铁路客车空气制动装置检修规则总则

铁路客车空气制动装置检修规则总则
铁路客车空气制动装置检修规则总则

铁路客车空气制动装置检修规则

铁路客车空气制动装置检修规则总则

总体要求 1.1(1)空气制动装置作为铁路客车的主要组成部分,是实现铁路客车安全运行的重要保障。为保证客车空气制动装置的技术状态,统一空气制动装置检修技术和质量标准,根据《铁路客车厂修规程》、《铁路客车段修规程》、《铁路客车运用维修规程》以及国家标准、铁路行业标准的有关要求,特制定本规则。

(2)客车空气制动装置检修的目的是消除影响空气制动系统运用安全的故障和缺陷,恢复空气制动装置技术状态,保证客车空气制动性能。

(3)铁路客车空气制动装置的检修随客车定检周期进行(本规则另有规定的除外),以换件修为主,状态修为辅。空气制动装置及其主要零部件从车辆上拆下的分解检修范围按铁路客车各级检修规程规定执行。

(4)本规则是对客车各级检修规程中涉及到空气制动装置零部件检修及试验部分内容的细化和补充,适用于铁路客车空气制动装置主要零部件分解后的检修、试验和装车使用及试验。

(5)铁路客车空气制动装置的检修须在具有相关资质的单位进行。客车空气制动装置检修单位须按本规则制定检修工

艺和作 1

铁路客车空气制动装置检修规则

业指导书,建立健全质量保证和专业技术管理体系,全面落实质量责任制。

(6)对主要空气制动零部件应实行质量保证、寿命管理和生产资质管理。

(7)客车空气制动装置检修单位须配备必要的工装设备、设施、检测量器具,满足检修工艺要求,并积极采用新工艺、新装备、新技术,逐步实现检修、检测自动化和信息化。(8)本规则作为铁路客车空气制动装置检修产品质量检查、验收和追溯的基本依据,检修单位须全面落实,严格执行。遇有本规则的规定不明确或与检修实际有出入时,检修单位在保证行车安全、可靠的前提下,与驻(厂、段)验收室共同研究解决。意见不一致时,按检修单位总工程师的意见办理,检修单位承担质量安全责任,并将不同意见报上级主管部门核备。

(9)本规则自发布实施之日起执行,前发有关客车空气制动装置检修方面的规程、规则、文件、电报及技术标准与本规则有抵触时,均以本规则为准。

(10)本规则由中国铁路总公司运输局负责解释。

2

铁路客车空气制动装置检修规则

基本要求 1.2(1)除铁路总公司批准改造的零部件外,空气制动装置及零部件须按原结构检修,装用的零部件须与设计规定一致,检修的零部件须符合检修限度要求。

(2)对提高空气制动装置稳定性、可靠性等性能的局部技

术改进,须按规定程序进行。

(3)空气制动装置检修单位和装车单位须按规定对外购零

部件进行入库检验。新品零部件须符合产品图样和技术条件,使用前须进行全数外观质量检查。检修需要的新品客车分配阀、电空制动装置、单元制动缸、电子防滑器、空重阀、高度阀、差压阀、塞门、气路控制箱、制动缓解指示器、紧急制动阀、AM-96安全阀须经试验台试验,软管连接器须经风压、水压试验,合格后方可装车使用。

(4)空气制动装置零部件检修严格执行“三分开”制度,

即检查、检测与修理分开,修理与组装分开,待修品与修竣品分开。

(5)空气制动装置零部件除锈时,抛丸(砂)除锈须达到Sa2级;人工机械除锈须达到St2级。

(6)橡胶密封圈、橡胶密封垫等橡胶件分解检修时全部更

换新品。组装前各橡胶件表面洁净,不得接触有机溶剂、碱酸等腐蚀性介质。

(7)各型橡胶件须在干燥、通风、避光、避热的处所贮存,组装使用时间距制造时间不超过6个月。

(8)检修、运输、贮存过程中,须用外套式防护件(含金属螺堵)对空气制动装置零部件开放的管口、孔洞进行防护。防护件须符合TB/T 3218《铁道车辆空气制动配件防护件》的规定。

(9)检修的空气制动装置须按要求实行标识管理,装用前须确认标识清晰、符合要求。

(10)检修及试验记录

检修及试验记录是质量责任追溯和统计分析的重要依 3

铁路客车空气制动装置检修规则

据,其基本内容须包括检修部位及内容、更换部件情况、故障情况、试验参数记录、检修日期、工作者(检修者、试验者、检查者、验收者)。检修、试验记录的保存期限按表1-1执行。

表1-1 检修、试验记录保存期限

部件检修序记录保存

辅修一个A21

(A1)修周期

段修一个A32

(A2、A3) 修周期

厂修(A4、一个A4修周3

A5)期

(11)合格品贮存

a)检修、试验合格的空气制动部件须在干燥、通风、避光、避热、防尘的室内存放;运输过程中须防潮、避免磕碰,长距离运输时须有整体包装和能承受压力的外包装;装车前取下各包装、防护件,并清点防护件须无遗漏。

b)贮存的空气制动装置零部件,按照先入库先支出的原则使用,防止超期贮存。

c)制动部件贮存时间不超期,新品贮存期以生产日期距

装用前计算,检修品贮存期以检修合格日期距装用时计算。空气制动部件贮存期限及要求见表1-2。

表1-2空气制动部件贮存期限及要

4

铁路客车空气制动装置检修规则

)客车空气分配阀、电空制动装置、单元制动缸、(12电子防滑器、高度阀、差压阀、空重阀、各类塞门、组合式集尘器、软管、制动缓解指示器、紧急制动阀等须由制动室负责检修。M6及以上螺纹有紧固力矩要求者涂打防松标记。

(13))各检修部件在正常运用和维护条件下,须保证该14 (

部件下一次检修前的运行安全。)制动试验用设备仪表及检测量具须按下列周期进15 (行检定。)游标卡尺、力矩扳手等检定周期按有关计量规定执 a

行。 1年。 b)样板检定周期不超过个3)试验用精度1.6级普通压力表检定周期不超过 c个月,精密6月,其他精度等级普通压力表检定周期不超过压力表、其他类型压力表按国家有关规定检定。年。)微控试验设备压力采集系统校验周期不超过 d1年。)试验用电压表电流表检定周期不超过1 e

5

城市轨道交通列车制动系统的特点及发展趋势初探

城市轨道交通列车制动系统的特点及发展趋势初探 发表时间:2018-06-07T11:18:32.193Z 来源:《基层建设》2018年第11期作者:刘艳虎 [导读] 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 苏州市轨道交通集团有限公司运营分公司江苏苏州 215000 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 关键词:城市轨道交通;车辆制动系统;空气压塑;制动盘;控制系统 城市轨道交通站间距短,列车制动频繁,其制动系统的可靠性决定了车辆运行安全,是现阶段城市轨道交通研究的重要内容这一。在科技快速发展的背景下,轨道交通车辆制动系统技术也得到很大程度的改进,为轨道交通发展奠定了坚实基础。 1空气压缩 1.1技术背景 如今,铁路对用气质量提出越来越高的要求,压缩气体必须达到较高的无水和无油条件,这使无油空压机进入快速发展时期。尽管现阶段铁路领域的无油空压机实际应用仍有限,但依靠其无油这一显著特征,将很快在市场占据主导地位。 若按压缩方式,可对无油空压机做以下分类:回转形式的无油空压机以及循环往复形式的无油空压机。后者与活塞式空压机相对应,前者则与最常用的螺杆形式的空压机相对应。从活塞式空压机的角度讲,主要有两种不同的润滑形式,即干式润滑及水润滑。 活塞与螺杆空压机常用于铁路领域,螺杆适合低压和中小流量,而活塞适合高压与多种压力范围。采用水润滑形式的无油螺杆,不仅结构复杂,而且对环境有严格要求,在铁路这种复杂环境下并不适用;采用干式的无油螺杆,其排量超过3m3/min,但仍未能达到出口压力,同样在铁路中不适用。从目前的铁路行业发展看,其对空压机有下列几项特殊要求:经久耐用;耐冲击、污染和高温;振动与噪声较低;维护难度与成本较低。 1.2技术原理 活塞式空压机进入随曲轴联动旋转状态后,在连杆提供的传动作用下促使活塞进行往复运动,此时活塞的顶部表面、气缸的内部表面和气缸盖三者形成的容积必定产生具有周期性特点的变化。活塞由气缸盖做运动后,容积不断增加,此时气体在进气管中推开进气阀门到达气缸,到容积不再增加为止,阀门关闭;活塞进入反向运动状态后,上述容积开始减少,但压力持续增大,超出排气压力以后,阀门打开,气体开始向外部不断排出,当活塞运动到最大行程后,阀门将自动关闭。活塞再次进入反向运动状态后,重复以上过程。 1.3特殊结构 对全无油形似的活塞空压机,其原理和油润滑形式的活塞空压机大致相同,区别为将油润滑换成自润滑。其中,气缸采用铝合金加工而成,表面做特殊处理,减小摩擦以延长使用寿命;活塞也采用铝合金加工而成,各活塞上设置导向环与密封环,二者都采用自润滑材料,能使摩擦达到最小;连杆和活塞由特殊销进行连接,配有全封闭式轴承,无需维护,并在设计过程中考虑了防超温使用。曲轴和各连杆间同样使用这种轴承;气阀为长寿命阀,能满足特殊的实际使用要求。 1.4优缺点 1.4.1优点 压缩空气输出更为洁净,只有极少量水和污染物,下游净化单元能直接去除,无油蒸汽和油滴,能防止下游管路被污染;压力范围较广,任何一种流量情况下,都能提供所需压力;具有很高的热效率,耗电省;具有较强的适用性,表现为排气范围广,受压力影响小等方面;可大幅降低维护成本,减少工作量;无润滑油方面的输出,过滤部件可长时间使用,负担小;由于不使用润滑油,所以还能解决低温启动方面的问题,而且对运转率也没有太高的要求。 1.4.2缺点 排气的连续性较差,存在一定气流脉动;在运转过程中可能产生较大的振动。 2制动盘 在当前的轨道交通车辆中,铝合金制动盘得到广泛应用,其优点有: 第一,自重轻,密度比铸钢与铸铁都小,能减轻车辆自重,尤其是簧下质量,若能减轻簧下质量,则能减小振动和噪音。此外,车辆自重减轻其能耗必定有所降低,能提高节能减排指标。 第二,有良好的耐磨性及导热性,且摩擦系数保持稳定,将钢铁替换为铝合金,能在减轻质量的同时,延长寿命,降低成本,保证可靠性与安全性。此外,出色的导热性能还能使制动盘适应反复变化的热负荷,降低了热疲劳裂纹产生率。 我国从九十年代起有相关院校开始研究铝基复合材料在列车制动盘中的应用,提出很多方法,如喷溅法和粉末冶金法等。然而,因研制难度相对较大,加之制造工艺十分复杂,所以成果主要为样件,要实现批量化生产的目标,还需要进一步的研究。 近几年,我国很多企业在广泛调研这项技术的前提下,对该行业现有技术能力进行综合,提出一套制造工艺,并通过一段时间的摸索与总结,初步掌握批量生产办法。制动盘摩擦副现已完成各项分析实验,其所有性能指标都达到要求,且优于同类产品。 3基于模块化的新制动系统 3.1系统特点 采用以CAN总线为基础的分布式控制,各控制单元均能在CAN总线的支持下构成整个控制网络。EP09/S能提供防滑控制与电空制动两项功能,仅存在紧急制动对应的输入输出接口,需由总线提供常用指令;对EP09/G而言,不仅具有EP09/S全部功能,而且还有列车总线接口及扩展接口,能起到类似网关的作用,并对制动力进行管理。 3.2性能要求 控制单元可提供的防滑控制与电空制动等功能都相对固定,具有实现模块化与小型化目标的条件。实际应用要求对于系统提出了很高的要求,集中在接口能力方面,如各模拟量实际扩展和不同接口方式等,而且对系统测试、故障诊断与时间存储也有着越来越高的实际要求,因受到架控单元机箱等因素的限制和影响,当前的网关单元在扩展能力上还有待于进一步提高。

城轨车辆空气制动系统

空气制动,又称为机械制动或摩擦制动。城市轨道交通车辆常用的空气制动方式有闸瓦制动和盘形制动。空气制动主要以压缩空气为动力,压缩空气由车辆的供气系统供给。 一空气制动系统的组成 城市轨道交通车辆的空气制动系统由供气系统、基础制动装置(常见的有闸瓦制动系统与盘形制动装置)、防滑装置和制动控制单元组成。 供气系统主要由空气压缩机、空气干燥剂、压力控制装置和管路组成,供气系统除了给车辆制动系统供气外,还向车辆的空气悬架设备,车门控制装置(气动门),气动喇叭,刮水器及车钩操作气动控制设备等需要压缩空气的设备供气。 防滑装置适用于车轮与钢轨黏着不良时,对制动力进行控制的装置。它的作用是:防止车轮即将抱死;避免滑动并最佳地利用粘着力,以获取最短的制动距离。 制动控制单元是空气制动的核心部件,它接受微机制动控制单元(EBCU)的指令,然后再指示制动执行部件动作。其组成部分有:模拟转换阀、紧急阀、称重阀和均匀阀等。这些部件都安装在一块铝合金的气路板上,实现了集成化。这样避免用管道连接而造成容易泄露和占用空间大等问题。 二、空气制动系统的控制方式 空气制动系统按其作用原理的不同,可以分为直通式空气制动机,自动式空气制动机和直通自动式空气制动机。 1.直通式空气制动机 直通式空气制动机的机构如图所示

空气压缩机将压缩空气储入总风缸内,经总风缸管至制动阀。制动阀有缓解位、保压位和制动位3个不同位置。在缓解位时,制动管内的压缩空气经制动阀Ex (Exhaust) 口排向大气;在保压位时,制动阀保持总风缸、制动管和Ex口各不相通;在制动位时,总风缸管压缩空气经制动阀流向制动管。 (1)制动位驾驶员要实施制动时,首先把操纵手柄放在制动位,总风缸的压缩空气经制动阀进入制动管。制动管是一根贯穿整个列车,两端封闭的管路。压缩空气由制动管进入各个车辆的制动缸,压缩空气推动制动缸活塞移动,并通过活塞杆带动基础制动装置,使闸瓦压紧车轮,产生制动作用。制动力的大小,取决于制动缸内压缩空气的压力,由驾驶员操纵手柄在制动位放置时间长短而定。 (2)缓解位要缓解时,驾驶员将操纵手柄置于缓解位,各车辆制动缸内的压缩空气经制动管从制动阀Ex口排入大气。操纵手柄在缓解位放置的时间应足够长,使制动缸内的压缩空气排尽,压力降至为零。此时制动缸活塞借助于制动缸缓解弹簧的复原力,使活塞回到缓解位,闸瓦离开车轮,实现车辆缓解。 (3)保压位制动阀操纵手柄放在保压位时,可保持制动缸内压力不变。当驾驶员将操纵手柄在制动位与保压位之间来回操纵,或在缓解位与保压位之间来回操纵时,制动缸压力能分阶段上升或降下,即实现阶段制动或阶段缓解。 直通式空气制动机的特点如下: 1)制动管增压制动、减压缓解,列车分离时不能自动停车。 2)能实现阶段缓解和阶段制动。 3)制动能力大小靠驾驶员操纵手柄在制动位放置时间的长短决定的,因而控制不太精确。4)制动时全列车制动缸的压缩空气都由总风缸供给;缓解时,各制动缸的压缩空气都需经制动阀排气口排入大气。因此前后车辆制动一致性不好。 自动式空气制动机 自动式空气制动机在直通式空气制动机的基础上增加了三个部件:在总风缸与制动阀之间增加了给气阀;在每节车辆的制动管与制动缸之间增加了三通阀和副风缸。给气阀的作用是限定制动管定压,人为规定制动管压力,即无论总风缸压力多高,给气阀出口的压力总保持在一个设定值。 自动式空气制动机的制动阀同样也有缓解位、保压位和制动3个作用位置,但内部通路与直通式空气制动机的制动阀有所不同。在缓解位时它联通给气阀与制动管的通路;制动位时它使制动管与制动阀上的Ex口相通,制动管压缩空气经它排向大气;保压位时仍保持各路不通。

东风日产天籁刹车制动系统概述

一、引言 从汽车诞生的是否开始,汽车的制动系统在车辆以及人的安全方面就扮演着至关重要的角色,随着着汽车技术以及科技的发展和进步,车速愈来越高。于是问题产生了: 这就是如何保障在高速行车中的安全?在这个时候刹车辅助系统应运而生。 电子制动辅助系统“EBA”和制动力辅助系统“BA”(也称为“BAS”)。在车辆行驶过程中,制动辅助系统会全程监测刹车踏板,一般正常刹车时该系统并不会介入,会让驾驶者自行决定刹车时的力度大小,通过判断驾驶者的刹车动作(力量及速度),在紧急制动时增加刹车力度,从而将制动距离缩短。 随着科技的发展刹车辅助系统的改善,大大的增加了汽车行驶的安全性,使汽车在保护人身权方面做得更加周到。 二、刹车辅助系统的发展 汽车的动系统、驻车制动系统、应急制动系统及辅助制动系统等。主要作用为使行驶中的汽车降低速度直至停车或使已停驶的汽车驻留原地不动等。其中这些系统在最先开始发展的时候多为机械式,液压式,气压式或者混合式等。 伴随着科技的发展越来越多先进的技术被用在了汽车的制动领域。随着人们对制动性能要求的提高,从汽车刚刚

起步时的机械式的制动到液压制动,防抱死制动系统、驱动防滑控制系统等技术逐渐融入到制动系统当中。在这些的基础上东风日产又引入了更加先进的刹车辅助系统,电子紧急制动辅助装置的前身,它以防抱死制动系统、驱动防滑控制系统等技术为基础,来实现车辆的安全高效并且稳定的制动。 1现阶段刹车辅助系统的组成 刹车辅助系统主要由:防抱死刹车系统(ABS)、电子制动力分配系统(EBD)、刹车辅助系统、车身稳定控制系统(VDC)、牵引力控制系统(TCS)等组成。 2刹车辅助系统的主要的作用 (1)用以在踩刹车的情况下,防止车轮锁死,使汽车在制动状态下仍能转向,保证汽车的制动方向稳定性,防止产生侧滑和跑偏. (2)于汽车制动时产生轴荷转移的不同,自动调节前、后轴的制动力分配比例,提高制动效能 (3)判断驾驶者刹车动作,在紧急刹车时增加刹车力,缩短刹车距离。 (4)当汽车出现车轮打滑、侧倾或者轮胎丧失附着力的瞬间,在降低发动机转速的同时,有目的地针对个别车轮进行制动控制,并最终将车引入正常的行驶轨道,从而避免车辆因失控而造成的危险。

高速列车制动方式分类

高速列车制动方式分类 从能量的观点来看,制动的实质就是将列车动能转变成其他能量或转移走;从作用力的观点来看,制动就是让制动装置产生与列车运行方向相反的外力,使列车产生较大的减速度,尽快减速或停车。 (1)根据列车动能转移方式的不同,列车制动可分为如下几种方式: ①盘形制动。 ②电阻制动。 ③再生制动。 ④磁轨制动。 ⑤轨道涡流制动。 ⑥旋转涡流制动。 ⑦风阻制动。 上述制动方式中的盘形制动和磁轨制动也可称为摩擦制动,都是通过机械摩擦来消耗高速列车动能的制动方式。其优点是制动力与列车速度无关。无论列车是高速运行还是低速运行,都有制动能力,特别是在低速运行时能对列车施行制动直至停车。可以说摩擦制动始终是高速列车最基本的制动方式。摩擦制动的缺点是制动力有限,因受散热限制而使制动功率增大。电阻制动、再生制动、轨道涡流制动和旋转涡流制动等也可称为动力制动,都是利用某种能量转换装置将运行中列车的动能转换为其他形式的能量,并予以消耗的制动方式。其特点是制动力与列车速度有很大关系,列车速度越高,制动力越大,随着列车速度的降低,制动力也随之下降。 (2)根据制动力的形成方式不同,制动方式可分为黏着制动和非黏着制动。车轮在钢轨上滚动时,轮轨接触处既非静止,也非滑动,在铁路术语中用“黏着”来说明这种状态。黏着制动是指依靠黏着滚动的车轮与钢轨黏着点之间的黏着力来实现列车制动的方式。黏着制度包括闸瓦制动、盘形制动、电阻制动、再生制动及电磁涡流转子制动等。以闸瓦制动为例,车轮、闸瓦和钢轨三者之间有3种可供分析的状态:第一种是难以实现的理想的纯滚动状态;第二种是应极力避

免的“滑行”状态;第三种是实际运用中的黏着状态。在上述3种情况中,纯滚动状态为最理想的轮轨接触状态,但实际上是不可能实现的;为避免车轮踏面擦伤、制动距离延长,需要防止“滑行”;黏着状态介于两者之间,它可以随气候与速度等条件的不同有相当大的变化。 由于列车的制动能量和速度的平方成正比,因此高速列车的动能很大,需要足够大的制动功率和更灵敏的制动操纵系统。而传统的空气制动装置要受制动热容量和机械制动部件磨耗寿命的限制,以及摩擦材料性能对黏着利用的局限性,因此,高速列车要采用能提供强大制动能力并更好利用黏着的复合制动系统。虽然考虑到乘座舒适度,但是制动距离随列车速度的提高而适当延长是不可避免的。高速列车制动的总目标是控制制动距离,因此制动距离不会随车速的提高而增长太多。复合制动系统通常由制动控制系统、动力制动、摩擦制动(如盘形制动和踏面制动等)系统、微机控制的防滑器和非黏着制动装置等组成。复合制动力的产生分别来自电气(动力制动)、机械(盘形制动或踏面制动)和非黏着力(磁轨制动或涡流制动)。高速列车的复合制动模式包括不同车辆在不同制动作用工况和各种速度下的制动能量分配关系,应根据列车的动力方式和编组条件进行设计并通过微机进行控制。

列车制动系统

自动式空气制动系统的组成及其作用 自动式空气制动系统如下图所示: 各部分作用如下: 1.空气压缩机(1)、总风缸(2):原动力系统。空气压缩机:制 造压缩空气;总风缸: 储存压缩空气,供全列车系统使用。 2.给风阀(4):将总风缸的压缩空气调至规定压力,经自动制动阀 (5)充入制动管。 3.自动制动阀(5):操纵部件。通过它向制动管充入压缩空气/将 制动管压缩空气排向大气。 4.制动管(14):贯通全列车的压缩空气导管。向列车中各车辆的制

动装置输送压缩空气。通过自动制动阀(5)控制管内压缩空气压力变化实现操纵各列车制动机。 5.三通阀(8):车辆空气制动装置的主要部件,控制制动机产生不 同作用。和制动管联通,由制动管压力的变化产生作用位置。制动机缓解:制动管连通副风缸,制动缸连通大气。向副风缸充入压缩空气,把制动缸内压缩空气排向大气。制动机制动:制动管通大气,副风缸通制动缸。副风缸内压缩空气充入制动缸,产生制动作用。 6.副风缸(11):缓解储存的压缩空气,为制动时制动缸的动力源。 7.制动缸(10):制动时,把从副风缸送来的压缩空气转变为机械推 力。 8.基础制动装置(17):制动时,将制动缸推力放大若干倍传递到闸 瓦,使闸瓦夹紧车轮产生制动;缓解时,靠闸瓦自重使闸瓦离开车轮实现缓解。 9.闸瓦、车轮和钢轨:实现制动三大要素。制动时,闸瓦压紧转动 的车轮踏面后,闸瓦与车轮间的摩擦力借助钢轨,在与车轮接触点上产生与列车运行方向相反(与钢轨平行)的反作用力,即制动力。(黏着效应) 制动缸压力计算 1空气制动机的工作过程就是利用空气受压缩后体积与压力的自动变化来实现的。

电力机车的制动方式及其原理

电力机车的制动方式及其原理 1、制动技术概念 列车制动就是人为地制止列车的运动,包括使它减速、不加速或停止运行。对已制动的列车或机车解除或减弱其制动作用,则称为“缓解”。为施行制动和缓解而安装在机车、车辆、列车上的一整套设备,总称为“制动装置”。“制动”和“制动装置”俗称为“闸”。施行制动常简称为“上闸”或“下闸”,施行缓解则简称为“松闸”。“列车制动装置”包括机车制动装置和车辆制动装置。不同的是,机车除了具有像车辆一样使它自己制动和缓解的设备外,还具有操纵全列车制动作用的设备。 2、机车制动方式 1)闸瓦制动:铁路机车车辆采用的制动方式最普遍的是闸瓦制动。用铸铁或其他材料制成的瓦状制动块,在制动时抱紧车轮踏面,通过摩擦使车轮停止转动。在这一过程中,制动装置要将巨大的动能转变为热能消散于大气之中。而这种制动效果的好坏,却主要取决于摩擦热能的消散能力。使用这种制动方式时,闸瓦摩擦面积小,大部分热负荷由车轮来承担。列车速度越高,制动时车轮的热负荷也越大。如用铸铁闸瓦,温度可使闸瓦熔化;即使采用较先进的合成闸瓦,温度也会高达400~450℃。当车轮踏面温度增高到一定程度时,就会使踏面磨耗、裂纹或剥离,既影响使用寿命也影响行车安全。可见,传统的踏面闸瓦制动适应不了高速列车的需要,需要一种新型的制动装置以满足要求。 2)盘形制动:它是在车轴上或在车轮辐板侧面安装制动盘,用制动夹钳使以合成材料或者粉末冶金制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,使列车停止前进。由于作用力不在车轮踏面上,盘形制动可以大大减轻车轮踏面的热负荷和机械磨耗。另外制动平稳,噪声小。盘形制动的摩擦面积大,而且可以根据需要安装若干套,制动效果明显高于踏面制动,尤其适用于时速120公里以上的列车,这正是各国普遍采用盘形制动的原因所在。但不足的是车轮踏面没有闸瓦的磨刮,将使轮轨粘着恶化;制动盘使簧下重量及冲击振动增大,运行中消耗牵引功率。踏面制动和盘形制动都要通过轮轨之间的粘着来实现,因此都属于粘着制动。 3)再生制动:是将牵引电动机变为发电机,将电能反馈回电网使用,从而产生制动作用。用于电网供电的电力机车和电动车组。 4)电阻制动:用于电力机车、电动车组和电传动内燃机车。在制动时将原来驱动轮对的牵引电动机改变为发电机发电,并将电流通往专门设置的电阻器,采用强迫通风,使电阻器发生的热量消于大气,从而产生制动作用。 5)线性涡流制动:是把电磁铁悬挂在转向架侧架下面同侧的两个车轮之间。制动时电磁铁不与钢轨接触。利用电磁铁与钢轨相对运动使钢轨感应出涡流,产生电磁吸力作为制动力,把列车动能转化为热能,消散于大气。线性涡流制动既不受粘着限制,也没有磨耗问题。 6)盘形涡流制动:是在车轴上装金属盘,制动时金属盘在电磁铁形成的磁场中旋转,盘的表面被感应出涡流,产生电磁吸力并发热消散于大气,从而起制动作用。盘形涡流制动要通过轮轨粘着才能产生制动力,因此也要受粘着限制。

列车制动装置简介

现代轨道车辆列车制动装置简介

摘要:制动系统是列车的一个重要组成部分,它直接影响列车运行的安全性。本文重点介绍了各种制动装置的原理、结构及其在动车组上的应用情况。 关键词:制动装置电动制动电气制动再生制动动车组 引言:随着铁路现代化运输的发展,列车的运行速度和牵引重量不断提高,我们除了要加大牵引力外还务必要提高机车、车辆的制动性能。支撑着所有铁道车辆安全运行的基本要素就是制动装置,“安全制动停车”是铁道车辆必须具备的功能。制动装置的性能不仅是保障行车安全的必要手段,同时也是提高列车速度和铁路通过能力的重要因素。 一、制动的概论 人为地使列车减速,停车或防止停留的车辆移动所采取的措施,称为制动。在铁路机车、车辆上,产生制动的方法比较多,目前我国主要采用以压缩空气为动力,利用基础制动装置上的闸瓦紧压转动着的车轮踏面,使其相互间产生摩擦力,将机车、车辆动能转变为热能逸散,从而使列车减速或停车的方法。 二、制动装置的组成、分类及比较 (一)制动装置组成 制动装置一般可分为两大组成部分: (1)“制动机”——产生制动原动力并进行操纵和控制的部分。(2)“基础制动装置”——传送制动原动力并产生制动力的部分。(二)制动装置分类 1.按动能的转移方式分 (1)踏面制动 踏面制动,又称闸瓦制动,是自有铁路以来使用最广泛的一种制动方式。它用铸铁或其他材料制成的瓦状制动块(闸瓦)紧压滚动着

的车轮踏面,通过闸瓦与车轮踏面的机械摩擦将列车的动能转变为热能,消散于大气,并产生制动力。现在的货车采用的是单闸瓦的踏面摩擦制动,而普通客车采用的是双闸瓦的踏面摩擦制动。 (2)盘形制动 盘形制动是在车轴或轮辐板侧面安装的制动盘,一般为铸铁圆盘,制动时用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,将动车组动能转变成热能消散于大气。 (3)电阻制动 电阻制动是在制动时将原来驱动轮对的牵引电机转变为发电机,由轮对带动发电,并将电流通过专门设置的电阻器,采用通风散热将热量消散于大气,从而使动轮产生制动作用。电阻制动装置可以取消压缩空气供给源,实现车辆轻量化,简化制动系统 (4)再生制动 再生制动也是将牵引电机转变为发电机运行,不同的是,它是将电能反馈回电网,使本来由电能变成的动车组动能再生为电能,而不是变成热能消散掉。 2.按用途分 (l)常用制动 常用制动是正常条件下为调节、控制列车速度或进站停车施行的制动。特点是作用比较缓和,且制动力可以调节,通常只用列车制动能力的20%~80%,多数情况下只用50%左右。

CRH2型动车组制动系统分析

CRH理动车组制动系统分析 自从1825 年世界上第一条铁路建成并通车开始,铁路逐渐成为了交通运输中的重要运输方式之一。快速、可靠、舒适、经济和环保是铁路在与其他运输方式的竞争中取胜的先决条件,许多国家都在通过新建或改建既有线发展高速铁路。国际上一般认为,高速铁路动车组是最高运行时速在200 公里以上的铁路运输系统。 所谓动车组就是由若干动力车和拖车或全部由动力车长期固定连挂在一起组成的车组。高速动车组的牵引动力配置基本上有两种型式,即集中配置型和分散配置型。传统的机车牵引形式就是牵引动力集中配置,列车由一台或几台机车集中于一端牵引。由于机车总功率受到限制,难以满足进一步提高速度的要求。动车组编组中的车辆全部为动力车,或大部分为动力车,即牵引动力分散配置。由于动车组可以根据某条线路的客流量变化进行灵活编组,可以实现高密度小编组发车以及具有安全性能好、运量大、往返不需掉转车头、污染小、节能、自带动力等优点,受到国内外市场的青睐,应用也越来越广泛,被称为铁路旅客运输的生力军 第六次铁路大提速,以“和谐号”为代表的高速动车组,如梭箭般穿行于大江南北,将中国铁路带入高速时代,我国既有线路列车运行速度也一举达到世界先进水平,铁路运输事业呈现飞速发展全新局面,高速动车组以其安全,准时,快速,舒适,节能,环保,等诸多优点,高速动车组是在现代科学技术的基础上发展起来,同时也带动并促进了科学技术发展,高速动车组有别于现在运用的内燃,电力机车。其区别在于动车组各部件大量运用高新技术,特别是在转向架结构,车体轻量化,列车动力分配,电传动控

制技术,列车信息网络及制动系统都具有各自的高科技含量。高速动车组制动系统具有先进科技技术,其中以CRH理动车组最为出名。 CRH2型高速动车组制动系统采用电气指令是微机控制直通式电控制动,制动指令的接收,处理和电气制动与空气制动协调配合等,一般都是有微机来完成,动车组各车辆上的制动控制装臵由制动控制单元,EP阀,中继阀,空重调整阀,紧急制动电磁阀等组成,载荷调压装臵直接来自空气簧空气压力,空气弹簧压力通过传感器转化为与车重相应的电信号,制动控制单元根据制动指令及车重信号计算出所需的制动力,并向电气制动控制装臵发出制动信号,电气制动控制装臵控制电气制动产生作用,并将实际制动力的等值信号反馈到制动控制器,制动控制器进行计算,并把与计算结果相应的电信号送到中继阀,中继阀进行流量放大后,使制动缸获得相应的压力,拖车常用制动时,制动控制装臵的动作过程与动车的基本相同,但是因为没有电气制动,所有不必进行电气制动与空气制动的协调,所需制动力全部通过EP阀转化为相应的空气压力信号,然后由中继阀使制动缸产生相应的制动力。 一国外动车组及CRH2型动车组的发展历史 1 国外动车组发展状况 世界高速铁路动车组技术最发达的国家有3 个:德国、日本和法国。各国使用动车的比重以日本为最大,占87%;荷兰、英国次之,分别占83%和61%;法国、德国又次之,分别占22%和12%。 德国铁路自20世纪80年代起开始发展250km^h以上的高速客运列

地铁车辆制动系统工作原理

地铁车辆制动系统工作原理 摘要:随着城市规模的快速发展和城市人口的不断增多,所面临的交通问题也越来越严重。本文对地铁车辆的制动功能设计进行了说明,并介绍了制动指令的相关设计,最后介绍了混合制动控制系统设计及相关控制策略,以供读者参考 关键词:地铁车辆;制动系统 随着我国经济建设的不断推进,近年来城市轨道交通快速发展,国内许多大型城市都已有了地铁或者轻轨,随着大量的轨道交通项目投入运营,人们的日常出行变得更加方便,可随之而来的担忧也困扰着人们:“我们经常乘坐的地铁会不会刹车失灵呢、会不会追尾呢?” 1.地铁车辆的制动功能设计 地铁车辆采用减速度控制模式,制动指令为电气指令,即制动系统根据电气减速度指令施加制动力。乘客通过站台固定区域上下车,因而地铁车辆每次停站位置要求准确无误,为满足此要求,ATO系统或司机根据停车距离给定列车减速度电气指令,地铁车辆制动过程中必须能够根据减速度指令快速施加相应制动力,即制动响应准确、迅速。 制动系统设有载荷补偿功能。由于城市轨道交通车辆载客量大,乘客上下频繁,因此要求制动过程中能够根据车辆载荷变化自动调整制动力,称之为载荷调整功能。 常用制动具有防冲动限制功能。制动指令是电气信号,制动指令变化瞬间可以完成,如果制动力跟随制动指令迅速变化,就可能造成冲动,引起乘客不适,而且常用制动需频繁施加,为减少制动时的冲动以避免制动力变化过快引起乘客不适,常用制动过程中需限制制动力的变化速率,称之为冲动限制功能。 2.制动系统功能 2.1常用制动 常用制动采用模拟电气指令方式,是由微处理器控制的直通式电空制动,它采用减速度控制模式,其制动力随输入指令大小无级控制,制动控制单元根据减速度指令和车辆实际载重来计算目标制动力,产生相应的减速度。常用制动具有冲击率限制功能,以改善乘坐的舒适性;常用制动采用空电混合制动并优先使用电制动,不足部分由空气制动补足,以尽可能减少空气制动的负荷。 2.2快速制动 当司机操作主控制器手柄使其处于快速制动位时快速制动被触发。快速制动是一种特殊的制动模式。快速制动与紧急制动的制动率相同。快速制动优先使用

新城市轨道交通车辆制动系统习题库

绪论 一、判断: 1、使运动物体减速,停车或阻止其加速称为制动。(×) 2、列车制动系统也称为列车制动装置。(×) 3、地铁车辆的常用制动为电空混合制动,而紧急制动只有空气制动。(√) 4、拖车空气制动滞后补充控制是指优先采用电气制动,不足时再补拖车的气制动(×) 5、拖车动车空气制动均匀补充控制是指优先采用电气制动,不足时拖车和动车同时补充气 制动(√) 6、为了保证行车安全,实行紧急制动时必须由司机按下紧急按钮来执行。(×) 7、轨道涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(√) 8、旋转涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(×) 9、快速制动一般只采用空气制动,并且可以缓解。(×) 10、制动距离和制动减速度都可以反映列车制动装置性能和实际制动效果。(√) 11、从安全的目的出发,一般列车的制动功率要比驱动功率大。(√) 12、均匀制动方法就是各节车各自承担自己需要的制动力,动车不承担拖车的制动力。(√) 13、拖车空气制动优先补足控制是先动车混合制动,不足时再拖车空气制动补充。(×) 14、紧急制动经过EBCU的控制,使BCU的紧急电磁阀得电而实现。(×) 二、选择题: 1、现代城市轨道交通车辆制动系统不包括(C)。 A.动力制动系统 B.空气制动系统 C.气动门系统 D.指令和通信网络系统 2、不属于制动控制策略的是(A)。 A.再生制动 B.均匀制动方式 C.拖车空气制动滞后补足控制 D.拖车空

气制动优先补足控制 3、直通空气制动机作为一种制动控制系统( A )。 A.制动力大小靠司机操纵手柄在制动位放置时间长短决定,因此控制不太精确 B.由于制动缸风源和排气口离制动缸较近,其制动和缓解不再通过制动阀进行, 因此制动和缓解一致性较自动制动机好。 C.直通空气制动机在各车辆都设有制动、缓解电空阀,通过设置于驾驶室的制动 控制器使电空阀得、失电 D.直通空气制动机是依靠制动管中压缩空气的压力变化来传递制动信号,制动管 增压时缓解,减压则制动 4、三通阀由于它和制动管、副风缸及制动缸相通而得名( B ) A.充气缓解时,三通阀内只形成以下一条通路:①制动管→充气沟i→滑阀室→副 风缸; B.制动时,司机将制动阀操纵手柄放至制动位,制动管内的压力空气经制动阀排 气减压。三通阀活塞左侧压力下降。 C.在制动管减压到一定值后,司机将制动阀操纵手柄移至保压位,制动管停止减 压。三通阀活塞左侧压力继续下降。 D.当司机将制动阀操纵手柄在制动位和保压位来回扳动时,制动管压力反复地减 压——保压,三通阀则反复处于冲压位。 5、城市轨道交通在运行过程中,乘客负载发生较大变化时,一般要求制动系统( B ) A.制动功率不变 B.制动率不变 C.制动力不变 D.制动方式不变. 6、下列不属于直通式空气制动机特点的是:(B) A.列车分离时不能自动停车B.制动管增压缓解,减压制动 C.前后车辆的制动一致性不好D.制动力大小控制不精确 7、下列制动方式中,不属于黏着制动的是:(C) A.空气制动B.电阻制动C.轨道涡流制动D.旋转涡流制动 8、下列制动方式中,属于摩擦制动的是:(A ) A.磁轨制动B.电阻制动C.再生制动D.轨道涡流制动 三、填空题:

5.1概述 5.2列车自动空气制动机

第五章制动装置 第一节概述 一、相关概念 1.制动:人为地施加相反方向的力于运动中的车辆使其减速、停止运动,或采取措施防止静止中的车辆移动,这种作用叫制动。 2.制动装置:机车车辆上为了达到制动目的而装设的机械。 制动装置是提高列车运行速度,增加牵引重量和提高调车作业效率的重要条件。 3.制动方式:我国目前广泛使用闸瓦摩擦式制动装置或盘形制动装置。 4.制动作用:闸瓦(或闸片)压紧车轮踏面(或制动盘),阻止车辆运行的作用。消除制动的作用称为缓解作用。 5.制动距离:司机将大闸手把置于制动位起,到列车停车止,列车所走行的距离。 二、制动机种类 根据动力来源及操作方法,制动机主要有以下几种: 1.自动空气制动机——使用范围最广的制动机。 特点:充风缓解、排风制动 2.电空制动机——以压缩空气为动力,用电来操纵控制的制动机。 特点:列车前后部制动机动作一致性较好,列车纵向冲击较小,制动距离短。 3.轨道电磁制动机 特点:电磁铁以一定的吸力吸附在轨面上,产生摩擦力而起制动作用。 4.再生制动 特点:将列车动能转化的电能反馈回电网,提供给别的列车使用。 5.电阻制动 特点:电阻制动方式是把列车动能转化的电能加于列车自带的电阻器中,使电能变为电阻器的热能,并最终消散于大气中。 6.人力制动机——以人力为动力来源,通过人力进行控制的制动机。。 作用 介绍自动空气制动机的由来

第二节列车自动空气制动机 【历史回顾】 最早——手动式机械闸; 1869年——直通式空气制动机;(美国:韦斯汀豪斯) 1872年——自动式空气制动机。 列车自动空气制动机由机车制动机和车辆制动机构成,分别装在机车、车辆上,列车运行时由司机统一操纵。 一、列车自动空气制动机的主要组成部分 (一)装设在机车上的部件 1.空气压缩机。又称风泵,用以产生压缩空气,供制动系统及其他风动装置使用。 2.总风缸。机车贮存压缩空气的容器,风缸内空气压力为750~900 kPa。 3.电空制动控制器。通过控制相关电路的闭合与开断,产生电信号,控制全列车制动系统进行制动、缓解与保压。 1)单独制动阀(简称单阀,俗称小闸)用于单独控制机车制动、缓解; 2)自动制动阀(简称自阀,俗称大闸)用于全列车制动、缓解。 6个作用位: 1.过充位 2.运转位 3.中立位 4.制动位 5.重联位 6.紧急制动位 (二)装设在车辆上的部件 1.副风缸。每辆车辆储存压缩空气的容器。缓解时,总风缸经调压后的压缩空气通过控制阀(或分配阀)进入副风缸贮存;制动时副风缸内的压缩空气又经控制阀(或分配阀)直接进入制动缸。 2.控制阀(或分配阀)。根据制动管内空气压力的变化来控制压缩空气的流向,使制动机形成制动、保压或缓解作用,为空气制动机中最主要且复杂的部件。 3.制动缸。制动缸是将压缩空气的压力转变为制动动力的部件。利用压缩空气推动制动缸活塞,压缩缓解弹簧,再通过基础制动装置的作用将制动缸活塞杆的推力传递到制动梁,使闸瓦压紧车轮,产生摩擦力而起制动作用。结合图片P69页有误

CRH5型动车组制动系统故障分析及处理

毕业设计(论文)中文题目:CRH5型动车组制动系统故障分析及处理 学习中心:沈阳铁路局学习中心 专业:机械设计制造及其自动化 姓名:吴远鹏 学号:12621470 指导教师:霍胜贵 2014 年9 月20 日 远程与继续教育学院

毕业设计(论文)承诺书 本人声明:本人所提交的毕业论文《CRH5型动车组制动系统故障分析及处理》是本人在指导教师指导下独立研究、写作的成果。论文中所引用的他人无论以何种方式发布的文字、研究成果,均在论文中明确标注;有关教师、同学及其他人员对本论文的写作、修订提出过且为本人在论文中采纳的意见、建议均已在本人致谢辞中加以说明并深致谢意。本人完全意识到本声明的法律结果由本人承担。 本毕业论文《CRH5型动车组制动系统故障分析及处理》是本人在读期间所完成的学业的组成部分,同意学校将本论文的部分或全部内容编入有关书籍、数据库保存,并向有关学术部门和国家相关教育主管部门呈交复印件、电子文档,允许采用复制、印刷等方式将论文文本提供给读者查阅和借阅。 论文作者:_______吴远鹏________(签字)__2014_年____9__月__20 _日指导教师已阅:__ 霍胜贵________(签字)__2014_年___ __月_ _ __日

毕业设计(论文)成绩评议

毕业设计(论文)任务书 本任务书下达给:12秋级本科机械设计制造及其自动化专业学生吴远鹏设计(论文)题目:CRH5型动车组制动系统故障分析及处理 一、设计(论述)内容 国外对动车组的研究运用比较早,目前已经有很多国家拥有成熟的动车组技术,如德国、法国和日本等国。我国的第六次铁路大提速也通过“引进吸收再创新”的方式增添了动车组,其中CRH5型动车组就是由原铁道部向法国阿尔斯通引进并由我国国产化的高速动车组。列车制动是人为利用制动力使列车减速、停车、阻止其运动或加速的系统,是列车安全运行的保障,也是动车组技术的关键组成部分。 二、基本要求 CRH5型动车组采用空气制动和电制动联合制动的方式,并且优先采用再生制动。电制动与摩擦制动相比,能够减少制动装置的机械磨损,延长装置的寿命,还能将列车的动能返还给电网,做到节能环保,是理想的制动方式。而动车组在制动过程中,电制动和空气制动的分配与制动的控制制动所必需的。 三、重点研究的问题 CRH5型动车组安装有一套成熟、稳定、可靠的制动系统,但在近8年的运营时间里,CRH5型动车组发生了不少制动故障,占发生故障总数的一半以上,应引起足够的重视。发生制动故障不但会造成动车组途中停车晚点,如果处理不得当还会导致动车组救援,严重影响运输秩序。只有准确地对动车组的制动故障进行判断,及时排除故障,才能减少动车组途中停车,避免对运输秩序的干扰。 下达任务日期:2014年7月21日 要求完成日期:2014年9月25日 答辩日期:2014年11月 指导教师:霍胜贵 开题报告

城轨车辆制动方式介绍

城轨车辆制动方式 按照制动时列车动能的转移方式不同城轨车辆的制动主要可以分为摩擦制动和电制动。 一,摩擦制动 通过摩擦副的摩擦将列车的运动动能转变为热能,逸散于大气,从而产生制动作用。城轨车辆常用的摩擦制动方式主要有闸瓦制动,盘形制动和轨道电磁制动。 (一)闸瓦制动 闸瓦制动又称为踏面制动,它是最常见的一种制动方式。制动时闸瓦压紧车轮,车轮与闸瓦发生摩擦,将列车的运动动能通过车轮与闸瓦间的摩擦转变为热能,逸散于空气中。 在车轮与闸瓦这一对摩擦副中,由于车轮主要承担着车辆行走功能,因此其他材料不能随便改变。要改善闸瓦制动的性能,只能通过改变闸瓦材料的方法。目前城轨车俩中大多数采用合成闸瓦。但合成闸瓦的导热性较差,因此也有采用导热性能良好,且具有良好的摩擦性能的粉末冶金闸瓦。 在闸瓦制动中,当制动功率较大时,产生的热量来不及逸散到大气,而在闸瓦与车轮踏面上积聚,使他们的温度升高,摩擦力下降,严重时会导致闸瓦熔化和轮毂松弛等,因此,在闸瓦制动时,对制动功率有限制。 (二)盘形制动) 盘形制动有轴盘式和轮盘式之分,一般采用轴盘式,当轮对中间由于牵引电机等设备使制动盘安装发生困难时,可采用轮盘式。制动时,制动缸通过制动夹钳使闸片夹紧制动盘,使闸片与制动盘间产生摩擦,把列车的动能转变为热能,热能通过制动盘与闸片逸散于大气。 (三)轨道电磁制动 轨道电磁制动也叫磁轨制动。是一种传统的制动方式,这种制动方式是在转向架前后两轮之间安装包升降风缸,风缸顶端装有两个电磁铁,电磁铁包括电磁铁靴和摩擦板,电磁铁悬挂安装在距轨道面适当高度处,制动时电磁铁落下,并接通励磁电源使之产生电磁吸力,电磁铁吸附在钢轨上,列车的动能通过磨耗板与钢轨的摩擦转化为热能,逸散于大气。轨道电磁制动可得到较大的制动力,因此常被用作于紧急制动时的一种补充制动,这种制动不受轮轨间黏着系数的限制,能在保证旅客舒适性条件下有效地缩短制动距离。当磨耗板与轨道摩擦产生的热量多,对钢轨的磨损也很严重。但因为其制动距离短,而结构又简单可靠,所以这种装置在有轨电车和轻轨上使用较多。 二,电制动 从能量的观点来看,制动的本质就是将列车的动能转移成别的形式的能量。制动系统转移动能的能力成为制动功率。一般的在一定的安全制动距离下,列车的

城市轨道车辆制动系统原理分析

2014届毕业设计说明书课题名称:城轨车辆制动系统分析 二级院校铁道牵引与动力学院 班级宁波检修11级 学生姓名周旺 指导老师左继红 完成日期 2013.12

2014届毕业设计任务书 一、课题名称:城轨车辆制动系统的原理分析 二、指导老师:左继红 三、设计内容与要求 1.课题概要 城市轨道交通运输是我国交通运输网络的重要组成部分,它的发展与城市经济的发展息息相关。目前,世界各地的主要政治、经济、文化等中心城市都兴建了不同形式的轨道交通运输网,有些还成为所在城市的重要景观和标志性建筑。我国北京、上海、广州、南京等城市的地下铁道已经开通,成为这些城市市内交通运输的支柱。另外还有许多其他的城市交通网也在筹建和建设之中。城市轨道交通运输的发展必将为我国经济的发展插上腾飞的翅膀。 地铁车辆制动系统用于保证地铁车辆的运行安全,具有多种操作模式,与传统列车制动系统相比,结构和工作原理更为复杂。 通过对此课题的学习和设计,使学生能更好的理解地铁车辆制动和空气管路系统的工作原理,培养学生运用所学的基础知识和专业知识的能力,提高学生利用所学基本理论和自身具备的技能来分析解决本专业相应问题的能力,使学生树立正确的设计思想,掌握工程设计的一般程序和方法,完成工程技术人员必须具备的基本能力的培养和训练。 2.设计内容与要求 1、熟悉地铁制动在铁路运输中的作用。 2、简单介绍地铁车辆制动系统的组成。 3、详细分析地铁车辆及列车制动系统的工作原理和工作过程。 4分析现有制动系统存在的不足之处,利用自己所学的专业知识,提出改进设计意见和具体实施方案。 四、设计参考书 1.《城市轨道交通车辆制动技术》殳企平编著水利水电出版社 2.《列车制动》侥忠主编中国铁道出版社 3.《电力机车制动机》那利和主编中国铁道出版社 4. https://www.360docs.net/doc/0517814893.html,/ec/C356/kcms-2.htm 5 .https://www.360docs.net/doc/0517814893.html, 6. https://www.360docs.net/doc/0517814893.html, 7. https://www.360docs.net/doc/0517814893.html, 五、设计说明书内容 1.封面 2.目录 3.内容摘要(200—400字左右,中英文)

列车空气制动系统故障原因分析及对策(终稿)

列车空气制动系统故障原因分析及对策 列车空气制动系统是确保列车运行安全的重要部件,其技术状态的优劣,性能的稳定与否,直接关系着列车的运行安全。长期以来,列车空气制动系统故障高发,严重困扰全路车辆系统的惯性问题,严重影响着铁路运输的畅通。我们通过对近年来货车运用中产生的空气制动系统故障的深入调查分析。具体情况如下: 一、紧急阀漏泄或排风不止 紧急阀是为了保证列车遇到紧急情况施行紧急制动时确保可靠性的一个重要部件,对于120和103型制动机,它们的紧急阀单独安装在中间体于主阀相邻的立面上。从结构上看,120型控制阀的紧急阀比103型分配阀的紧急阀的稳定性能更好,构造基本相同,作用基本一致。 紧急阀排风不止影响列车运行的问题主要原因有二: 原因一:从技术理论上讲,紧急阀(120或103型)与中间体的紧急室配合使用,在施行制动时,列车管急速减压,紧急阀内紧急活塞下方列车管压力骤降,紧急室风压推紧急活塞下移:开放放风阀(120首先开放先导阀),开通列车管至紧急阀排风口的通路,列车管风压经排风口排向大气,产生紧急放风作用。紧急放风作用之后,需停15秒之后,紧急室风压经活塞秆下方1mm的限孔才能排尽,消除对紧急活塞

的压力后,放风阀才能关闭,如果放风阀不关闭,则充风无效,产生排风不止的现象。 在高坡地段摘挂补机列车编组事发作业中,处理管系漏泄时如果开启塞门顺序不对或开启动作过猛,均可造成紧急防风作用,一旦形成后,应等待15秒后再行充风,否则充风无效。 原因二:先导阀顶杆发生故障引起的排风不止。首先是摘挂补机作业方式不当,造成全列车形成紧急防风作用,而在紧急放风作用产生的瞬间,紧急阀内的先导阀顶杆实然承受30000余KPa的压力,致使零部件受损,特别是冬季,各金属部件(包括各弹簧)均增加了脆性,使用不当极易受损。其次,紧急阀排风口有轻微漏风,则为紧急放风阀与座不密贴,或先导阀与座不密贴,其原因为阀与座之间夹有杂物。 防止方法: 1、开启折角塞门不要过猛,一旦造成紧急放风作用时,应将折角塞门关闭,待15秒后,轻缓开启塞门,即可避免排风不止的现象。 2、列检作业处理管系漏泄时,也应遵守上述规则, 3、列检进行制动机试验时,发现紧急阀有轻微漏风时,应高度重视,需判明原因,不可掉以轻心,可轻轻敲击外体,即可消除漏泄,如不能消除,则应及早处理。 4、机务系统要了解车辆制动机的性能。

相关文档
最新文档