低温皂洗剂ZJ-RH18在纯棉等纤维素纤维后处理中的应用

低温皂洗剂ZJ-RH18在纯棉等纤维素纤维后处理中的应用
低温皂洗剂ZJ-RH18在纯棉等纤维素纤维后处理中的应用

低温皂洗剂ZJ-RH18在纯棉等纤维素纤维后处理中的应用

关键词:低温皂洗剂、环保皂洗粉、棉、纤维素纤维、节能减排、牢度、低温、高温

资料来源:广州庄杰化工有限公司

W:雷小姐

目前,大部分棉织物均使用活性染料染色,经过中和处理,采用常规90~100℃高温下进行皂洗,从而去除织物上的浮色和污渍等等,提高织物的色泽鲜艳度,达到所要求牢度。常规皂洗工艺时间长,水、电、汽能耗均较高,且导致生产车间环境温度提高,对工作人员及设备均不利。

低温皂洗剂ZJ-RH18打破常规高温皂洗工艺,以其新型的低温皂洗工艺(60~80℃)皂洗,平均降低温度20~30℃,如此突破型工艺,是棉等纤维素纤维染色后处理工艺的一次伟大的革命性改进。低温皂洗剂ZJ-RH18的用量是0.1~0.5g/L,其他辅助助剂是染料深浅、操作工艺而定,经过中和处理、水洗,便可制得样品,庄杰低温皂洗剂操作过程简单,不仅节省时间,还能提高生产效益,降低生产成本,以下以湖蓝色为例进行具体工艺介绍。

一.低温皂洗剂与常规皂洗剂工艺对比

1.材料、试剂及主要仪器

织物:纯棉针织色布(深蓝色)

试剂:低温皂洗剂ZJ-RH18、常规皂洗剂

仪器:电子分析天平(BT 125D型,赛多利斯科学仪器北京有限公司),常温摇摆式小样染色机(AS-12型,鹤山精湛染整没备厂有限公司),电脑测色仪(Datacolor 600),紫外可见分光光度计

(UV756CRT型,上海佑科仪器仪表有限公司),恒温鼓风烘箱(<9053A> 型,上海森信实验仪器有限公司),洗水牢度测试仪(LM型)、汗渍牢度测试仪(PSP型)、色牢度摩擦仪(CFT型)均为KMS Colortech Service Co. Ltd制造。

2.皂洗后处理工艺

为了测试庄杰低温皂洗剂ZJ-RH18的效果,工厂先按照的原来正常的染色方法得到湖蓝纯棉针织色布,随后选一缸用庄杰低温皂洗剂ZJ-RH18做低温皂洗后处理﹐另一缸做传统高温皂洗后处理﹐后处理过程中,将皂洗和最后一道水洗的残液取样,用分光光度计测试吸光度,从而判断残液颜色深浅。

A.传统高温皂洗后处理工艺:染色排液→冷水洗(2道)→加酸中和(80℃)→冷水洗→皂洗(95℃×20min,常规皂洗剂1.5g/L)→冷水洗→热水洗(80℃)→冷洗(2~3道);

B.皂洗剂低温皂洗后处理工艺:染色排液→冷水洗→热水洗(50~60℃)→皂洗(80℃×20min,低温环保皂洗粉ZJ-RH18 0.5g/L)→过酸0.3g/L→热水洗(60℃,1~2道)。

3.结果与讨论

(1)低温皂洗剂ZJ-RH18对各项牢度的影响

按照AATCC的系列方法,分别对两种采用不同皂洗工艺完成整个后处理的色布进行洗水牢度、淹水牢度、汗水牢度、摩擦牢度的测试,结果如下表:

表1.洗水牢度

表2.淹水牢度

表3.汗水牢度

表4.摩擦牢度

从以上各种牢度的测试结果来看,尽管低温环保皂洗粉采用低温80℃皂洗,但该产品中复配的辅助用剂具有良好洗涤、分散能力,可

将浮色尽可能的洗下来,完全可以达到与传统高温皂洗后处理工艺的效果。

(2)低温环保皂洗粉对布样色光的影响

本结果是以传统后处理工艺的布样作为标准板﹐以低温皂洗剂ZJ-RH18低温皂洗处理过的湖蓝色为样品,在D65灯为光源情况下,用测色仪测试样品与标准板的色差。其结果如下表5。

表5.色差测试结果

从以上数据可以发现,湖蓝色布样,经过低温皂洗剂ZJ-RH18低温皂洗后布样的色光与传统高温皂洗布样的色光差别不大,均在允许范围内。所以尽管低温皂洗剂ZJ-RH18中含有能破坏未固着染料及水解染料分子中的发色基团的特种皂洗酶,但在用量适当情况下,皂洗时对布样的颜色影响甚微。

(3)低温皂洗剂对皂洗残液颜色的影响

直接将两种不同工艺中皂洗环节以及最后一道水洗环节时的残液进行取样,然后用肉眼观察皂洗残液颜色的深浅,并用分光光度计测试残液的吸光度。结果如下表6。

表6.皂洗残夜测试结果

在湖蓝色织物的皂洗环节以及最后一道洗水环节残液的吸光度对比来看,采用低温皂洗剂ZJ-RH18的残液吸光度低,这是由于低温皂洗剂能破坏皂洗残液中染料的结构,使其不显示颜色。所以低温皂洗剂ZJ-RH18能降低皂洗废水的色度,有利于减轻后续废水处理的压力。

(4)工艺成本分析

按照工厂实际生产工艺情况进行成本对比分析,以生产1吨布、浴比1:10来计算,成本分别如下:

表7 工艺成本对比

传统高温工艺

低温皂洗工

新老工艺对比结

助剂用量

/kg

15 5 省5kg助剂

每缸加工耗时少耗时/min 139 75

60min

耗电

81 44 用电减少37度

/kw.h

耗水/m380 50 减少用水30吨

用汽/kg 2592 1080 节约蒸汽1512kg

由于采用低温皂洗剂ZJ-RH18的低温皂洗工艺至少可以减少两道工序,在保持相同色牢度甚至有所提高的情况下,每吨布可节水约30吨,减少了污水处理负担,节省时间60min以上,如果是浅色织物,皂洗道数相应的都可以减少,但是新的低温皂洗工艺至少也比传统高温皂洗工艺短15min以上。另皂洗温度由传统的95℃左右降低15℃,减少耗电37度,每吨布降低蒸汽用量约1.5吨,节省能耗和提高工作效率。

4.结论:

低温皂洗剂ZJ-RH18与常规皂洗剂的工艺对比,明显节约蒸汽用量,减少污水排放量,提高生产效率,所测各种牢度指标均合格,同时本产品已获得国家环保局环保证明,目前已有多家大小企业正在使用并认可,如东莞丽海纺织印染有限公司,且至今尚未发现其他质量问题!

四种再生纤维的概述

四种再生纤维的概述及鉴定方式 再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开 发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达 到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手 感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持

再生纤维概述

再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持久,避免了棉制品用后整理方法开发的功能性产品,其药效难以持续的缺点。大豆蛋白纤维织物手感柔软、光滑,具有良好的吸湿透气性,有真丝般的光泽,抗皱性优于真丝,尺寸稳定性好。 4.竹纤维 竹纤维是继大豆蛋白纤维之后我国自行开发研制并产业化的新型再生纤维素纤维,竹纤维分竹素纤维和竹原纤维。竹素纤维是以毛竹为原料,在竹浆中加入功能性助剂,经湿法纺丝加工而成。竹原纤维是将毛竹经天然生物制剂处理后所制取的纤维。作为纺丝原料的竹浆粕,来源于速成的鲜竹,资源十分丰富。其废弃物土埋、焚烧不会造成环境污染,属于环保型纤维,满足绿色消费的需求。竹纤维是性能与粘胶纤维相类似,竹纤维织物具有良好的吸湿、透气性,其悬垂性和染色性能也比较好,有蚕丝般的光泽和手感,且具有抗菌、防臭、防紫外线功能

新型再生纤维素纤维

新型再生纤维素纤维 小组成员:翁密侬 41006010214 刘肖肖 41006010219 冯莹莹 41006010215 张玲玲 41006010217 张亚婷 41006010209 顾恬静 41006010206

新型再生纤维素纤维的发展前景 (一)资源前景 从长远看,合成纤维的原料石油是一次性资源,终会枯竭,因此,在这一背景下,发展纤维素纤维是解决纺织品原料的长远之计。自然界纤维年产量约1000亿吨,大约只有2.5%是通过再生途径制成纤维加以利用的。可见,纤维素资源十分丰富,而且加上纤维素是可再生的自然资源,具有可持续性、可循环性。因此,作为纺织品的原料,从资源供应量这一方面来说,再生纤维素纤维有着相当大的竞争力,发展前景十分可观。 (二)市场前景 自1960年以来,世界纤维消耗量的增长与人口增长呈并行发展趋势及对2020年世界人口和纤维消耗量增长的预测,2020年世界纤维的总消耗量为7000万吨,人均9.2kg。若再生纤维素纤维仍保持在目前的水平上,则棉纤维须从目前的1800万吨增加到3200万吨,而生产这些棉纤维所需资源(土地和水)几乎是无法到达的,而作为棉纤维代用品的再生纤维素的原料木材等将大幅增加。因此,大力发展再生纤维素纤维既是市场的需求,从资源方面来说又是可能的。另外,随着人们对舒适健康生活重视的提高,保健纺织品引起了消费者的极大关注。而后面介绍的四种新型再生纤维素纤维中,竹纤维和甲壳素纤维都有保健功能,竹纤维在生产过程中无虫蛀、无腐烂、无需使用任何农药,且因为竹子的天然抗菌性,使纤维在服用中不会对皮肤造成任何过敏性反应。甲壳素纤维具有抑菌、防臭、止痒等功能。可见,新型再生纤维素纤维有着相当大的市场潜力。 (三)绿色前景 当今,由于全球生态环境受到严重的破坏,环境污染日趋严重,环保议题已成为全人类共同关心的焦点,因此,在“我们只有一个地球”的口号下,消费者越来越多地考虑到产品对生态的影响,生产过程对环境的影响,天然资源的消耗及产品的可处理性等问题,从而,在人们思想意识中逐渐形成“绿色产品”、“绿色消费”、“绿色营销”等观念,且已形成一股国际潮流。据经济协作与开发组织(OECD)在OECD国家中作过的调查表明,大部分消费者愿意选购较高的环保产品。加拿大一项全国性民意调查中,有80%接受调查者表示,如果环保产品价格比一般产品价格高出10%左右,还是愿意购买环保产品。前面介绍的四种新型再生纤维素纤维都属于绿色纤维,在生产过程中不会对生态环境造成危害;纤维制

十三五规划(纤维素纤维)

再生纤维素纤维行业“十三五”发展规划 ——中国化学纤维工业协会纤维素纤维分会 前言 再生纤维素纤维是采用富含纤维素的植物原料,经一系列的化学处理和机械加工而制的的纤维,主要品种包括粘胶纤维、醋酸纤维和铜氨纤维等传统再生纤维素纤维,以及以天丝为代表的新型溶剂法纤维素纤维等。 再生纤维素纤维是重要的纺织材料之一,具有很好的吸湿性、染色性和舒适性。在人们对产品可回收、可降解、对织物舒适性要求越来越高的条件下,其在纺织原料中凸现出越来越重要的作用,另外,其原料为可再生资源,是循环经济可持续发展的重要化学纤维产品。因此,再生纤维素纤维有着更为重要的意义和广泛的发展空间。 我国再生纤维素纤维工业的整体水平和竞争能力的发展将对世界再生纤维素纤维工业 产生重要影响。“当前纺织行业发展的新常态特征日益凸显,对于企业提出更高的调整转型的要求,企业发展压力和挑战将持续增加,但同时也隐含着外部发展的机遇和行业自身提升的动力”。在当前新常态下如何生存与发展是再生纤维素纤维行业“十三五”面临的迫切任务。 《再生纤维素纤维行业“十三五”发展规划》总结分析了我国再生纤维素纤维制造行业的发展现状及特点,存在主要问题和产业发展趋势,明确了“十三五”期间行业发展由“数量型”向“技术效益型”战略转变的指导思想,明确了发展目标和发展重点,提出了发展高新技术、功能性、差别化纤维的技术方向和主要任务。对贯彻落实《国民经济和社会发展第十三个五年规划纲要》精神和《纺织工业“十三五”发展纲要》的具体要求,推动再生纤维素纤维行业的科技进步和自主创新,实现全面、协调和可持续发展,具有重要的指导作用。 一、“十二五”发展规划完成情况及特点 我国是世界最大的再生纤维素纤维生产国,主要生产粘胶纤维、醋酸纤维(用于烟草行业)、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等。其主要产品是粘胶纤维,约占世界粘胶纤维总量近三分之二。原料采用进口木浆,进口棉短绒生产棉浆,国产木浆、棉浆、竹浆、纸改浆等品种,原料进口依存度约在60%左右。 “十二五”期间,纤维素纤维行业在大宗原料、纤维生产方面基本完成规划目标。在原料利用上发展较慢,木浆发展较快,许多大型纸浆生产企业都在转产溶解浆,溶解木浆产能已达150余万吨。棉浆生产由于资源受限,总量萎缩。竹、麻浆产量较低,秸秆利用进展缓慢。粘胶纤维工业在生产设备、工艺技术、产品质量、节能减排等方面都有了大幅度提高。高湿模量纤维、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等也有了可喜的进步。 其特点是:企业规模不断增强、产量持续增长,产业集中度进一步加大、产业链配套有

浅谈新型再生纤维素纤维的发展前景

浅谈新型再生纤维素纤维的发展前景 刘长河 胡正春 王建坤 (天津工业大学纺织与服装学院,天津 300160) [摘 要] 本文介绍了新型再生纤维素纤维的性能和特点,从资源、市场、环保三方面分析了新型再生纤维素纤维的发展前景。 [关键词] 新型;再生纤维素纤维;前景 1 前 言 在20世纪70年代以前,作为再生纤维素纤维之一的粘胶纤维,曾是化学纤维生产的第一大品种。然而,随着合成纤维新品种的出现和发展,加上粘胶纤维的生产工艺流程长而复杂,能耗大,耗水量大,特别是严重污染环境,废气和污水的治理难度高、费用大,一些发达国家相继关闭了部分生产粘胶纤维的工厂。致使其世界产量在20年间下降约41%。 在这一背景下,天然纤维素纤维再次得到重视。自然界纤维素年产量1000亿吨,大约只有2.5%是通过再生途径制作成纤维等加以利用的。纤维素资源十分丰富,纤维素是可再生的自然资源,具有可持续性;纤维素具有环保性,可参与自然界的生态循环。作为纺织纤维,纤维素纤维具有优良的吸湿性、穿着舒适性,一直是纺织品和卫生用品的重要原料。所以,纤维素纤维是新世纪最理想,最有前途的纺织原料之一。近年来,出现M odal、Tencel等新一代再生纤维素纤维。随着新型再生纤维素纤维在生产中的大量应用,前景将非常看好。2 各种新型再生纤维素纤维 2.1 T encel纤维 天丝是我国的通俗称呼,它的学名叫Lyocell,商品名叫Tencel。它与粘胶纤维同属再生纤维素纤维,虽然粘胶纤维在19世纪90年代已经问世,并在化学纤维中占据着重要地位,但由于粘胶纤维的制造工艺严重污染环境,在人们强烈呼吁清洁生产、保护地球生态环境、减少污染的今天,如何克服污染环境的缺点呢?荷兰阿克苏?诺贝尔(Akzo Nobel)公司属于美国恩卡公司和德国的恩卡研究所与1980年研究成功用有机溶剂直接溶解纤维浆粕生产纤维素纤维的工艺方法,并取得了专利。1989年,布鲁塞尔国际人造及合成纤维标准局(BISFA)把由这类方法制造的纤维素纤维正式命名为“Ly ocell”。与此同时,英国考陶尔兹公司于20世纪80年代初开始研制T encel短纤维,在得到荷兰阿克苏?诺贝尔公司Ly ocell的许可证后,马上开始试生产,在实验工厂经过反复试验,成功地开发出一种对人体无害的氧化胺溶剂,其后又解决了生产中的一系列问题,最后成功地生产了T encel短纤。 天丝纤维的化学结构,基本与棉纤维,粘 2

竹纤维特性及如何辨别真伪

竹纤维特性及如何辨别真伪 竹纤维就是从自然生长的竹子中提取出的一种纤维素纤维,是继棉、麻、毛、丝之后的第五大天然纤维。竹纤维具有良好的透气性、瞬间吸水性、较强的耐磨性和良好的染色性等特性,同时又具有天然抗菌、抑菌、除螨、防臭和抗紫外线功能。专家指出,竹纤维是一种真正意义上的天然环保型绿色纤维。竹纤维纺织品因其完全复制了竹纤维的固有特性,而倍受消费者青睐,产品需求量逐年上升 竹原纤维的化学成分主要是纤维素、半纤维素和木质素(表1),3者同属于高聚糖,总量占纤维干质量的90%以上,其次是蛋白质、脂肪、果胶、单宁、色素、灰分等,大多数存在于细胞内腔或特殊的细胞器内,直接或间接地参与其生理作用。 纤维素是组成竹原纤维细胞的主要物质,也是它能作为纺织纤维的意义所在。由于竹龄的不同,其纤维素含量也不同,如毛竹嫩竹为75%,1年生为66%,3年生为58%。竹原纤维中的半纤维素含量一般为14%~25%,毛竹平均含量约为22.7%,并且随着竹龄的增加,其含量也有所下降,如2年生长竹24.9%,4年生23.6% 经扫描电子显微镜观察,竹原纤维纵向有横节,粗细分布很不均匀,纤维表面有无数微细凹槽。横向为不规则的椭圆形、腰圆形等(图1),内有中腔,横截面上布满了大大小小的空隙,且边缘有裂纹,与苎麻纤维的截面很相似(图2)。竹原纤维的这些空隙、凹槽与裂纹, 犹如毛细管,可以在瞬间吸收和蒸发水分,故被专家们誉为“会呼吸的纤维”,用这种纯天然竹原纤维纺织成面料及加工制成的服装服饰产品吸湿性强、透气性好,有清凉感。 竹纤维的特点 抗菌性:竹纤维中含有“竹琨”抗菌物质,衣物对贴身有防臭除异味之功效 保健性:竹元素中的抗氧化物能有效的清除体内的自由基,竹纤维中含有多种人体必需的氨基酸 抗紫外线:竹纤维的紫外线穿透率为万分之六,抗紫外线能力是棉的41.7倍,竹纤维不带任何自由电荷,抗静电,止瘙痒 吸湿排湿性:在所有的纤维中,竹纤维的吸收湿性及透气性是最好的,被专家美誉为“会呼吸的纤维”,毛巾久用擦汗不留异味。 舒适性:冬暖夏凉,又能排除体内多余的热气和水分 美观性:竹纤维具有天然朴实的高雅质感 环保性:竹纤维是真正的环保绿色产品,无任何化学成分无污染,竹纤维100%可生物降解 竹原纤维的性能

半纤维素提取技术及综合利用研究进展

?论文与综述? 半纤维素提取技术及综合利用研究进展 张伯坤,张美云,李金宝 (陕西科技大学,陕西西安710021) [摘 要] 半纤维素是生物质的重要组成成分,综合利用潜力大,可以将其转化为高附加值、多元化的 产品。概述了半纤维素的提取技术及其综合利用研究进展,同时提出了对其综合利用的难点和解决建议。 [关键词] 半纤维素;生物质;综合利用 随着我国经济的持续快速发展,对能源的需求也日益增加,而石油和天然气等常规能源的储量已日益减少,并且在其利用的过程中造成了严重的环境污染,寻找新的替代能源成为21世纪最为紧迫的任务[1]。目前,我国在大力地开发生物质资源,而鉴于造纸工业的特点,可以将造纸工业与生物质精炼结合起来,这样做无疑可以使造纸企业得到多赢。例如:在传统的碱法制浆过程中,占木材原料质量约20%的半纤维素会溶解而进入制浆黑液,这些黑液 通常是通过碱回收系统被燃烧发电等。但其中半纤 维素的热值比较低,如果将这些半纤维素转化为新的生物质产品如乙醇、聚合物等,则可以大大提高其附加值[2]。因此,在制浆造纸工业中可采取蒸煮之前预抽提的方式,将预抽提出来的半纤维素通过多种方式进行综合利用。1 半纤维素提取 传统化学法制浆一般是直接处理原料,原料中的生物质尤其是半纤维素大部分进入制浆废液而被浪费掉,忽略了半纤维素作为生物质资源的潜在价值。例如:半纤维素可以通过水解发酵生产燃料乙醇,也可以用作造纸助剂等。因此,可以考虑在制浆工段之前采用条件比较温和的预处理方法分离出纤维原料中的一部分半纤维素,然后将此半纤维素水解发酵制得乙醇或直接提取乙酸等化学品。尽管人们研究了多种预处理的方法,如生物法、化学法、物理法等,但是预处理的研究还有待进一步加强,因为现在的预处理方法成本缺乏优势,与化工燃料相比, 收稿日期:2009-04-09基金项目:陕西省“13115”科技创新工程重大科技专项(2008ZD KG -43)资助项目。 优势不明显1.1 高温液态水预处理提取半纤维素 热抽提半纤维素的方法主要有两种,分别是微波辐射法和水蒸汽法。Alexandra [3]等人研究了从大麦壳中抽提水溶性的半纤维素,研究表明,相对其他抽提方法而言,水蒸气抽提更具有潜力,因为水蒸气抽提工艺条件温和,使用化学品减少,从而降低了对环境的影响。相比碱法而言,这种抽提方法的优势在于,半纤维素的破坏程度小,无论是低聚阿拉伯基木聚糖,还是多聚阿拉伯基木聚糖,其乙酰基团没有受到破坏,从而保证了半纤维素的多种用途,比如通过化学改性,增加半纤维素的疏水性,开发新材料。Alexandra [4]等研究了在微波条件下用高温液态水提取半纤维素,研究发现提高温度可以提高半纤维素的提取率,但同时多聚糖的分子量变小,半纤维素受到破坏程度提高。1.2 弱酸或弱碱提取半纤维素 半纤维素在酸性条件下容易降解,但是在弱酸介质条件下,只要控制好酸解温度、时间和浓度,不仅大部分半纤维素可以抽提出来,而且纤维素受到的影响不大,这为半纤维素的综合利用创造了有利条件。如在温和的温度条件下,Charles [5]等人用稀硫酸(约0.5%~1.0%)有效地从玉米秆中抽提出并回收大部分半纤维素,回收的形式为可溶的糖类,如果采用氨水来控制预处理液的p H ,同时加入少量Ca (O H )2,预处理效果更好,并且预处理条件也会更加温和。与上面的高温液态水处理相比,稀酸预处理提高了半纤维素的得率,但预处理的成本增加。曹邦威[6]等在对制浆造纸产业模式转变的思考中提出:在制浆前先从木片中抽提出半纤维素,再转化成乙醇和糖基聚合物。在碱法制浆前,先用温度 — 21— 2009年 第3期 《黑 龙 江 造 纸》

羟丙基甲基纤维素醚(HPMC)

羟丙基甲基纤维素醚(HPMC) 羟丙基甲基纤维素醚(HPMC) 产品简介: 本品选用高度纯净的棉纤维素作为原料,在碱性条件下经专门醚化而制得,全 过程在自动化监控下完成,不含任何动物器官和油脂等活性成分。它们是一种无嗅,无味无毒的白色粉末,在冷水中溶胀成澄清或微浑浊的胶体溶液。具有增稠,粘合,分散,乳化,成膜,悬浮,吸附,凝胶,表面活性,保持水分和保护胶体等特性。本品能溶于冷水,形成透明的粘稠溶液。 产品说明: 1. 外观:白色或类白色粉末。 2. 颗粒度:100目通过率大于98.5%;80目通过率大于100%。 3. 炭化温度:280-300?。 4. 视密度:0.25-0.070g/cm3.(通常在0.5g/g/cm3左右),比重1.26-1.31。 5. 变色温度:190-200?。 -56dyn/cm. 6. 表面张力:2%水溶液为42 7. 溶于水及部分有机溶剂,如适当比例的乙醇/水、丙醇/水等。水溶液具有 表面活性。透 明度高,性能稳定,不同规格的产品凝胶温度不同,溶解度随粘度而变化,粘 度愈低, 溶解度愈大,不同规格HPMC其性能有一定差异,HPMC在水中的溶解不受PH值 影响。 8. HPMC随甲氧基含量减少,凝胶点升高,水溶解度下降,表面活性也下降。 9. HPMC具有增稠能力,低灰份、PH稳定性、保水性、优良的成膜性、以及 广泛的耐酶性、

分散性和粘结性等特点。 产品应用: 本品为工业级HPMC,主要用途为聚氯乙烯生产中作分散剂,系悬浮聚合制备PVC主要助剂。另外,在其它石油化工、建材、除漆剂、农业化学品、油墨、纺织印染、陶瓷、造纸、化妆品等产品生产中作增稠剂、稳定剂、乳化剂、赋形剂、保水剂、成膜剂等。在合成树脂方面的应用,可便获得的产品具有颗粒规整、疏松、视比重适租,加工性能优良等特点,从而基本上取代了明胶和聚乙烯醇作分散剂。另外在建筑工业施工过程中,主要用于砌墙、灰泥粉饰,嵌缝等机械化施工;特别在装饰施工中,用作粘磁砖,大理石,塑料装饰,粘贴强度高,可以减少水泥用量。用于涂料行业中作增稠剂,可使涂层光亮经腻,不脱粉,改善流平性能等。用于粉刷石膏、粘结石膏、嵌缝石膏、耐水腻子中可显著提高其保水性,粘结强度等。

炭化木的特点及用途

炭化木的特点及用途 炭化木特点 1防潮性 木材经炭化处理,使木材的水吸附机理发生了变化,随着处理温度的升高,吸湿性能强的半纤维素在处理过程中降解产生糠醛等物质,使得木材的吸湿性下降,水分子与木材分子之间的氢键减少,从而大降低了木材的吸湿性和吸水性,能让炭化木的平衡含水率比未处理木材降低40%以上。炭化木在室温条件下使用的含水率始终保持在6%左右。 2稳定性 木材在高温环境中进行炭化,由于炭化过程降低了木材组分中羟基的浓度,减小木材的吸湿性和内应力,使炭化木与外界水分的交换能力显著下降,从而大大减小了木材在使用中因水分变化引起的变形和开裂。 3耐久性 木材组分在炭化过程中发生了复杂的化学反应,改变了木材的某些成分,减少了木材腐朽菌的营养物质,从食物链这一环节上抑制菌类在木材中的生长,同时木材在处理过程中发生的复杂化学反应也产生一些对腐朽菌有害的成分,能够杀死腐朽菌。因此,炭化处理的木材的耐腐性能和耐候性显著提高,具有防腐烂、防真菌的功效。 4环保性 木材炭化的处理为纯物理技术,在木材炭化过程中只涉及温度和水蒸汽,不添加任何化学药剂,也没有添加任何外来的物质,所以炭化木相当环保和安全,是环境友好型材料。另外,炭化处理使一些速生木材具有了稳定、防腐和珍贵木材的颜色,这些速生材可替代部分珍贵木材,因此炭化木具有环境保护意义。 5颜色 炭化木颜色内外一致,根据树种和工艺不同,炭化木的颜色可从黄色至深棕色变化。对于松木、杉木、杨木之类浅色的速生木材,炭化后可以使这些廉价木材的颜色类似热带的珍贵木材,并具有优越的稳定性。 6力学性能 炭化木经过超高温热解处理,大量半纤维素和木素降解,使木材力学性能有所下降。但由于炭化木平衡含水率低,使用时的含水率也较低,所以适合的炭化处理温度可以提高炭化木使用时的抗弯强度和抗弯弹性模量,但炭化木的抗冲击韧性降低,而且处理的温度越高,抗冲击韧性越低。 7易维护

半纤维素论文..

半纤维素材料制备、表征及材料化的应用 摘要: 随着石油煤炭的日渐枯竭和环境的日益恶化,全球面临着经济可持续发展的压力。生物质是地球上最重要、最广泛的可再生资源,生物质资源俨然成为了国家和地区可持续发展的重要战略资源,以农作物秸秆(半纤维素)为代表的一类原料成为大家研究和开发的热点。本实验通过绝干玉米芯和菜籽秆粉状物与碱溶液kOH(80g/L)进行提取,提取时间为2h,收集温度75度。收集上清液后用乙酸-乙醇进行沉淀得到半纤维素沉淀物。沉淀物经大量的乙醇-水清洗得到纯净半纤维素然后进行半纤维素XRD、红外、GPC表征。通过表征现象可分析出半纤维素的基团、包含的单糖以及单糖的含量。 半纤维素材料化应用是通过传统凝胶方法在试管中与水和乙醇等溶剂在高温下进行物理作用形成温度敏感水凝胶。 关键词:半纤维素、表征、水凝胶 Abstrzact:As oil coal draining and worsening environment, the world faces the dual pressure of economic sustainable development and environmental protection. Biomass resources has become the important strategic resources for the sustainable development of countries and regions, with crop stalks (hemicellulose) as the representative of the raw material become the hotspot of research and development。

稻壳中纤维素、半纤维素的测定

用稻壳制作功能材料的探讨 2014年05 月21 日 用稻壳制作功能材料的探讨 摘要我国每年产生的稻壳数量巨大,稻壳灰的综合利用是目前较活跃的研究领域,研究方向主要:一是利用稻壳灰份中高硅含量,进一步制成各种含硅产品,二是加工成多孔微晶形的碳,作为活性碳使用文中就多种功能材料的制备工艺展开讨论。 关键词稻壳稻壳灰中含硅利用途径 1 前言 我国每年产生的稻壳数量巨大,稻壳为大米加工过程中将稻谷经脱谷机脱壳后分离出的副产物,长期以来稻壳一直被作为燃料和饲料,但是作为燃料使用,经过燃烧后的稻壳灰常常被人们视为废弃物,堆弃于村头道边,污染环境;作为

饲料,其中粗蛋白含量仅有3% ,而粗纤维量却高达45 %以上,可消化蛋白消化能和代谢能都为负值,难以被禽畜消化吸收,且其中大量粗纤维和硅也影响对其它营养物质的吸收,因此也不适合用作动物饲料。 作为一种潜在的可再生资源,稻壳中富含大量二氧化硅,它是水稻在生长发育过程中从土壤中吸收富集而来的,一般认为稻壳中的硅主要是以一种无机键合形式存在,近年来,实验手段和仪器设备不断完善和发展,通过扫描电镜X光能量分散分析电子波谱等实验手段,发现硅主要位于稻壳外部表皮和靠近米粒内表层,颗粒大小为50 nm左右,主要是以生物矿化方式无定形状态存在,在稻壳中所占的质量分数为13.0% ~22.0 %,稻壳中其余的绝大部分为有机物,还有少量的无机氧化物而绝干稻壳灰中二氧化硅的含量可以高达60%~90%,碳含量约为40%~10% ,其它元素含量仅为0.3%所以,如果能将稻壳中丰富的二氧化硅资源利用起来,将会大大地提高稻壳的经济价值[1]。 2 不同功能材料及其制备方法 稻壳灰的综合利用是目前较活跃的研究领域,目前,利用的方向主要有两个:一是利用稻壳灰份中高硅含量,进一步制成各种含硅产品,如水玻璃白炭黑稻壳水泥高温耐火材料等:二是稻壳直接经过物理和化学处理得到硅化物,如多孔二氧化硅高纯硅硅肥精细陶瓷等。 2.1 制备水玻璃[2] 稻壳灰可用作制造水玻璃,特别是制高模数水玻璃由于稻壳灰中不含有砷铅等有害健康重金属,经燃烧后排除了农药等污染由它制备水玻璃除模数可达到很高外,其产品的水溶性透明度稳定性等都优于火法制得水玻璃,是现有水玻璃生产工艺难以实现的所以稻壳灰水玻璃不仅扩大了应用范围,能满足生产特殊产品需要,且可使由高模数水玻璃制得白炭黑硅胶硅溶胶等其它工业产品提高质量,降低成本,尤其可用于食品医药等工业由稻壳灰制水玻璃生产一般都采用一步碱浸法,该工艺简单,二氧化硅浸出率较高,但产品水玻璃模数最高不超3。由于反应过程所用碱量与得到的产品模数密切相关,碱量小所得产品模数高,但二氧化硅浸出率低;碱量大虽可提高二氧化硅浸出率,但却得不到模数高的水玻璃产品为了既能保证二氧化硅高浸出率,又能制得高模数水玻璃,可采用“循环浸出的碱浸调整工艺路线”。该工艺既可制得模数<3的各种模数规格水玻璃,又能制

半纤维素酶降解机制

纤维素酶(cellulase牘是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。人们已对纤维素酶的作用机制及工业化应用等方面进行了大量的研究,为纤维素酶的生产和应用打下了良好的基础。其在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。 纤维素酶的来源 纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。由于放线菌的纤维素酶产量极低,所以研究很少。细菌产量也不高,主要是葡萄糖内切酶,但大多数对结晶纤维素没有活性,并且所产生的酶是胞内酶或吸附在菌壁上,很少能分泌到细胞外,增加了提取纯化的难度,在工业上很少应用。目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As pergillus)和青霉属(Penicillium)牞特别是绿色木霉(Trichoder mavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。 纤维素酶的生产方法 目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。 固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。 液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。 纤维素酶的应用 制酒在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。 将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,加快发芽,减少糖化液中单一葡萄糖含量,改进过滤性能,有利于酒精蒸馏。 酱油酿造在酱油的酿造过程中添加纤维素酶、可使大豆类原料的细胞膜膨胀软化破坏,使包藏在细胞中的蛋白质和碳水化合物释放,这样既可提高酱油浓度,改善酱油质量,又可缩短生产周期,提高生产率,并且使其各项主要指标提高3%。 饮料加工日本有专利报道,用纤维素酶处理豆腐渣后接入乳酸菌进行发酵,可制得营养、品味俱佳的发酵饮料。将纤维素酶应用于果蔬榨汁、花粉饮料中,可提高汁液的提取率(约10%)和促进汁液澄清,使汁液透明,不沉淀,提高可溶性固形物的含量,并可将果皮综合利用。目前,有报道已成功地将柑橘皮渣酶解制取全果饮料,其中的粗纤维有50%降解为短链低聚糖,即全果饮料中的膳食纤维,具有一定的保健医疗价值。 纤维废渣的回收利用应用纤维素酶或微生物把农副产品和城市废料中的纤维转化成葡萄糖、酒精和单细胞蛋白质等,这对于开辟食品工业原料来源,提供新能源和变废为宝具有

半纤维素的提取及功能化应用

半纤维素的提取及功能化应用 摘要:进入新世纪以后,全面可持续发展的科学发展观不断深入人心,为贯彻这一思想,可再生木质纤维素类生物质资源的开发和利用得到了人们的极大重视和关注。半纤维素是农林生物质的主要组分之一,含量仅次于纤维素,是地球上最丰富、最廉价的可再生资源之一。本文主要对半纤维素的提取及功能化应用进行综述。 关键词:生物质;半纤维素;功能化应用 Extraction and functional application of Hemicelluloses Abstract: After entering the new century, the comprehensive sustainable development of the concept of scientific development unceasingly thorough popular feeling, lignocelluloses biomass resources development and utilization of the people's great attention and concern to carry out the idea of renewable class. Hemicelluloses is a major component of forestry biomass, content, second only to cellulose is the most abundant on earth, one of the most cheap renewable resource. This article mainly summarized the extraction and functional application of hemicelluloses. Key Words: biomass ; hemicelluloses; functional applications 1.引言 植物体内通常含有纤维素、半纤维素、木质素、果胶和特种化合物。其中,半纤维素在自然界中的含量十分丰富,在木质纤维生物质中的含量占1/4 ~1/3,仅次于纤维素的含量,比木质素还高。长期以来纤维素和木质素的研究利用占据了人们的主导研究地位,近年来有关半纤维素的研究逐步得到了重视,特别是半纤维素的提取和改性技术的提高,使其在造纸、食品包装、生物医药等领域有着潜在的商业价值[1]。本文通过半纤维素的简介、提取方法及功能化应用三个方面进行详细阐述。 2.半纤维素的简介 半纤维素是植物细胞壁的主要组分之一,是由非葡萄糖单元组成的一类多糖的总称,约占细胞壁总重的20~35%。半纤维素与纤维素均一聚糖的直链结构不同,在参与细胞壁的构建中形成的种类很多,多为支链结构,结构复杂,且化学结构随植物种类不同呈现较大差异。 半纤维素主要由大量的非晶戊糖和己糖组成[2],既有均一聚糖也有非均一聚糖。根据一级结构,半纤维素可分为甘露聚糖、木聚糖、半乳聚糖、木葡聚糖和阿拉伯聚糖[3]。下图是半纤维素的主要结构单元。

微晶纤维素2015版药典标准

微晶纤维素 Weijing Xianweisu Microcrystalline Cellulose C6n H10n+2O5n+1 [9004-34-6] 本品系含纤维素植物的纤维浆制得的α-纤维素,在无机酸的作用下部分解聚,纯化而得。 【性状】 本品为白色或类白色粉末或颗粒状粉末;无臭,无味。 本品在水、乙醇、乙醚、稀硫酸或5%氢氧化钠溶液中几乎不溶。 【鉴别】(1) 取本品10mg,置表面皿上,加氯化锌碘试液2ml ,即变蓝色。 (2)取本品约1.3g,精密称定,置碘量瓶中,精密加水25ml,振摇使微晶纤维素分散并润湿,通入氮气以排除瓶中的空气,在保持通氮气的情况下,精密加1mol/L双氢氧化乙二胺铜溶液25ml,除去氮气管,密塞,强力振摇,使微晶纤维素溶解,作为供试品溶液;取适量,置25℃± 0.1℃水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为0.7~1.0mm,选用适宜黏度计常数K1),照黏度测定法(附录ⅥG第法),于25℃± 0.1℃水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间t1,按下式计算供试品溶液的运动黏度ν1。 ν1= t1×K1 分别精密量取水和1mol/L双氢氧化乙二胺铜溶液各25ml,混匀,作为空白溶液,取适量,置25℃± 0.1℃水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为0.5~0.6mm,黏度计常数K2约为0.01),照黏度测定法(附录ⅥG第法),于25℃± 0.1℃水浴中测定。记录空白溶液流经黏度计上下两刻度时的时间t2,按下式计算空白溶液的运动黏度ν2, ν2= t2×K2 照下式计算微晶纤维素的相对黏度:?rel=ν1/ν2 根据计算所得的相对黏度值(?rel),查附表,得[?]C值〔特性黏数[?](ml/g)和浓度C

纤维素改性材料的发展与应用

纤维素改性材料的发展与应用 前言:本文主要介绍纤维素改性材料的应用。天然纤维素来源丰富、价格低廉、是可再生且环境友好的高分子材料,其改性纤维素技术及其应用越来越受到重视。纤维素改性技术的应用前景广阔,其在环境保护、资源充分利用、生物化工等众多领域都发挥着重要的价值,适应人类充分利用自然资源,与自然环境和谐相处的发展趋势。因此,对纤维素改性材料的研究与应用也是现代科学家研究的重点。 关键字:纤维素;改性材料;应用;发展 主要内容:纤维素是地球上最丰富、可以恢复的天然资源具有价廉、可降解、对环境不产生污染等特点。因此世界各国都十分重视对纤维素的研究与开发。纤维素分子的结构式为(C6H10O5)n 是由很多D-吡喃葡萄糖彼此以B—1—4苷键连接而成的线型分子,每个葡萄糖单元中有3个极性羟基。纤维素这种有大量羟基存在,并于分子链间和分子内部广泛形成氢键的结构,极大地影响了其反应活性。为了使之达到人们所预期的吸附功能,必须对纤维素结构进行改性。通过改性后的纤维素适用范围更大,功能更强。而在对纤维素进行改性之前,由于纤维素本身的特点,通常需要对纤维素进行活化或溶胀处理。 纤维素的改性方法: 纤维素是由许多β-D-葡萄糖分子脱水缩合而成不分枝,β-葡萄糖分子借β-1,4 -糖苷连接纤维素的这一结构特点使得纤维素在经过适当的预处理后,可以通过一系列的化学改性反应制取不同用途的功能高分子材料。按其反应方法不同大致可分为氧化反应,酯化、醚化反应,亲核取代反应,接枝共聚改性和交联5种。 1、氧化反应。纤维素完全氧化的最终产物是二氧化碳和水,但是部分氧化作用可以把新的官能团——醛基、酮基、羧基或烯醇基等引入纤维素大分子,生成不同性质的水溶性或不溶性的氧化物称之为氧化纤维素。其中,以纤维素的选择性氧化反应,如高碘酸盐攻击C2或C3生成高还原性的二醛基的选择性氧化反应受到人们的高度重视。因为二醛纤维素DAC是制备不含葡萄糖环骨架的纤维素衍生物的好原料,利用高分子化学反应,二醛纤维素分子中的醛基可以方便地转变为其他官能团,这样便可得到具有新功能和新用途的纤维素衍生物。将二醛纤维素进一步氧化,可得到羧酸纤维素。羧酸纤维素在氢氧化钠中处理、可转变为-COONa型,呈弱碱性,可用于酸性气体的吸附。此外,作为生物医用高分子材料具有优良的水溶性和抗凝血性,可用于血液透析、血浆分离及人工肾等方面,羧酸纤维素还是一种优良的贵重金属提取分离螯合剂。 2、酯化、醚化反应。纤维素的酯、醚化反应是最为重要的纤维素衍生化反应,纤维素分子链上的羟基可与酸、酸酐、酰卤等发生反应生成酯,与烷基化试剂反应生成纤维素醚,于本世纪五、六十年代相继实现工业化。纤维素酯中,以纤维素硝酸酯、纤维素醋酸酯和纤维素黄原酸酯最为普遍和重要。目前已广泛应用于涂料、日用化工、制药、纺织、塑料、烟草、粘合剂、膜科学等工业部门和研究领域中。在纤维素醚产品中,以羧甲基纤维素(CMC)、羟乙基纤维素(HEC)、羟丙基纤维素(HPC)、羟丙基甲基纤维素(HPMC)等为代表,其产品也已商品化。在纤维素酯、醚的应用研究中,纤维素酯的银盐可作抗菌剂,纤维素酯与聚苯胺复合,可制备透明、高导电性材料。何永炳等人利用棉纤维碱化后与环氧氯丙烷反应进行醚化 再与乙二胺反应制得了含氮纤维素衍生物。 通常根据各取代基的种类、电离性以及溶解度的差异,将纤维素醚分类:取代基种类,分单一醚类,有烷基醚(如甲基纤维素、乙基纤维素)、羟烷基醚(如羟乙基纤维

纤维素降解菌

那些是植物结构多糖,是细胞壁的主要成分。通过对降解纤维素微生物发生的分析。可知具有降解纤维素能力的微生物分布在细菌、放线菌、和真菌的许多菌属中,其中真菌被认为是自然界中有机质特别是纤维素物质的主要降解者、 降解纤维素微生物种类 木质素的存在 木质素(lignin )与纤维素及半纤维素共同形成植物体骨架,是自然界中在 数量上仅次于纤维素的第二大天然高分子材料,据估计全世界每年可产生600 万亿吨[18] 。木质素是植物的主要成分之一,它是植物细胞胞间层和初生壁的主 要填充物,其产量是仅次于纤维素的最为丰富的有机物,通常在木质细胞中占 15%~30%。从化学结构看[19],针叶树的木质素主要由松柏醇的脱氢聚合物构成 愈创木基木质素;阔叶树的木质素由松柏醇和芥子醇的脱氢聚合物构成愈创木 基紫丁香基木质素;而草本植物则是由松柏醇、芥子醇和对香豆醇的脱氢聚合 物和对香豆酸组成因而使木质素成为结构复杂、稳定、多样的生物大分子物。 木质素依靠化学键与半纤维素连接,包裹在纤维之外,形成纤维素。植物组织 由于木质素存在而有了强度和硬度。 在生活生产中,大部分的木质素被直接排放,不仅浪费了这种宝贵的资源,

还对周围环境产生巨大影响,因此研究木质素的降解和利用越来越成为热门的 课题。 绿色植物占地球陆地生物量的95% ,其化学物质组成主要是木质素、纤维素和半纤维素,它们占植物 [] 干重的比率分别为15%~20%,45%和20% 农作物秸杆是这类生物质资源的重要组成部分,全世界年 产量为20 多亿吨,而我国为 5 亿多吨但是,要充分、有效地利用这类资源却相当困难,这是由于秸秆产量 ! B ' 随季节变化,且量大、低值、体积大、不便运输,大多数动物都不能消化其木质纤维素,自然降解过程又极其 缓慢,导致大部分秸秆以堆积、荒烧等形式直接倾入环境,造成极大的环境污染和浪费' 存在于秸秆中的非水溶性木质纤维素很难被酸和酶水解,主要是因纤维素的结晶度、聚合度以及环绕 着纤维素与半纤维素缔合的木质素鞘所致'木质素与半纤维素以共价键形式结合,将纤维素分子包埋在其 中,形成一种天然屏障,使酶不易与纤维素分子接触,而木质素的非水溶性、化学结构的复杂性,导致了秸 秆的难降解性'所以,要彻底降解纤维素,必须首先解决木质素的降解问题'因此,秸秆利

竹纤维市场分析与前景

竹纤维产品的市场行情和未来 (产品卖点与行业分析) 竹纤维源起于中国,被东南亚和欧美国家称为“中国纤维”、“会呼吸的纤维”。竹纤维产业是我国林业产业领域新兴产业的典型代表,为了进一步了解其发展状况和产业发展前景,探讨以竹代棉及竹材开发利用新的途径等问题,中国林业产业协会调研组近日与我国竹产业方面的专家,有关科研、管理、中国竹产业协会等单位和部门进行了广泛的咨询和交流,并赴占我国竹纤维产量70%的河北吉藁化纤有限责任公司进行了实地调研。本文是中国林业产业协会调研组充分调研后,给读者关于竹纤维及其产业发展的全情陈述。 竹纤维是从竹类中提取出来的一种再生植物纤维,是继棉、麻、毛、丝之后人类应用的的第五大天然纤维。让我们欣喜的是,我国科学工作者和企业已研发成功竹纤维纺织材料,并迅速开始了竹纤维的产业化运营。竹纤维性能独特,近期以竹纤维为原料制作的内衣、袜子、T恤衫等竹纤维产品叫好又叫座,使得竹纤维因其“绿色”“健康”的形象正成为纺织品市场的新宠。 竹纤维的发展历程 纤维素纤维作为最早的人造纤维已有100多年的历史,现在世界纤维素纤维产量已达300多万吨。进入21世纪以来,随着世界人口增加和工业化规模扩大,能源危机、粮食危机、资源枯竭现象相继出现,所以由大自然产生的纤维素纤维备受关注。由于传统的棉、麻天然纤维素纤维在原料生产上受资源瓶颈制约,如棉花的“与粮争地”问题,人们把视线越来越多地集中在了新型天然、再生纤维素纤维的开发和利用上。近年来人们的绿色意识越来越强,保健要求不断提高,在纺织原料的采用上,更趋于棉、麻、毛、蚕丝等天然原料或混纺,能否开发出更多的天然材料,成为人们研究的课题,木纤维、大豆蛋白纤维等应运而生,竹纤维也正是继此之后又被开发成功的一种天然纺织材料。

相关文档
最新文档