最新第六章习题答案-数值分析

最新第六章习题答案-数值分析
最新第六章习题答案-数值分析

第六章习题解答

2、利用梯形公式和Simpson 公式求积分2

1

ln xdx ?

的近似值,并估计两种方法计算值的最大

误差限。

解:①由梯形公式:

21ln 2

()[()()][ln1ln 2]0.3466222

b a T f f a f b --=

+=+=≈ 最大误差限

3''2

()111

()()0.0833********

T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:

13()[()4()()][ln14ln()ln 2]0.38586262

b a b a S f f a f f b -+=

++=++≈ 最大误差限

5(4)4()66

()()0.0021288028802880

S b a R f f ηη-=-=≤≈,

其中,(1,2)η∈。 4、推导中点求积公式

3''()()()()()

()224

b

a

a b b a f x dx b a f f a b ξξ+-=-+<

证明:构造一次函数P (x ),使'',()()2222a b a b a b a b P f P f ++++????== ? ?

????

则,易求得'

()(

)()()222

a b a b a b

P x f x f +++=-+ 且

'()()()()222b

b

a

a a b

a b a b P x dx f x f dx +++??=-+????

?

?

0(

)()()22

b

a a

b a b

f dx b a f ++=+=-?,令()b a P x dx Z =?

现分析截断误差:令'()()()()(

)()-()222

a b a b a b r x f x P x f x f x f +++=-=-- 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,

所以可令2

()()()2

a b r x x x ?+=-,

构造辅助函数2

()()()()()2

a b K t f t P t x t ?+=---

,则易知: ()02a b K x K +??

== ?

??

其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''

''

()

(,)()0

()2()0

()2

f a b K f K x K x ηηηη∈=-=∴=使即

从而可知''2

()()()()()22f a b r x f x P x x η+=-=- ∴截断误差

[]''2

()()()()()()()22

b b

b b

a

a

a a

f a b R f f x dx Z f x P x dx r x dx x dx η+=-=-==-??

?? 2

()2

a b x +-

在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''

()()()()()()()(,)222224

b b a

a f a

b f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈?

?

综上所述

3''

()()()()()()224

b

a

a b b a f x dx Z R f b a f f ξ+-=+=-+?

证毕

6、计算积分

1

x e dx ?

,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少

剖分多少等分才能保证有六位有效数字?

解:①由复化梯形公式的误差限

32''5

22()1()()101212122

T b a b a e R f h f e n n η---=-≤=≤?

可解得:212.85n ≥

即至少剖分213等分。

②由复化梯形公式的误差限

4(4)5

4

11()()10288028802

S b a R f h f e n η--=-

≤≤? 可解得: 3.707n ≥

即至少剖分4等分。

7、以0,1,2为求积节点,建立求积分3

()I f x dx =

?

的一个插值型求积公式,并推导此

求积公式的截断误差。

解:在0,1,2节点构造二次lagrange 插值多项式,则有

2012()()(0)()(1)()(2)P x l x f l x f l x f =++

(1)(2)(0)(2)(1)(0)

(0)(1)(2)(01)(02)(10)(12)(21)(20)

x x x x x x f f f ------=

++------

则(3)233()

()()()()(1)(2)3!

f f x P x x x x x x ξωω=+

=--

对上式在[0,3]上求积分,则有

(3)3

33

230

()

()()()3!

f f x dx P x dx x dx ξω=+?

??

其中

3

33322

22000032332332300

0(0)(2)()(32)((1))(2)()22(0)131(2)11[2](1)[][]2323232

(0)3(2)9+222239

(0)+(2)44f f P x dx x x dx f x x dx x x dx

f f x x x f x x x x f f f f =-++--+-=-+--+-=??=????

插值型求积公式33

210

39

()()(0)(2)=44

I f x dx P x dx f f I =≈=

+??

34319

()=3244

2.

f x x =?≠?=取,代入求积公式,左边右边

代数精度为 由于(1)(2)x x x --在[0,3]上不保持常号,

故考虑构造一个二次多项式2()P x 满足下列插值条件:

222(0)(0),(2)(2),'(2)'(2)P f P f P f ===

由Hermite 插值方法,有

(3)2()23!

()()(2),

f f x P x x x a b ξξ-=

-≤≤

对上式在[0,3]上求积分,则有

(3)23

3

3()

23!0

()()(2)f f x dx P x dx x x dx ξ-=-?

??

因为2()P x 为二次多项式,所以

3

2220

3939

()(0)(2)(0)(2)4444

P x dx P P f f =

+=+?

(3)3

210(3)(3)32(3)0()

(2)3!()()93(2)()

3!3!48

f I I x x dx

f f x x dx f ξξξη-=-=-==??

8、(1)试确定下列求积公式中的待定系数,指出其所具有的代数精度。

)](')0('[)]()0([2

)(20

h f f h h f f h

dx x f h

-++≈?

α

解:分别将1)(=x f ,x 代入求积公式,易知求积公式精确成立。 代入2

)(x x f =,令求积公式精确成立,于是有:

3

3

3

23

,

3

h h h α-==右左 可解得:12

1=

α 代入3

)(x x f =,于是有

4

42,

4

4

444

h h h h =

-==右左 左=右,求积公式成立。 代入4

)(x x f =,于是有

6

32,

5

5

555

h h h h =

-==右左 右左≠,求积公式不精确成立。

综上可知,该求积公式具有三次代数精度。 9、对积分

dx x x f ?

-1

2)1)((,求构造两点Gauss 求积公式,要求:

(1)在[0,1]上构造带权2

1)(x x -=ρ的二次正交多项式; (2)用所构造的正交多项式导出求积公式。

解:(1)构造在[0,1]上构造带权函数2

1)(x x -=ρ的正交多项式)(0x Q 、)(1x Q 、)(2x Q ,取1)(0=x Q 、)()()(011x Q x x Q α-= ,

其中8

3)1()1()]

(),([)]

(),([10

2

1

0200001=

--==

??dx

x

dx

x x x Q x Q x Q x xQ α, 则8

3)(1-

=x x Q 。 同理,95

11

1916)(2

2+

-

=x x x Q ,求)(2x Q 的零点得: 17306907.00=x ,66903619.01=x

求积系数:

39523617.0)(1

00≈=?dx x l A ρ

27143053.0)(1

11≈=?dx x l A ρ

(2)求(1)可导出求积公式:

)()()1)((11001

2x f A x f A dx x x f +≈-?

)66903619.0(27143053.0)17306907.0(39523617.0f f +=

11、试用三点Gauss-Legendre 公式计算

dx x

?

3

1

1

并与精确值比较。 解:设三点Gauss-Legendre 求积节点为:

5150-

=t ,01=t ,5

152=t 相应求积系数为:

950=

A ,981=A ,95

2=A ,1=a ,3=b , x x f 1)(=,令t a b b a x 2

2-++=

则dt t a b b a f a b dx x ??--++-=1131)2

2(21 09803922

.1)22(220≈-++-≈∑=i i i t a b b a f A a b 精确值为:ln3=1.09861229, 二者误差:R ≈5.7307×10-4。

13、对积分

1

1()ln f x dx x

?导出两点Gauss 求积公式 解:在[0,1]上构造带权1

()ln x x

ρ=的正交多项式0()x ?、1()x ?、2()x ?

0()x ?=1,1

000110110001ln ((),())1

()()()1((),())4ln x dx

x x x x x x x x x dx x

???α?α??=-====??

11

()4

x x ?∴=-

同理可得2

2517()7252

x x x ?=-+

求2()x ?的零点可得010.112008810.60227691x x ==

以0x 、1x 作为高斯点

两点高斯公式,1n =,应有3次代数精度,求积公式形如

1

00110

1

()ln ()()f x dx A f x A f x x

=+?

将()1,f x x =代入上式两段,

10101

0011

1ln 1ln dx A A x x dx x A x A

x ?

=+????=+????

联立解出:010.71853932,0.28146068A A ≈≈ 所以所求两点Gauss 求积公式

1

00110

1

()ln ()()0.71853932(0.11200881)0.28146068(0.60227691)

f x dx A f x A f x f f x

=+=+?

15、利用三点Gauss-Laguerre 求积公式计算积分

2

1

1dx x +∞

+?

解:原积分2

01()1x

I dx e f x dx x +∞

+∞-=

=+?

?,其中2()1x e f x x =

+ 由三点Gauss-Laguerre 求积节点:

0130.4157745568, 2.2942803063, 6.2899150829

x x x ===

相应求积系数0120.7110930099,0.2785177336,0.010*******A A A ===

则2

() 1.49790652K

K K I A

f x ==≈∑

16、设()f x 四阶连续可导,0,0,1,2i x x ih i =+=。试推导如下数值微分公式的截断误差。

'0122()4()3()

()2f x f x f x f x h -+≈

解:设2()L x 是()f x 的过点012,,x x x 的2次插值多项式,由Lagrange 插值余项(n=2)有,

(3)2312()

()()()

3!

x f f x L x x x x ξωξ=+<<

其中3012()()()()x x x x x x x ω=---

若取数值微分公式''

2()()f x L x ≈

则截断误差(3)(3)'

'

''222

2

33()()

()()()()()3!3!

f df R x f x L x x x dx ξξωω=-=+?

将2x x =代入得'

0122()4()3()

()2f x f x f x f x h

-+≈

误差项中,32()0x ω=

(3)(3)'

'(3)(3)222

2322021()()21

()()()()()()()

3!3!3!3

f f h h R x x x x x x f f h O h ξξωξξ∴==--===所以截断误差为(3)

21()3

f h ξ,即2()O h

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析习题与答案

第一章绪论 习题一?1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得?有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1)?(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)?(2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用 :式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newto n插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值??误差限 ,因,

故? 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 ?误差限,故? 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式(5.8), ?令 因?得 3. 若,求和.

解:由均差与导数关系 ?于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有?而当P=n +1时 ?于是得 5. 求证. 解:解:只要按差分定义直接展开得 ? 6. 已知的函数表

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

数值分析经典例题

数值分析经典例题1.y' = y , x [0,1] ,y (0) =1 , h = 0.1。 1求解析解。 2 Eular法 3 R-K法 ○1解析法 在MATLAB命令窗口执行 clear >> x=0:0.1:1; >> y=exp(x); >> c=[y]' c = 1.000000000000000 1.105170918075648 1.221402758160170 1.349858807576003 1.491824697641270 1.648721270700128 1.822118800390509 2.013752707470477 2.225540928492468 2.459603111156950 2.718281828459046 ○2Euler法 在Matlab中建立M文件如下: function [x,y]=euler1(dyfun,xspan,y0,h) x=xspan(1):h:xspan(2);y(1)=y0; for n=1:length(x)-1 y(n+1)=y(n)+h*feval(dyfun,x(n),y(n)); end x=x';y=y' 在MATLAB命令窗口执行

clear >> dyfun=inline('y+0*x'); >> [x,y]=euler1(dyfun,[0,1],1,0.1); >> [x,y] 得到 ans = 0 1.000000000000000 0.100000000000000 1.100000000000000 0.200000000000000 1.210000000000000 0.300000000000000 1.331000000000000 0.400000000000000 1.464100000000000 0.500000000000000 1.610510000000000 0.600000000000000 1.771561000000000 0.700000000000000 1.948717100000000 0.800000000000000 2.143588810000000 0.900000000000000 2.357947691000000 1.000000000000000 2.593742460100000 ○3R-K法(龙格-库塔法) 在本题求解中,采用经典4阶龙格-库塔法 首先在Matlab的M文件窗口对4阶龙格-库塔算法进行编程: function [x,y]=RungKutta41(dyfun,x0,y0,h,N) x=zeros(1,N+1);y=zeros(1,N+1);x(1)=x0;y(1)=y0; for n=1:N x(n+1)=x(n)+h; k1=h*feval(dyfun,x(n),y(n)); k2=h*feval(dyfun,x(n)+h/2,y(n)+1/2*k1); k3=h*feval(dyfun,x(n)+h/2,y(n)+1/2*k2); k4=h*feval(dyfun,x(n+1)+h,y(n)+k3); y(n+1)=y(n)+(k1+2*k2+2*k3+k4)/6; end 在MATLAB命令窗口执行 clear >> dyfun=inline('y','x','y'); >> [x,y]=RungKutta41(dyfun,0,1,0.1,10); >> c=[x;y]' 得到

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(

数值分析模拟试题

1、 方程组中,,则求解方程组的Jacobi 迭代与Gauss-Seidel 迭代均收敛的a 的范围是___________。 2、,则A 的LDL T 分解中,。 3、,则__________,_______________. 4、已 知,则用复合梯形公式计算求 得,用三点式求得____________. 5、,则_________ ,三点高斯求积公式______________. 6设* 2.40315x =是真值 2.40194x =的近似值,则* x 有________位有效数字。 7 3()1,[0,1,2,3]f x x x f =+-=设 则差商(均差)_____________,[0,1,2,3,4]f =________________。 8 求方程()x f x =根的牛顿迭代格式是__________________。 9.梯形求积公式和复化梯形公式都是插值型求积公式_____(对或错)。 10.牛顿—柯特斯求积公式的系数和()0n n k k C ==∑__________________。 11.用二次拉格朗日插值多项式2()sin0.34L x 计算的值。插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。 12.用二分法求方程3()10[1.0,1.5]f x x x =--=在 区间内的一个根,误差限 210ε-=。 13.用列主元消去法解线性方程组 1231231 232346,3525,433032.x x x x x x x x x ++=??++=??++=? 14. 确定求积公式

012()()(0)()h h f x dx A f h A f A f h -≈-++? 。 中待定参数i A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积公式的代数精度。 15、 试求使求积公式的代数精度 尽量高,并求其代数精度。 16.证明区间[a,b]上带权()x ρ的正交多项式(),1,2,n P x n = 的n 个根都是单根,且位于区间(a,b)内。 17.设()()[,],max ()n n a x b f x C a b M f x ≤≤∈=,若取 21cos ,1,2,,222k a b a b k x k n n +--=+= 作节点,证明Lagrange 插值余项有估计式21()max ()!2n n n a x b M b a R x n -≤≤-≤ 18用n=10的复化梯形公式计算时, (1)试用余项估计其误差 (2)用n=10的复化梯形公式计算出该积分的近似值。 19已知方程组AX =f,其中 (1)列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式。 (2)求出Jacobi 迭代矩阵的谱半径,SOR 迭代法的最佳松弛参数 和SOR 法 的谱半径(可直接用现有结论) 20试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少? 21证明方程=)(x f x 2-x -3=0在区间(2,3)内有且仅有一个根,并用迭代法求方程在区间(2,3)内的根,精确到小数点后4位。 22设f (1)=2,f (3)=4,f (4)=6,用拉格朗日插值法求f (x )的二次插值多项式P 2(x ),并求f (2)的近似值。

数值分析作业

第二章 1. 题目:运用MATLAB编程实现牛顿迭代 2. 实验操作 1、打开MATLAB程序软件。 2、在MATLAB中编辑如下的M程序。 function [p1,err,k,y]=newton(f,df,p0,delta,max) %f 是要求根的方程(f(x)=0); %df 是f(x)的导数; %p0是所给初值,位于x*附近; %delta是给定允许误差; %max是迭代的最大次数; %p1是newton法求得的方程的近似解; %err是p0的误差估计; %k是迭代次数; p0 for k=1:max p1=p0-feval('f',p0)/feval('df',p0); err=abs(p1-p0); p0=p1; k p1 err y=feval('f',p1) if (err> newton('f','df',1.2,10^(-6),20) 3.实验结果

p0 = 1.2000 k =1 p1=1.1030 err=0.0970 y=0.0329 k= 2 p1=1.0524 err=0.0507 y=0.0084 k =3 p1=1.0264 err=0.0260 y=0.0021 k =4 p1=1.0133 err=0.0131 y=5.2963e-004 k =5 p1=1.0066 err=0.0066 y=1.3270e-004 k =6 p1=1.0033 err=0.0033 y=3.3211e-005 k =7 p1=1.0017 err=0.0017 y=8.3074e-006 k =8 p1=1.0008 err=8.3157e-004 y = 2.0774e-006 k =9 p1=1.0004 err=4.1596e-004 y =5.1943e-007 k=10 p1=1.0002 err=2.0802e-004 y= 1.2987e-007 k=11 p1=1.0001 err=1.0402e-004 y =3.2468e-008 k=12 p1=1.0001 err=5.2014e-005 y=8.1170e-009 k=13 p1=1.0000 err=2.6008e-005 y= 2.0293e-009 k=14 p1=1.0000 err=1.3004e-005 y=5.0732e-010 k=15 p1 =1.0000 err=6.5020e-006 y=1.2683e-010 k=16 p1 =1.0000 err=3.2510e-006 y=3.1708e-011 k=17 p1 =1.0000 err=1.6255e-006 y =7.9272e-012 k=18 p1 =1.0000 err =8.1279e-007 y= 1.9820e-012 ans = 1.0000 结果说明:经过18次迭代得到精确解为1,误差为8.1279e-007。

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值分析 第六章 习题

第六章 习 题 1. 计算下列矩阵的1A ,2A ,A ∞三种范数。 (1)1101A ???=????,(2)312020116A ????=??????? . 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组 1231231 238322041133631236x x x x x x x x x ?+=??+?=??++=? 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。 3. 用Gauss-Seidel 迭代求解 12312312 35163621122x x x x x x x x x ??=??++=???+=?? 以(0)(1,1,1)T x =?为初值,当(1)() 310k k x x +?∞?<时,迭代终止。 4. 已知方程组121122,2,x x b tx x b +=?? +=? (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。 (2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件. 5. 设有系数矩阵 122111221A ?????=?????? , 211111112B ?????=??????? , 证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛. (2)对于矩阵B ,. 6. 讨论方程组 112233302021212x b x b x b ?????????????=??????????????????? 用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.