哈工程传热学数值计算大作业

哈工程传热学数值计算大作业
哈工程传热学数值计算大作业

传热学

二维稳态导热问题的数值解法

杨达文2011151419

赵树明2011151427

杨文晓2011151421

吴鸿毅2011151416

第一题:

a=linspace(0,0.6,121);

t1=[60+20*sin(pi*a/0.6)];

t2=repmat(60,[80 121]);

s=[t1;t2]; %构造矩阵

for k=1:10000000 %理论最大迭代次数,想多大就设置多大S=s;

for j=2:120

for i=2:80

S(i,j)=0.25*(S(i-1,j)+S(i+1,j)+S(i,j-1)+S(i,j+1));

end

end

if norm(S-s)<0.0001

break; %如果符合精度要求,提前结束迭代else

s=S;

end

end

S %输出数值解

数值解数据量太大,这里就不打印出来,只画出温度分布。

画出温度分布:

figure(1)

xx=linspace(0,0.6,121);

yy=linspace(0.4,0,81);

[x,y]=meshgrid(xx,yy);

surf(x,y,S)

axis([0 0.6 0 0.4 60 80])

grid on

xlabel('L1')

ylabel('L2')

zlabel('t(温度)')

.60.66666777778L 1

L 2t (温度)

A0=[S(:,61)];

for k=1:81

B1(k)=A0(81-k+1);

end

B1 %x=L1/2时y方向的温度

A1=[S(41,:)] %y=L2/2时x方向的温度

x=0:0.005:0.6;

y=0:0.005:0.4;

A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6) )/2) %计算y=L2/2时x方向的解析温度

B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/ 2) %计算x=L1/2时y方向的解析温度

figure(2)

subplot(2,2,1);

plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线

xlabel('L1');ylabel('t温度');

title('y=L2/2');

legend('数值解','解析解');

subplot(2,2,2);

plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线

xlabel('L1');ylabel('差值');

title('y=L2/2时,比较=数值解-解析解');

subplot(2,2,3);

plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线

xlabel('L2');ylabel('t温度');

title('x=L1/2');

legend('数值解','解析解');

subplot(2,2,4);

plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线

xlabel('L2');ylabel('差值');

title('x=L1/2时,比较=数值解-解析解');

y=L2/2时x方向的温度:

60 60.1635347276130 60.3269574318083 60.4901561107239 60.6530189159961

60.8154342294146 60.9772907394204 61.1384775173935 61.2988840936779

61.4584005332920 61.6169175112734 61.7743263876045 61.9305192816696

62.0853891461909 62.2388298405943 62.3907362037523 62.5410041260577

62.6895306207746 62.8362138946214 62.9809534175351 63.1236499915702

63.2642058188844 63.4025245687647 63.5385114436490 63.6720732440951

63.8031184326565 63.9315571966177 64.0573015095482 64.1802651916318

64.3003639687311 64.4175155301449 64.5316395850212 64.6426579173846

64.7504944397430 64.8550752452343 64.9563286582797 65.0541852837075

65.1485780543131 65.2394422768254 65.3267156762441 65.4103384385215

65.4902532515567 65.5664053444751 65.6387425251668 65.7072152160571

65.7717764880854 65.8323820928694 65.8889904930310 65.9415628906652

65.9900632539310 66.0344583417471 66.0747177265744 66.1108138152701

66.1427218680003 66.1704200151959 66.1938892725421 66.2131135539900

66.2280796827826 66.2387774004857 66.2451993740203 66.2473412006888

66.2452014111934 66.2387814706441 66.2280857775556 66.2131216608335

66.1938993747528 66.1704320919304 66.1427358942990 66.1108297620857

66.0747355608048 66.0344780262737 65.9900847476605 65.9415861485773

65.8890154662295 65.8324087286383 65.7718047299493 65.7072450038462

65.6387737950858 65.5664380291767 65.4902872802189 65.4103737369294

65.3267521668755 65.2394798789402 65.1486166840471 65.0542248541689

64.9563690796505 64.8551164248743 64.7505362822981 64.6427003248976

64.5316824570463 64.4175587638655 64.3004074590802 64.1803088314159

64.0573451895733 63.9316008058186 63.8031618582281 63.6721163716264

63.5385541572596 63.4025667512431 63.2642473518283 63.1236907555290

62.9809932921539 62.8362527587866 62.6895683527611 62.5410406036774

62.3907713045038 62.2388634418130 62.0854211252013 61.9305495159367

61.7743547548873 61.6169438897778 61.4584248018242 61.2989061317983

61.1384972055701 60.9773079591820 60.8154488635041 60.6530308485230

60.4901652273162 60.3269636197632 60.1635378760476 60

x=L1/2时y方向的温度:

60 60.1308958471008 60.2618814819943 60.3930468323419 60.5244819487850

60.6562770664196 60.7885226663977 60.9213095376979 61.0547288391086

61.1888721614654 61.3238315901874 61.4596997681540 61.5965699589666

61.7345361106384 61.8736929197574 62.0141358961654 62.1559614281981

62.2992668485325 62.4441505006859 62.5907118062120 62.7390513326424

62.8892708622179 63.0414734614594 63.1957635516239 63.3522469800970

63.5110310927684 63.6722248074423 63.8359386883315 64.0022850216885

64.1713778926236 64.3433332631650 64.5182690516120 64.6963052132389

64.8775638224022 65.0621691561100 65.2502477791090 65.4419286305490

65.6373431122839 65.8366251788694 66.0399114293203 66.2473412006888

66.4590566635297 66.6752029193167 66.8959280998773 67.1213834689139

67.3517235256817 67.5871061108928 67.8276925149213 68.0736475883809

68.3251398551535 68.5823416279436 68.8454291264398 69.1145825981625

69.3899864420822 69.6718293350911 69.9603043614169 70.2556091450646

70.5579459853794 70.8675219958221 71.1845492460516 71.5092449074134

71.8418314019312 72.1825365549057 72.5315937512233 72.8892420954831

73.2557265760494 73.6312982331452 74.0162143310978 74.4107385348577

74.8151410909089 75.2296990126956 75.6546962706925 76.0904239872462

76.5371806363247 76.9952722483076 77.4650126199600 77.9467235297321

78.4407349585321 78.9473853161230 79.4670216732992 80

66666666

L 1

t 温度

y =L 2/200.10.20.30.4

0.50.60.7

--1.--0.-3

L 1

差值

y =L 2/2时,比较=数值解-解析解

66778L 2

t 温度

x =L 1/200.050.10.15

0.20.250.30.350.4

--1.--0.-3

L 2

差值

x =L 1/2时,比较=数值解-解析解

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

哈工程传热学数值计算大作业

传热学 二维稳态导热问题的数值解法 杨达文2011151419 赵树明2011151427 杨文晓2011151421 吴鸿毅2011151416

第一题: a=linspace(0,0.6,121); t1=[60+20*sin(pi*a/0.6)]; t2=repmat(60,[80 121]); s=[t1;t2]; %构造矩阵 for k=1:10000000 %理论最大迭代次数,想多大就设置多大S=s; for j=2:120 for i=2:80 S(i,j)=0.25*(S(i-1,j)+S(i+1,j)+S(i,j-1)+S(i,j+1)); end end if norm(S-s)<0.0001 break; %如果符合精度要求,提前结束迭代else s=S; end end S %输出数值解 数值解数据量太大,这里就不打印出来,只画出温度分布。 画出温度分布: figure(1) xx=linspace(0,0.6,121); yy=linspace(0.4,0,81); [x,y]=meshgrid(xx,yy); surf(x,y,S) axis([0 0.6 0 0.4 60 80]) grid on xlabel('L1') ylabel('L2') zlabel('t(温度)')

.60.66666777778L 1 L 2t (温度)

A0=[S(:,61)]; for k=1:81 B1(k)=A0(81-k+1); end B1 %x=L1/2时y方向的温度 A1=[S(41,:)] %y=L2/2时x方向的温度 x=0:0.005:0.6; y=0:0.005:0.4; A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6) )/2) %计算y=L2/2时x方向的解析温度 B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/ 2) %计算x=L1/2时y方向的解析温度 figure(2) subplot(2,2,1); plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线 xlabel('L1');ylabel('t温度'); title('y=L2/2'); legend('数值解','解析解'); subplot(2,2,2); plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线 xlabel('L1');ylabel('差值'); title('y=L2/2时,比较=数值解-解析解'); subplot(2,2,3); plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线 xlabel('L2');ylabel('t温度'); title('x=L1/2'); legend('数值解','解析解'); subplot(2,2,4); plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线 xlabel('L2');ylabel('差值'); title('x=L1/2时,比较=数值解-解析解'); y=L2/2时x方向的温度: 60 60.1635347276130 60.3269574318083 60.4901561107239 60.6530189159961 60.8154342294146 60.9772907394204 61.1384775173935 61.2988840936779 61.4584005332920 61.6169175112734 61.7743263876045 61.9305192816696 62.0853891461909 62.2388298405943 62.3907362037523 62.5410041260577 62.6895306207746 62.8362138946214 62.9809534175351 63.1236499915702 63.2642058188844 63.4025245687647 63.5385114436490 63.6720732440951 63.8031184326565 63.9315571966177 64.0573015095482 64.1802651916318 64.3003639687311 64.4175155301449 64.5316395850212 64.6426579173846 64.7504944397430 64.8550752452343 64.9563286582797 65.0541852837075

哈工大2008-2009年春季学期传热学试题A

哈工大08/09学年春季学期 一、名词解释(20分) 1、导热系数 2、热边界层 3、辐射强度 4、灰体 二、分析论述与回答问题(30分) 1、写出傅里叶导热定律表达式,并说明式中各量和符号的物理意义。 2、简述在对流传热研究中,引入边界层理论的意义。 3、写出努谢尔数Nu与毕渥数Bi的表达式并比较异同。 4、太阳能集热器采用选择性表面涂层,它对太阳辐射的吸收效率为0.9,它本身的 发射率为0.3,这一现象是否违背基尔霍夫定律?为什么? 5、厚度等于δ的常物性无限大平板,初始温度均为t0,过程开始后,左侧有一定热 流密度q w的热源加热,右侧与低温流体t f相接触(t0>t f),表面传热系数h等于常数,所有物性参数已知,写出改导热问题的数学描写。

三、如图所示的二维稳态导热物体,其导热系数λ为常数,边界面与环境发生对流换热, 环境温度为t F ,边界面对流换热表面传热系数为h ,网格划分如下图所示,试建立数值求解节点温度t 4,t 5,t 6的离散方程。 四、在一个特殊应用中,空气流过一个热的表面,其边界层温度分布可近似为 s s T-T =1-exp(Pr )T -T u y v ∞∞-,其y 是离开表面的垂直距离,普朗特数Pr =0.7u a ∞=是一个无量纲的流体物性。如果来流温度T 400K ∞=,表面温度s T 300K =,且-15000m u v ∞=,求表面热流密度是多少?(10分) (空气导热系数,330K 时,0.0263W/(m K)λ=?;400K 时,0.0339W/(m K)λ=?)

λ=?导热系数的热绝缘层,六、在太空中飞行的宇宙飞船,表面贴有厚0.15m、0.045W/(m K) 而外表面的黑度为0.04,设飞船内空气温度为20℃,空气与内壁间的对流换热系数为6W/(m.K), 试求飞船外表面的温度。(假设宇宙空间温度为0K;忽略飞船壁面的导热热阻)(15分)

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

传热学大作业报告 二维稳态导热

传热学大作业报告二维稳态计算 院系:能源与环境学院 专业:核工程与核技术 姓名:杨予琪 学号:03311507

一、原始题目及要求 计算要求: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S 迭代和Jacobi 迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 绘出最终结果的等值线 报告要求: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 计算结果的等温线图 7. 计算小结 二、各节点的离散化的代数方程 左上角节点 )(21 1,22,11,1t t t +=

右上角节点 )(2 15,24,15,1t t t += 左下角节点 C t ?=1001,5 右下角节点 )2(211,24,55,5λ λ x h t t x h t ?++?+= 左边界节点 C t i ?=1001,,42≤≤i 上边界节点 C t j ?=200,1,42≤≤j 右边界节点 )2(415,15,14,5,+-++= i i i i t t t t ,42≤≤i 下边界节点 )42()2(211,51,5,4,5∞+-?+++?+=t x h t t t x h t j j j j λλ ,42≤≤j 内部节点 )(2 1,1,11,1,,j i j i j i j i j i t t t t t +-+-+++= ,4,2≤≤j i 三、源程序 1、G-S 迭代法 t=zeros(5,5); t0=zeros(5,5); dteps=0.0001; for i=2:5 %左边界节点 t(i,1)=100; end for j=2:4 %上边界节点 t(1,j)=200; end t(1,1)=(t(1,2)+t(2,1))/2; t for k=1:100 for i=2:4 %内部节点 for j=2:4 t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4; end end t(1,5)=(t(1,4)+t(2,5))/2;%右上角节点 for i=2:4;%右边界节点 t(i,5)=(2*t(i,4)+t(i-1,5)+t(i+1,5))/4; end for j=2:4; %下边界节点

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

哈工程传热学a卷试题及答案教学文稿

2011年春季学期《传热学》(A 卷)答案 一.(10分)外直径为50mm 的蒸汽管道外表面温度为400℃,其外包裹有厚度为40mm 、导热系数为0.11W/(m·K)的矿渣棉。矿渣棉外又包有厚为45mm 的煤灰泡沫砖,导热系数为0.12W/(m·K),煤灰泡沫砖外表面温度为50℃,试求通过每米长该保温层的热损失,并给出矿渣棉外表面温度。 解:由多层圆筒壁的导热热流量公式可知: () ()()13211322 2ln ln l t t d d d d πλλ-Φ= +(3分) 其中4001=t ℃,503=t ℃,1=l m,12350,130,220d mm d mm d mm === (2分) =1λ0.11W/(m·K),=2λ 0.12W/(m·K) 带入公式,可得:25.168=ΦW (1分) 设矿渣棉外表面温度为2t ,则由能量守恒定律可知: () ()12211 2ln l t t d d πλ-Φ= (3分),代入数据,可得:39.1672=t ℃(1分) 二.(10分)直径为12mm 、初始温度为1150K 的钢球,突然被放置于温度为325K 、表面传热系数为20W/(m 2·K)的空气中冷却。已知钢球的物性如下:λ=40W/(m·K),ρ=7800kg/m 3,c=600J/(kg·K)。试确定钢球中心温度被冷却到400K 所需的时间?如果考虑辐射的影响,冷却时间应延长还是缩短? 解:这是一个典型的非稳态热传导问题,先计算其毕渥数的大小: 1.0001.040 3006.020)/<=? = =λA V h Bi (, 故可以利用集总参数法计算此非稳态问题。(2分) 由公式: ??? ? ??-=--=∞∞τρθθcV hA t t t t exp 00 (4分) 可得:??? ? ??--- =∞∞ t t t t hA cV 0ln ρτ(1分) 代入数值,可得:21.1122=τs (1分) 如果考虑辐射的影响,则钢球的散热强度增强,冷却时间会缩短。(2分) 三、(10分)当流体为空气时,对横掠平板的强制对流换热进行实验测定,测得空 气温度相同时的结果如下: 当120m/s u =时,2150W/(m K)h =?;

传热学第四版课后题答案第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 解:Bi n n =μμtan ,不同Bi 下前六个根如下表所示: Bi μ 1 μ2 μ3 μ 4 μ 5 μ 6 0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.2 δ=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.94879 0.62945 0.11866 前六和的值 0.95142 0.64339 0.12248 比值 0.99724 0.97833 0.96881 Fo=0.2 0=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.99662 0.96514 0.83889 前六项和的值 0.994 0.95064 0.82925 比值 1.002 1.01525 1.01163 Fo=0.24 δ=x

哈工程机械动力学大作业

机械动力学大作业 含弹性摆杆的铰链四杆机构动力学仿真 学号: 院系名称:机电工程学院 专业:机械工程 学生:

本次进行设计和分析的对象为平面铰链四杆机构,在Adams的环境下,通过对四杆机构进行建模以及运动仿真,绘制出摆杆的相关曲线图。为了形成有效的对比,先建立含有刚性摆杆的四杆机构,进行运动仿真,绘制出摆杆的相关曲线。再建立含有柔性摆杆的铰链四杆机构,所有参数设置均和刚性摆杆一样。考虑到弹性摇杆可能发生较大的形变,不利于观测,绘制摇杆运动曲线时选择摇杆的质心作为参考点。 在Adams中主要有三种方法创建柔性构件,第一种是将刚性构件离散化后采用柔性梁连接;第二种是直接将刚体替换为柔性体;第三种是运用有限元分析的方法建立柔性构件。本次建模,主要采用前两种方法建立柔性摆杆。运用有限元建立柔性构件,等以后再进行深入研究。同时两种方法建立的柔性杆可以形成对比。 通过本次设计,主要学习了Adams 软件建模以及运动仿真、图形处理、刚柔混合建模的操作方法,对自己也是一个很大锻炼和提升。设计的为平面曲柄摇杆机构。相关参数如: 曲柄长L=200mm,宽W=60mm,高D=30mm; 连杆长L=427mm,宽W=30mm,高D=20mm; 摇杆长L=403mm,宽W=40mm,高D=20mm; 机架长L=600mm,宽W=40mm,高D=20mm;曲柄角速度为40deg/sec。经过验证,最短杆长度加上最长杆长度小于中间两根杆的长度之和,满足曲柄存在的条件,且最长杆为机架,故为曲柄摇杆机构。

一、建模过程 1、建立四个标记点,这四个点依次连接就可以确定一个铰链四杆机构。 2、建立四根杆的模型

传热学

镁合金激光-TIG复合热源焊接热源模型 学院:材料学院 专业:材料加工工程 学号: 姓名: 指导教师: 江苏科技大学 2015年4 月11 日

镁合金激光—TIG复合焊接热源模型与热过程 1 前言 镁合金被称为“21世纪绿色工程材料”。镁合金是目前被国内外重新认识并积极开发的一种轻量化材料,具有低密度、高比强度、阻尼减震性好、易机械加工以及良好的可回收性等优点。高效合理的镁合金焊接方法将大大推动镁合金的发展与应用。激光--电弧复合热源焊接具有高速、高效、接头质量优异等特点,目前正在被国内外的研究者日益关注。对这一过程的焊接数值模拟研究有助于更深层次地理解过程的物理机制,从而实现指导焊接工艺、控制焊接质量的目的。目前,YAG激光--TIG复合热源焊接AE31B镁合金已经被证明是一种可行而且高质量的焊接工艺[1], 迫切需要数值模拟工作对这一过程进行指导,并通过数值模拟更深层次的理解复合热源焊接这一过程。 但目前复合热源的数值模拟工作开展的却非常有限。其中一个主要原因是复合热源焊接热源模型一直解决得。首先,高能束激光焊接的热源模型虽然经过线热源、面热源、柱状热源乃至双椭球体热源的变迁,始终没有得到很好的解决; 其次激光、电弧两热源之间存在着一定的物理机制, 需要考虑热源之间的能量影响关系。 在复合热源焊接工艺研究的基础上,结合镁合金材料特点,建立了基于旋转高斯体热源与高斯面热源相结合的复合热源模型:高能束激光热源由旋转高斯体热源描述;TIG电弧则由高斯面热源描述。热源模型的建立充分考虑了过程的物理特点与热源间的能量增强效应。 1.1激光--电弧复合热源焊接概况 激光--TIG电弧复合热源焊接的特点是YAG激光、TIG电弧这两种不同物理性质与能量传输机制的热源同时作用于焊接区。这种方法克服了单独采用激光和单独采用TIG电弧焊接的缺点,并且两种热源相互藕合获得了更大能量形式。其原理如图1.1。其在实践中的优点却是非常明显的:速度快,桥接能力强,焊接变形小,焊接过程稳定,焊接质量和效率高等[2-4]。

传热大作业——服装中的传热学和建筑环境学

服装中的传热学和建筑环境学 一、服装中的传热学 传热学是一门应用性极强的基础学科,是研究由温差引起的热量传递规律的科学。热量传递是自然界和生产技术中一种非常普遍的现象。在能源动力、化学工业、建筑工程、纺织服装等行业中存在着大量的热量传递问题,而且常常起着关键作用。传热学已经成为现代科学技术中充满活力的主要基础学科之一。 人体始终处于新陈代谢过程中,只要人的生命在运转就需要不断的能量输入和代谢产物的排出。皮肤是代谢产物排到外界环境的一个重要路径,人体通过皮肤排出的代谢废物有油脂、汗(显汗、潜汗)、废气,以及不可见的热量散发等。织物制成服装覆盖在人体皮肤的表面,对于代谢产物的排出就形成了一道天然屏障,较之裸露的皮肤而言,在一定程度上阻碍了代谢产物及热量从皮肤表面排到外界环境中,其中影响最显著的就是汗,废气及热量的传递与排出。由此可见,传热学对于研究分析热量与水汽在织物或服装的传递具有十分重要的基础理论意义。 热量传递有三种基本形式:导热、对流和热辐射。下面分别对它们在服装舒适性理论研究中的应用思路及设想进行阐述。 1导热 导热是指同一物体内部,或两个相互接触的物体之间无相对位移时,由于存在温度差Δt,而依靠分子、原子、自由电子等微观粒子的

热运动产生的热量传递过程。 导热是日常生活中经常可以看到和感觉到的现象。人体内部组织与皮肤之间的热能传递(不括血流传热,血液流动传热属于对流散热),皮肤与衣服及座椅之间的热交换,人体表面与其周围边界层空气之间的热交换等都是导热。 1.1 导热系数 导热系数是指单位温度梯度作用下,物体内所产生的热流密度。习惯上把导热系数小的材料称为保温材料。多孔性结构的材料由于内含导热系数相对较小的气体,所以常有较好的保温效果。服装是由纤维、纱线以及织物组成的多重意义上的多孔材料,如果设计合理的导热系数,将会对人体着装舒适性有重要意义。另外,多孔材料的λ受湿度影响较大,水的导热系数明显大于空气的导热系数,如果人体运动出汗时,面料由于吸水变湿,人体散发的热量不易导出将会导致人体感觉热而不适。 1.2稳态导热 稳态导热指物体的温度不随时间变化而变化的导热过程。服装覆盖在人体皮肤的表面,不可避免地与皮肤之间形成一定的空气层,既便是紧紧地贴伏在皮肤上,由于服装是多孔介质,表面凹凸不平,名义上互相接触的皮肤与织物表面实际接触仅发生在一些离散的面积元上。在未接触的界面之间的间隙充满了空气,热量以导热及辐射的方式穿过这些空气及织物层。在某一定环境条件下,人体皮肤维持在33℃的恒温,热量的传递是不变的,亦即在人体皮肤到服装之间的微

哈工大传热学作业答案

一维非稳态导热计算 4-15、一直径为1cm,长4cm 的钢制圆柱形肋片,初始温度为25℃,其后,肋基温度突然升高到200℃,同时温度为25℃的气流横向掠过该肋片,肋端及两侧的表面传热系数均为 100。试将该肋片等分成两段(见附图),并用有 限差分法显式格式计算从开始加热时刻起相邻4个时刻上的温度分布(以稳定性条件所允许的时间间隔计算依据)。已知=43W/(m.K),。(提示:节点4的离散方程可按端面的对流散热与从节点3到节点4的导热相平衡这一条件列出)。 解:三个节点的离散方程为: 节点2: 节点3: 节点4: 。 以上三式可化简为: 稳定性要求,即 。 ,代入得: , 如取此值为计算步长,则: ,。 于是以上三式化成为: )./(2 K m W λs m a /10333.12 5 -?=()()12223212222/2444k k k k k k k f t t t t t t d d d d x h t t c x x x πππλλπρτ+????????---++?-=?? ? ? ? ???????????? ()()12224323333/2444k k k k k k k f t t t t t t d d d d x h t t c x x x πππλλπρτ+????????---++?-=?? ? ? ? ???????????? () 22344/244k k k f t t d d h t t x ππλ????-=- ? ?????? 12132222 43421k k f a a h a h t t t t t x x cd x cd τττττρρ+????????????? =+++-- ? ? ? ????????????13243222 43421k k f a a h a h t t t t t x x cd x cd τττττρρ+????????????? =+++-- ? ? ? ??????????? ?()4322k k f xh t t xht λλ+?=+?2 3410a h x cd ττ ρ??- -≥?2341/a h x cd τρ???≤+ ????5 54332.25810 1.33310c a λρ-===??5253 1.33310410011/8.898770.020.013 2.258100.0999750.0124s τ-??????≤+== ???+??5221.333108.898770.29660.02a x τ-???==?5441008.898770.110332.258100.01h cd τρ???==??1132 20.29660.29660.1103k k f t t t t +?++=12430.29660.296620.1103k k k f t t t t ++?+=34 0.97730.0227k k f t t t +=

计算传热学数值模拟

1、Jacobi 迭代 在Jacobi 迭代法中任一点上未知值的更新是用上一轮迭代中所获得的各邻 点之值来计算的,即 kk k k l l n l k n k a b T a T /)(1)1()(+=∑≠=- k=1,2,...,L 1×M 1 这里带括号的上角标表示迭代轮数。所谓一轮是指把求解区域中每一节点之值都更新一次的运算环节。显然,采用Jacobi 迭代式,迭代前进的方向(又称扫描方向)并不影响迭代收敛速度。这种迭代法收敛速度很慢,一般较少采用。但对强烈的非线性问题,如果两个层次的迭代之间未知量的变化过大,容易引起非线性问题迭代的发散。在规定每一层次计算的迭代轮次数的情况下,有利于Jacobi 迭代有利于非线性问题迭代的收敛。 2、Gauss-Seidel 迭代 在这种迭代法中,每一种计算总是取邻点的最新值来进行。如果每一轮迭代按T 的下角标由小到大的方式进行,则可表示为: kk k M L k l n l kl k l l n l kl n k a b T a T a T /)(1 11 ) 1(1 1) ()(++ =∑∑?+=--≠= 此时迭代计算进行的方向(即扫描方向)会影响到收敛速度,这是与边界条件的影响传入到区域内部的快慢有关的。 3、例题: 一矩形薄板几何尺寸如图所示,薄板左侧的边界温度T L =100K ,右侧温度T R =300K ,上侧温度T T =200K ,下侧温度T B =200K ,其余各面绝热,求板上个节点的温度。要求节点数目可以变化,写出程序。 解析: ⑴列出描述问题的微分方程和定解条件。 22 220t t x y ??+=??;对于离散化的问题,其微分方程根据热平衡原理得到:

北航数值分析大作业第一题幂法与反幂法

《数值分析》计算实习题目 第一题: 1. 算法设计方案 (1)1λ,501λ和s λ的值。 1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。 2)使用反幂法求λs ,其中需要解线性方程组。因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。 (2)与140k λλμλ-5011=+k 最接近的特征值λik 。 通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。 (3)2cond(A)和det A 。 1)1=n λλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。 2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。 由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。 2.全部源程序 #include #include void init_a();//初始化A double get_an_element(int,int);//取A 中的元素函数 double powermethod(double);//原点平移的幂法 double inversepowermethod(double);//原点平移的反幂法 int presolve(double);//三角LU 分解 int solve(double [],double []);//解方程组 int max(int,int); int min(int,int); double (*u)[502]=new double[502][502];//上三角U 数组 double (*l)[502]=new double[502][502];//单位下三角L 数组 double a[6][502];//矩阵A int main() { int i,k; double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;

传热学MATLAB温度分布大作业完整版

东南大学能源与环境学院 课程作业报告 作业名称:传热学大作业——利用matlab程序解决热传导问题 院系:能源与环境学院 专业:建筑环境与设备工程 学号: 姓名: 2014年11月9日

一、题目及要求 1.原始题目及要求 2.各节点的离散化的代数方程 3.源程序 4.不同初值时的收敛快慢 5.上下边界的热流量(λ=1W/(m℃)) 6.计算结果的等温线图 7.计算小结 题目:已知条件如下图所示: 二、各节点的离散化的代数方程 各温度节点的代数方程 ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4 ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4

tm=(2*i+300+n)/24; tn=(2*j+m+p+200)/24; to=(2*k+p+n+200)/24; tp=(l+o+100)/12 三、源程序 【G-S迭代程序】 【方法一】 函数文件为: function [y,n]=gauseidel(A,b,x0,eps) D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; y=G*x0+f; n=1; while norm(y-x0)>=eps x0=y; y=G*x0+f; n=n+1; end 命令文件为: A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0; -1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0; 0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0;

热物理过程的数值模拟-计算传热学3.(DOC)

四、非线笥问题迭代式解法的收敛性 每一层次上满足迭代法求解的收敛条件+相邻次间代数方程的系数变化不太大(亦即未知量的变化不太大←多数情形下非线性问题迭代式解法是可以收敛的)。 使相邻两层次间未知量变化不太大的措施: 1、欠松弛迭代 常用逐次欠弛线迭法(SLUR ):一组临时系数下逐线迭代求解+对所得的解施以欠松弛,再用欠松弛后的解去计算新的系数,常数,以进入下一层次的迭代。 实施:常把欠松弛处理纳入迭代过程,而不是在一个层次迭代完成后再行欠松弛。 )( ) ()()1(n p p n n n p n p t a b bt a t t -∑+=+ω )()1() 1()( n p p n n n p p t a b b t b a t a ω ωω -+++∑=+ ∑+=+')1('b b bt a t a n n n p p )('))(1(',n p p p p t a b b a a ωωω-+==,用交替方向线迭代法求解这一方程,就实现了SLUR 的迭代求解。为一般化起见,上式中b t n 上没有标以迭代层次的符号(J ,GS 时不相同)。 2、采用拟非稳态法 前面已指出,稳态问题的迭代解法与非稳态问题的步进法十分相似。对于非线性稳态问题,从代数方程的一组临时系数进入到另一组临时系数亦好象非稳态问题前进了一个时间层,非稳态问题的物理特性:系数热惯性越大(↑??=τρ/v c a o p ),温度变化越慢,仿此,对稳态非线性问题,可在离散方程中加入拟非稳态项,以减小未知量托两个层次间的变化,即 由 )()1()1()()(n p o p n n n p o p p n n n n p p n t a b b bt a t a V S b a b b bt a t V S b a ++∑=+?-∑?+∑=?-∑++ o p p n n p o p n n n p a V S b a t a b b bt a t +?-∑++∑= +) ()1( 一直进行到b t t n p ,收敛,虚拟时间步τ?的大小通过计算实践确定。 3、采用Jacobi 点迭代法 中止迭代的判据(该层次迭代)除前述变化率判据外,还可以规定迭代的轮数,例如规定进行4-6次ADI 线迭代就结束该层次上的计算。此时,用收敛速度低的丁迭代也就起到了欠松弛的作用。 五、迭代法的收敛速度 1、收敛速度 对给定的代数方程组(包括是临时系数的情形),采用不同的迭代方法求解时,使一定的初始误差缩小成α倍所需要的迭代轮数K 是不相的。1<α

DSP大作业(哈工程)

DSP原理与应用 学号: 姓名: 日期:2017年5月23日星期二

1.DSP的生产厂商主要有哪些?分别有什么系列? 答: ①德州仪器公司(最有名的DSP芯片厂商)。TI公司在市场上主要的三个系 列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx等; (2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括TMS320C54x、TMS320C54xx、TMS320C55x等; (3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括TMS320C62xx、TMS320C64xx、TMS320C67xx等。 ②美国模拟器件公司。其主要的系列: (1)定点DSP芯片有ADSP2101/2103/2105、ADSP2111/2115、ADSP2126/2162/2164、ADSP2127/2181、ADSP-BF532以及Blackfin系列; (2)浮点DSP芯片有ADSP21000/21020、ADSP21060/21062,以及虎鲨TS101、TS201S。 ③Motorola公司(发布较晚)。其主要的系列包括: (1)定点DSP 处理器MC56001; (2)与IEEE浮点格式兼容的的浮点DSP芯片MC96002; (3)DSP53611、16位DSP56800、24位的DSP563XX和MSC8101等产品。 ④杰尔公司。主要系列有: 嵌入式DSP内核的SC1000和SC2000系列,主要面向电信基础设施、移动通信、多媒体服务器及其它新兴应用。 2.浮点DSP和定点DSP各自有什么特点? 答: 浮点DSP和定点DSP在宏观上有很大的特点区别,包括动态范围、速度、价格等等。 (1)动态范围:定点DSP的字长每增加1bit,动态范围扩大6dB。16bit字长的动态范围为96dB。程序员必须时刻关注溢出的发生。例如,在作图像处理时,图像作旋转、移动等,就很容易产生溢出。这时,要么不断地移位定标,要么作截尾。前者要耗费大量的程序空间和执行时间,后者则很快带来图像质量的劣化。总之,是使整个系统的性能下降。在处理低信噪比信号的场合,例如进行语音识别、雷达和声纳信号处理时,也会发生类似的问题。 32bit浮点运算DSP的动态范围可以作到1536dB,这不仅大大扩大了动态范围,提高了运算精度,还大大节省了运算时间和存储空间,因为大大减少了定标,移位和溢出检查。 由于浮点DSP的浮点运算用硬件来实现,可以在单周期内完成,因而其处理速度大大高于定点DSP。这一优点在实现高精度复杂算法时尤为突出,为复杂算法的实时处理提供了保证。 32bit浮点DSP的总线宽度较定点DSP宽得多,因而寻址空间也要大得多。这一方面为大型复杂算法提供了可能、因为省的DSP目标子程序已使用到几十MB存储器或更多;另一方面也为高级语言编译器、DSP操作系统等高级工具软件的应用提供了条件。DSP的进一步发展,必然是多处理器的应用。新型的浮点DSP已开始在通信口的设置和强化、资源共享等方面有所响应。

相关文档
最新文档