,已经取得了系统的研究成果。 一个计算机模式识别系统基本上事有三部分组成的[11],即数据采集、数据处理和分类决策或模型匹配。任何一种模式识别方法都首先要通过各种传感器把被研究对象的各种物理变量转换为计算机可以接受的数值或符号(串)集合。习惯上,称这种数值或符号(串)所组成的空间为模式空间。为了从这些数字或符号(串)中抽取出对识别有效的信息,必须对它进行处理,其中包括消除噪声,排除不相干的信号以及与对象的性质和采用的识别方法密切相关的特征的计算(如表征物体的形状、周长、面积等等)以及必要的变换(如为得到信号功率谱所进行的快速傅里叶变换)等。然后通过特征选择和提取或基元选择形成模式的特

黄庆明 模式识别与机器学习 第三章 作业

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 应该是252142 6 *74132 7=+=+ =++C 其中加一是分别3类 和 7类 ·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 (1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。 (2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。 ·两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 如果线性可分,则4个 建立二次的多项式判别函数,则102 5 C 个 ·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T } 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)T x ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0) T 因w T (1) x ① =(0 0 0 0)(0 0 0 1) T =0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1) 因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T 因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T 因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T 因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T 因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T

模式识别与机器学习期末考查试题及参考答案

模式识别与机器学习期末考查 试卷 研究生姓名:入学年份:导师姓名: 试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。 答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。 (2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。而机器

学习的目标是通过学习提高系统性能,分类只是其最简单的要 求,其研究更侧重于理论,包括泛化效果、收敛性等。模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。许多算法他们都在研究,但是研究的目标却不同。如在模式识别中研究所关心的就是其对人类效果的提高,偏工程。而在机器学习中则更侧重于其性能上的理论证明。 试题2:列出在模式识别与机器学习中的常用算法及其优缺点。答:(1) K近邻法 算法作为一种非参数的分类算法,它已经广泛应用于分类、回归和模式识别等。在应用算法解决问题的时候,要注意的两个方面是样本权重和特征权重。 优缺点:非常有效,实现简单,分类效果好。样本小时误差难控制,存储所有样本,需要较大存储空间,对于大样本的计算量大。 (2)贝叶斯决策法 贝叶斯决策法是以期望值为标准的分析法,是决策者在处理风险型问题时常常使用的方法。 优缺点:由于在生活当中许多自然现象和生产问题都是难以完全准确预测的,因此决策者在采取相应的决策时总会带有一定的风险。贝叶斯决策法就是将各因素发生某种变动引起结果变动的概率凭统计资料或凭经验主观地假设,然后进一步对期望值进行分析,由于此概率并不能证实其客观性,故往往是主观的和人为的

1模式识别与机器学习思考题及参考答案

模式识别与机器学习期末考查 思考题 1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。 机器学习是研究让机器(计算机)从经验和数据获得知识或提高自身能力的科学。 机器学习和模式识别是分别从计算机科学和工程的角度发展起来的。然而近年来,由于它们关心的很多共同问题(分类、聚类、特征选择、信息融合等),这两个领域的界限越来越模糊。机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析、(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。近年来,机器学习和模式识别的研究吸引了越来越多的研究者,理论和方法的进步促进了工程应用中识别性能的明显提高。 机器学习:要使计算机具有知识一般有两种方法;一种是由知识工程师将有关的知识归纳、整理,并且表示为计算机可以接受、处理的方式输入计算机。另一种是使计算机本身有获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善,这种方式称为机器学习。机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学科基础上的。依赖于这些学科而共同发展。目前已经取得很大的进展,但还没有能完全解决问题。 模式识别:模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。如识别物体、地形、图像、字体(如签字)等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。特别神经网络方法在模式识别中取得较大进展。理解自然语言计算机如能“听懂”人的语言(如汉语、英语等),便可以直接用口语操作计算机,这将给人们带来极大的便利。计算机理解自然语言的研究有以下三个目标:一是计算机能正确理解人类的自然语言输入的信息,并能正确答复(或响应)输入的信息。二是计算机对输入的信息能产生相应的摘要,而且复述输入的内容。三是计算机能把输入的自然语言翻译成要求的另一种语言,如将汉语译成英语或将英语译成汉语等。目前,研究计算机进行文字或语言的自动翻译,人们作了大量的尝试,还没有找到最佳的方法,有待于更进一步深入探索。 机器学习今后主要的研究方向如下: 1)人类学习机制的研究;

机器学习在模式识别中的算法研究

机器学习在模式识别中的算法研究 摘要:机器学习是计算机开展智能操作的基础,人工智能的发展依靠机器学习 技术,而机器学习、模式识别与当前人工智能的发展密切相关。本文通过概述机 器学习机制,围绕神经网络、遗传算法、支持向量机、K-近邻法等算法研究当前 机器学习在模拟识别中的应用,为今后模拟识别与人工智能开发与研究提供借鉴。关键词:机器学习;模式识别;人工神经网络 前言: 机器学习技术覆盖了人工智能的各个部分,如自动推理、专家系统、模式识别、智能机器人等。模式识别是将计算机的不同事物划分成不同的类别。人工智 能的模式识别可以利用机器学习算法完善分类能效。因此,机器学习与模式识别 密不可分,本文就机器学习在模式识别领域的学习算法中的应用展开研究。 1、机器学习机制与系统设计 在机器学习模型中,环境可以向系统的学习部件中提供信息,学习部件根据 这些信息调整和修改知识库,提升系统内部执行文件的性能。执行文件再将获得 的信息向学习部件反馈,此过程就是机器学习系统结合外部与内部的环境信息自 动获取知识的过程。机器学习系统设计的构建过程应包含两部分:其一,模型的 选择和构建。其二,学习算法的选择与设计。不同种类的模型具有不同的目标函数,涉及到不同的学习机制,算法的复杂性与能力决定着学习系统的效率与学习 能力。此外,训练样本集的特征与大小的问题也与机器学习系统的性能相关。 2、机器学习在模式识别中的应用 2.1 遗传算法 在机器学习中,特征维数是一大难题,每一种模式中的特征反映出的事物本 质权重均不一致。部分对于分类结果并无积极作用,甚至属于冗余,因此选择特 征尤为关键。遗传算法实际上是寻优算法,可以有效的解决特征选择问题。遗传 算法可以筛选出准确反映出原模式相关信息、影响分类的结果、相互关联性较小 的特征。遗传算法实际是利用达尔文的生物进化思想,在运算领域中巧妙生成一 种寻优算法。该算法是1975年由美国Michigan大学的Holland教授提出的,遗 传算法的主要方法如下:首先,将种群中的个体作为对象,进行一系列的变异、 交叉、选择等操作。其次,利用遗传操作促进群体不断的进化,最终产生最优的 个体,最后,结合个体对于环境的适应程度选择最优良的个体,为其创造机会繁 衍后代。遗传算法程序如下:选择合适的编码策略,确定遗传策略和适应度函数。遗传策略包含种群的选择、大小、交叉概率、变异方法、变异概率等遗传参数; 利用编码策略,将特征集变为位串结构;构建初始化群体;计算整个群体的个体 适应度;结合遗传策略,将交叉、选择等作用在群体中,产生下一代群体;判别 群体性能是否到达某一标准,假若不满足将回到遗传策略阶段。 2.2 k-近邻法 k-nearest neighbor(k-近邻法)被广泛运用在无指导、基于实例的学习方法中, 可以实现线性不可分的样本识别,在之前并不了解待分样本的分布函数。当前被 广泛应用的k-近邻法主要是将待分类样本为重点形成超球体,同时扩展超球的半 径一直到球内包含着K个已知模式的样本,判别k个邻近样本属于哪一种。其主 要分类算法如下:设有c个类别,分别是w1,w2,w3,...,wc,i=1,2,3,...,c.测试样本x

中科院-模式识别考题总结(详细答案)

1.简述模式的概念及其直观特性,模式识别的分类,有哪几种方法。(6’) 答(1):什么是模式?广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。 模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。 模式的直观特性:可观察性;可区分性;相似性。 答(2):模式识别的分类: 假说的两种获得方法(模式识别进行学习的两种方法): ●监督学习、概念驱动或归纳假说; ●非监督学习、数据驱动或演绎假说。 模式分类的主要方法: ●数据聚类:用某种相似性度量的方法将原始数据组织成有意义的和有用的各种数据 集。是一种非监督学习的方法,解决方案是数据驱动的。 ●统计分类:基于概率统计模型得到各类别的特征向量的分布,以取得分类的方法。 特征向量分布的获得是基于一个类别已知的训练样本集。是一种监督分类的方法, 分类器是概念驱动的。 ●结构模式识别:该方法通过考虑识别对象的各部分之间的联系来达到识别分类的目 的。(句法模式识别) ●神经网络:由一系列互相联系的、相同的单元(神经元)组成。相互间的联系可以 在不同的神经元之间传递增强或抑制信号。增强或抑制是通过调整神经元相互间联 系的权重系数来(weight)实现。神经网络可以实现监督和非监督学习条件下的分 类。 2.什么是神经网络?有什么主要特点?选择神经网络模式应该考虑什么因素? (8’) 答(1):所谓人工神经网络就是基于模仿生物大脑的结构和功能而构成的一种信息处 理系统(计算机)。由于我们建立的信息处理系统实际上是模仿生理神经网络,因此称它为人工神经网络。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 人工神经网络的两种操作过程:训练学习、正常操作(回忆操作)。 答(2):人工神经网络的特点: ●固有的并行结构和并行处理; ●知识的分布存储; ●有较强的容错性; ●有一定的自适应性; 人工神经网络的局限性: ●人工神经网络不适于高精度的计算; ●人工神经网络不适于做类似顺序计数的工作; ●人工神经网络的学习和训练往往是一个艰难的过程; ●人工神经网络必须克服时间域顺序处理方面的困难; ●硬件限制; ●正确的训练数据的收集。 答(3):选取人工神经网络模型,要基于应用的要求和人工神经网络模型的能力间的 匹配,主要考虑因素包括:

模式识别简介

模式识别简介 Pattern recognition 诞生 狗的嗅觉的灵敏度非常高,大约是人的50至100倍。狗通过这项特异的功能来识别各种各样的东西,帮助人类完成一些鉴别工作。不仅如此,识别也是人类的一项基本技能,人们无时无处的在进行“模式识别”,古人有一成语“察言观色”表达的正是这个意思。 模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。计算机模式识别在20世纪60年代初迅速发展并成为一门新学科。 概念 简单来说,模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别(Optical Character Recognition, OCR)、语音识别系统。其计算机识别的显著特点是速度快,准确性高,效率高。在将来完全可以取代人工录入。 模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 研究 模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。 应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。 模式识别所分类的类别数目由特定的识别问题决定。有时,开始时无法得知实际的类别数,需要识别系统反复观测被识别对象以后确定。 模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适

模式识别练习题(简答和计算)..

1、试说明Mahalanobis 距离平方的定义,到某点的Mahalanobis 距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。 答:Mahalanobis 距离的平方定义为:∑---=1 2)()(),(u x u x u x r T 其中x ,u 为两个数据,1-∑是一个正定对称矩阵(一般为协方差矩阵)。根据定义,距 某一点的Mahalanobis 距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis 距离就是通常的欧氏距离。 2、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。 答:监督学习方法用来对数据实现分类,分类规则通过训练获得。该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。 非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。 就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。 使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。 3、已知一组数据的协方差矩阵为??? ? ??12/12/11,试问 (1) 协方差矩阵中各元素的含义。 (2) 求该数组的两个主分量。 (3) 主分量分析或称K-L 变换,它的最佳准则是什么? (4) 为什么说经主分量分析后,消除了各分量之间的相关性。

答:协方差矩阵为??? ? ??12/12/11,则 (1) 对角元素是各分量的方差,非对角元素是各分量之间的协方差。 (2) 主分量,通过求协方差矩阵的特征值,用???? ? ? ?? ----121211λλ=0得4/1)1(2=-λ,则 ?? ?=2/32/1λ,相应地:2/3=λ,对应特征向量为???? ??11,21 =λ,对应??? ? ??-11。 这两个特征向量,即为主分量。 (3) K-L 变换的最佳准则为: 对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。 (4) 在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关性消除。 4、试说明以下问题求解是基于监督学习或是非监督学习: (1) 求数据集的主分量 (2) 汉字识别 (3) 自组织特征映射 (4) CT 图像的分割 答:(1) 求数据集的主分量是非监督学习方法; (2) 汉字识别:对待识别字符加上相应类别号—有监督学习方法; (3) 自组织特征映射—将高维数组按保留近似度向低维映射—非监督学习; (4) CT 图像分割—按数据自然分布聚类—非监督学习方法; 5、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。

基于-Fisher准则线性分类器设计

基于Fisher准则线性分类器设计 专业:电子信息工程 学生:子龙 学号:201316040117

一、实验类型 设计型:线性分类器设计(Fisher 准则) 二、实验目的 本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher 准则方法确定最佳线性分界面方法的原理,以及Lagrande 乘子求解的原理。 三、实验条件 matlab 软件 四、实验原理 线性判别函数的一般形式可表示成 0)(w X W X g T += 其中 ????? ??=d x x X Λ1?????? ? ??=d w w w W Λ21 根据Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类样本投影尽可能密集的要求,用以评价投影方向W 的函数为: 2 2 2122 1~~)~~()(S S m m W J F +-= )(211 *m m S W W -=- 上面的公式是使用Fisher 准则求最佳法线向量的解,该式比较重要。另外,该式这种

形式的运算,我们称为线性变换,其中21m m -式一个向量,1 -W S 是W S 的逆矩阵,如21m m -是d 维,W S 和1-W S 都是d ×d 维,得到的* W 也是一个d 维的向量。 向量* W 就是使Fisher 准则函数)(W J F 达极大值的解,也就是按Fisher 准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量* W 的各分量值是对原d 维特征向量求加权和的权值。 以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量* W 的计算方法,但是判别函数中的另一项0W 尚未确定,一般可采用以下几种方法确定0W 如 2 ~~2 10m m W +-= 或者 m N N m N m N W ~~~2 12 2110=++- = 或当1)(ωp 与2)(ωp 已知时可用 []??????-+-+=2)(/)(ln 2 ~~212 1210N N p p m m W ωω …… 当W 0确定之后,则可按以下规则分类, 2 010ωω∈→->∈→->X w X W X w X W T T 使用Fisher 准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。 五、实验容 已知有两类数据1ω和2ω二者的概率已知1)(ωp =0.6,2)(ωp =0.4。 1ω中数据点的坐标对应一一如下:

图像模式识别的方法介绍

2.1图像模式识别的方法 图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。 从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。 2.1.1句法模式识别 对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干

较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。 句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。 2.1.2统计模式识别 统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。 统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

模式识别及应用--教学大纲

《模式识别及应用》课程教学大 纲 ( 06、07级) 编号:40021340 英文名称:Pattern Recognition and Its Applications 适用专业:电子信息工程 责任教学单位:电子工程系电子信息 教研室 总学时:32 学分:2 考核形式:考查 课程类别:专业课 修读方式:必修 教学目的:模式识别是电子信息工程专业的一门专业必修课。通过该课程的学习,学生能够掌握模式识别的基本理论和主要方法,并且能掌握在大量的模式样本中获取有用信息的原理和算法,通过课外上机练习,学会编写模式识别的算法程序,达到理论和实践相结合的目的,使学生了解模式识别的应用领域,为将来从事这一方面的研究打下初步基础。 主要教学内容及要求:由于本课程的目标是侧重在应用模式识别技术,因此在学习内容上侧重基本概念的讲解,辅以必要的数学推导,使学生能掌握模式识别技术中最基本的概念,以及最基本的处理问题方法。 本课程安排了一些习题,以便学生能通过做练习与实验进一步掌握课堂知识,学习了本课程后,大部分学生能处理一些简单模式识别问题,如设计获取信息的手段,选择要识别事物的描述方法以及进行分类器设计。 第一章概论 1.掌握模式识别的概念 2.熟悉模式识别系统 3.熟悉模式识别的应用 第二章统计模式识别——概率分类法 1. 掌握概率分类的判别标准 (1)Bayes法则 (2)Bayes风险 (3)基于Bayes法则的分类器 (4)最小最大决策 (5)Neyman-pearson决策 2. 熟悉正态密度及其判别函数 (1)正态密度函数 (2)正态分布样品的判别函数 3.了解密度函数的估计 第三章聚类分析 1. 掌握基于试探的聚类算法 (1)基于最近邻规则的试探法 (2)最大最小距离法 2.熟悉层次聚类算法 3.熟悉动态聚类法 (1)K均值算法 (2)迭代自组织的数据分析算法4.了解合取聚类法、最小张树分类法 第四章模糊模式识别 1.掌握模糊信息处理的基本概念 2.熟悉模糊识别信息地获取 3.熟悉模糊综合评判 4.熟悉基于识别算法的模糊模式识别 5.熟悉模糊聚类分析 第五章神经网络识别理论及模型 1.掌握人工神经网络基本模型 2.熟悉神经网络分类器 3.熟悉模糊神经网络系统 4.熟悉神经网络识别模型及相关技术 第六章特征提取与选择 1.掌握类别可分性判据 2.掌握基于可分性判据进行变换的特征提取与选择 3.掌握最佳鉴别矢量的提取 4.熟悉离散K-L变换及其在特征提取与选择中的应用 5.熟悉基于决策界的特征提取 6.熟悉特征选择中的直接挑选法 本课程与其他课程的联系与分工:本课程的先修课程是线性代数、概率与数理统计。它与数字图像处理课可并开。所学知识可以直接应用于相关课题的毕业设计中,并可为学生在研究生阶段进一步深入学习模式识别理论和从事模式识别方向的研究工作打下基础。

相关文档
最新文档