第九章 明暗分析

第九章 明暗分析
第九章 明暗分析

第九章 明暗分析

本章将介绍光在物体表面的反射物理特性以及利用反射特性估计表面形状的方法,即光度立体法(Photometric Stereo ).在讨论光度立体法及从明暗恢复形状(Shape from Shading)之前,我们将首先介绍成象物理学,即场景中各点的光强度在图象平面上的映射过程(通常将这一过程称为成像).本章将按照[Horn 1986]所做的开创性工作对有关的理论和算法展开讨论.

9.1 图象辐照度

我们知道,通过投影原理可以确定场景中的点在图象平面中的位置,但并不能确定该点的图象强度.图象强度可用本节将要介绍的成象物理学来确定,其中用于描述图象强度的一个术语是图象辐照度(Irradiance ).由于强度、亮度或灰度等术语使用的十分普遍,因此本书通篇将这些术语视为图象辐照度的同义词.

图象平面中一点的图象辐照度是指图象平面点单位面积接收的辐射(radiance )功率。辐射为输出能量,辐照为输入能量.对图像来说,图像的辐照源对应景物对光源的反射,即场景的辐射。也就是说,图象平面上一点的辐照度),(y x E ''对应于图象点到场景点方向的场景辐射能量),,(z y x L :

),,(),(z y x L y x E ='' (9.1)

场景点),,(z y x 位于从投影中心到图象点),(y x ''的射线上.为了找到图象的辐照源,我们必须沿这条射线返回到发射射线的表面片上,并且弄清楚场景照明光是如何被表面片反射的.

决定场景表面片辐射的因素有两个:一个是投在场景表面片上的照明,另一个是表面片反射的入射照明部分.

投在某一特定表面片上的照明量取决于该表面片在场景中相对于光源的分布位置.在某一特定方向上被表面片反射的入射照明部分取决于表面材料的光学特性.

图9.1在一个无限小的表面片上建立极坐标系,用来描述表面片

可视半球方向的照明和辐射方向

考虑场景中一个无穷小的表面片被一个单独的点光源照明.在表面片上建立一个坐标系,如图9.1所示.此坐标系表示能量可以到达或离开该表面所有可能的方向半球.设),(i i φθ表示在极坐标中相对于表面片的场景照明点光源的方向,设),(e e φθ表示能量从表面片中发射的方向.从某一方向到达该表面片的能量为),(i i E φθ,从表面片向某一方向辐射的能量为

),(e e L φθ.

从表面片往某一方向辐射的能量与表面片从某一方向接收的能量的比值定义为双向反射分布函数(Bidirectional Reflectance Distribution Function ,BRDF ),用),,,(e e i i f θθφθ表示.双向反射分布函数取决于表面材料的光学特性.辐射量与辐照量的关系式为:

),(),,,(),(i i e e i i e e E f L φθθθφθφθ= (9.2)

这可能是一个一般的公式,可能是一个很复杂的式子,但在计算机视觉的大多数感兴趣的场合中,可能相当地简单.对大多数材料来说,BRDF 只取决于入射和发射角之差:

),(),,,(e i e i e e i i f f φφθθθθφθ--= (9.3)

图9.2 半球上某一表面片和其对应的角增量i δθ和i δφ组成的立体角示意图.

9.1.1照明

给定表面材料的BRDF 和光源的分布,就可以计算一个表面片发出的光量.下面介绍两种类型的照明:点光源和均匀光源

首先介绍计算一般分布光源射到一个表面片的总辐照公式.坐标系就是在图9.1中描绘的可能方向半球极坐标,如图9.2所示.表面片上的全部辐照就是从半球中所有方向上照到表面片上的辐照总和.将通过单位半球(半径为1)上每一个小片面积上的辐照累加起来,直到计算完半球的全部面积.由半球上某一表面片和其对应的角增量i δθ和i δφ组成的锥形空间δω,称为立体角:

δωθδθδφ=sin i i i (9.4)

式中的i θsin 是考虑到越接近半球顶部,半球面积i δθi δφ越小.半径r 的球面积为24r π,单位半径的半球面积为2π.半球的面积S 可以由组成半球的立体角加起来得到:

πθθπφ

θθωππππ2sin 2sin 2/0202/020====????d d d d S (9.5)

在方程9.4中如果没有因子θsin ,半球面的各个无穷小单元加起来就得不到正确的总面积.穿过球面的总的辐射量是对无穷小表面片加权穿过每一个表面片对应的单位立体角辐射量的积分.让),(i i I φθ表示从),(i i φθ方向上穿过半球单位立体角上的辐射量,则表面片接收的总辐照量为:

??=π

πφθθθφθ202/00cos sin ),(i i i i i i d d I I (9.6)

式中多了一个附加项i θcos ,这是因为透视缩比效应(foreshortening )造成表面片在照明方向上变小.从表面片反射出的辐射量为

??=ππφθθθφθφθφθφθ202/0cos sin ),(),,,(),(i i i i i i e e i i e e d d I f L (9.7) 基于场景辐射等于图象辐照假设,在图象平面中,位置),(y x ''处的图象辐照与场景中相对应的表面片上的辐射量相等:

),,(),(z y x L y x E =''),(e e L φθ= (9.8)

式中场景辐照的发射角度由场景表面的几何性质决定.注意:对每一个图象位置(,)''x y ,都可以在相对于表面法线或表面片的极坐标中,计算出对应的场景位置),,(z y x 、表面片的

表面法线 n

以及从表面片到图象平面点(,)x y 的连线的角度),(e e φθ. 为了从场景中的表面几何和光源的分布确定整幅图象的辐照量,必须知道场景表面的BRDF .这正是下一节讨论的主题.

9.1.2反射

下面将介绍三种不同类型的反射: Lambertian 反射(也叫散光反射)、镜面反射、 Lambertian 反射和镜面反射组合。

(1) Lambertian 反射

Lambertian 表面是指在一个固定的照明分布下从所有的视场方向上观测都具有相同亮度的表面,Lambertian 表面不吸收任何入射光.Lambertian 反射也叫散光反射,不管照明分布如何,Lambertian 表面在所有的表面方向上接收并发散所有的入射照明,结果是每一个方向上都能看到相同数量的能量.许多无光泽表面都大致属于Lambertian 型的,除了下面将提到的情况以外,许多表面在性质上都属于Lambertian 型.

Lambertian 表面的BRDF 是一个常数:

f i i e e (,,,)θφθφπ=1

(9.9)

辐射独立于发射方向,辐射可通过累加来自所有可能方向半球的入射光线上的BRDF 效应得到:

???

?===πππππφθθθφθπφθθθφθφθφθ202

/00

20

2/01cos sin ),(1cos sin ),(),,,(I d d I d d I f L i i i i i i i

i i i i i e e i i (9.10)

其中0I 是在表面片上的总入射光.

下面讨论在一个远距离点光源的照明下,一个Lambertian 表面的可感觉亮度。在相对于表面片法线的一个方向),(s s φθ上,一个点表面照明描述如下:

i

s i s i i i I I θφφδθθδφθsin )()(),(0--= (9.11) 式中0I 指的是总照明.本质上,δ-函数仅限于照明到达表面片的方向与方向),(s s φθ之间.方程9.11分母中有一个正弦项,将其引入方程9.6时,就得到总照明0I .

将方程9.11中的照明函数和方程9.9中的BRDF 函数引入表面片辐射方程9.7,得到了感觉亮度方程: s

i i i i i s i s i i i i i i i e e i i e e I d d I I d d I f L θπφθθθθφφδθθδπφθθθφθφθφθφθππππcos cos sin sin )()(cos sin ),(),,,(),(0

002/0202/0=--==?

??

? (9.12) 这就是Lambert 余弦定律,即指由点光源照明的表面片的感觉亮度随着单元表面法线的入射角度变化而变化.随入射角变化是由于因为相对于照明方向表面片的透视缩比效应.换句话说,一块给定面积的表面片,当它的法线指向照明光线方向时,可以获取最多的光照.当表

面法线偏离照明方向时,从照明方向看过去的表面片面积变小了,因此表面片的亮度也降低了.如果你想亲自看一看这个效应的演示,请拿一个球状物体,比如一个白球,关掉房间里的所有灯,只打开一个灯泡,你将会看到球体上最亮的部分是表面法线指向照明方向的部分,并且这与你相对于球所处的位置无关,球体上的亮度从对应于光源最亮的一点出发,向四周所有方向以相同速率递减.

假定照明不是一个点光源,而是在所有方向都是均匀的,其发光总强度为I 0.那么亮度可由下式给出:

02/0

0202/0cos sin cos sin ),(),,,(),(I d d I d d I f L i i i i i i i i i i e e i i e e ===???

?

φθθθπφθθθφθφθφθφθππππ (9.13) 现在,Lambertian 表面的被感觉的亮度在所有方向上都相同,这是因为不管表面片朝向何方,它都能接收到同样数量的照明.

(2) 镜面反射

镜面在某一方向上反射所有的入射光,反射方向角相对于镜面法线来说与入射角相等,但在法线的另一侧.换句话说,从方向(,)θφi i 来的光线的反射方向(,)(,)θφθφπe e i i =+.镜面的BRDF 为:

i

i i e i e e e i i f θθπφφδθθδφθφθcos sin )()(),,,(---= (9.14) BRDF 中需要i θsin 和i θcos 因子,以消去方程9.7中由透视缩比和立体角产生的相应因子.将式9.14代入式9.7,得到

),(),(πφθθθ+=i i e e I L (9.15)

该方程表明入射光线被表面片反射出去,如同理想的镜子一样.

(3) Lambertian 反射和镜面反射组合

在计算机图形学中,通常用镜面反射和散光反射一起来构成物体反射特性模型:

f i i e e e i e i i i

(,,,)()()()sin cos θφθφηπηδθθδφφπφφ=+----1 (9.16) 式中常量η控制着两个反射函数的混合度.镜面反射和散光反射的相对比例随着物体表面材料的不同而变化.光滑的物体,或者说闪亮的物体,其镜面反射的成分要高于无光泽的物体.

9.2表面方向

上一节讨论了照明与被感觉亮度关系,该关系表示在一个设在假想表面片上的坐标系中.为了将这一结果应用到计算机视觉中,必须在如图9.3中的图象平面坐标系中重新讨论表面反射和场景照明.表面方向必须在摄象机坐标系中表示.

考虑一个与光轴对准的球,如图9.4所示.想象球上的一个点,并假定一个平面在该点与球相切.该平面的法线也是球上对应点的表面法线.

图9.3场景中一点图象平面上的投影

图9.4示意表面方向和图象坐标关系的高斯球

假定这一点到图象平面的距离是z :

z z x y =(,) (9.17)

对物体上任意一点),,(z y x ,它的图像坐标为),(y x '',在光度立体视觉中,为了简化问题,一般假定物体表面各点z 值的变化远小于物体到摄象机的距离,即1z 和0z 是物体表面上的两个点,0||001≈-z z z 。因此常常认为物体上的所有点0z z ≈,根据透视投影公式

1.5,并设0/z f =α,有如下等式:

x x α=' y y α=' (9.18)

考虑物体表面一点),,(z y x 的邻近点),,,(z z y y x x δδδ+++其中点的深度为z z δ+。为了建立点的深度变化δz 与图象平面坐标变换x δ和y δ之间的联系,即而得到δz 和x 'δ和y 'δ的关系,考虑一下函数z x y (,)在点(,)x y 的Taylor 级数的展开就可得到答案:

y y

z x x z z δ??δ??δ+≈ (9.18) z 对x 和y 的偏微分与场景表面上点(,,)x y z 处的正切平面倾斜角有关.

在点(,,)x y z 处的表面梯度是一个矢量记为(,)p q :

p z x

=?? q z y =?? (9.19) 深度值z 和比例系数α皆为未知数,为了减少未知参数,可令:αz z =,于是上式为:

p x z ='

?? q y z ='?? (9.20) 由于z 和z 只差一个比例因子α,因此,如果能够根据上式求出z ,就能求出关于一个常数因子α的物体形状。这样问题就归结为求取表面梯度矢量(,)p q 。

表面片的法线与梯度的关系如下:

)1,,(q p =n (9.21)

该式子简单地表明对应于深度z 的单位变化,在x 和y 的相应位移量分别为p 和q .单位表面法线可以通过表面法线除以它的长度得到:

221)1,,(?q

p q p ++==n n n (9.22) 9.3 反射图

将场景照明、表面反射和(在以观察者为中心的坐标系中)表面方向表示的组合称为反

射图.它确定了在给定照明分布和表面材料的情况下,一个表面片在特定方向上的亮度.在本节中,假设使用平行投影,所以图象平面坐标将由(,)x y 表示,略去了上标撇.

考虑场景中的一个表面片,它对应于图象平面坐标轴x 和y 的表面方向是p 和q .假设该表面片具有Lambertian 反射特性,并且由一个点光源照明.在9.1.2节中,已计算出表面片的辐射为

s e e I L

θπ

φθcos ),(0= (9.23) 式中,s θ是表面片的法线与光源方向矢量间的夹角.下面讨论在以观察者为中心的坐标系中对应的表示方法。在9.2节中讲述的以观察者为中心的坐标系中,表面法线仅是(,,)--p q 1,光源的方向为(,,)--p q s s 1.两个矢量间夹角的余弦是两矢量的点积除以每个矢量的长度,所以表面法线和光源方向之间的夹角的余弦是:

222222221111)1,,(1)1,,(cos s

s s s s s s s s q p q p qq pp q p q p q p q p ++++++=++--++--=θ (9.24) 对于一个给定的光源分布和一个给定的表面材料,所有表面方向p 和q 的反射都能从表中查到或是计算出来,由此得到反射图),(q p R .图象辐照度的精确值取决于各种因素,比如光源强度、光学系统的集光性能以及很多其它不影响反射的因素.因此,反射图可以归一化,其最大值为1.利用这个归一化图,再假设场景的辐射与图象的辐照相等,就得出图象辐照方程:

),(),(q p R y x E = (9.25)

该式表明在图象平面中的点(,)x y 处的辐照(亮度)等于场景表面对应点的表面方向p 和q 的反射图值.对于Lambertian 反射面和点光源,反射图R p q (,)由方程9.24 给出,如图9.5所示[Jain 1995].

图9.5 Lambertian 表面是由点光源照明的一个典型反射图R p q (,),

其中p s =02.,.q s =04.,左:灰度图象;右:轮廓图线. 9.4 从图象明暗恢复形状

在一个象素点处的图象强度是对应于场景点的表面方向的函数,该强度值可在反射图中获取.这样,对于一个固定照明和成象条件,以及对于一个已知反射特性的表面,表面方向的变化可转换成图象强度的相应变化.反过来,由图象强度的变化可以恢复表面形状的问题,

即所谓从明暗恢复形状的问题.现在我们简单介绍一下利用表面光滑度约束来求解此问题的步骤.

从前一节已知,图象辐照),(y x E 与表面上对应点方向),(q p 的关系是:

),(),(q p R y x E = (9.26)

式中),(q p R 是表面的反射图.我们的目的是通过计算图象中每一点(,)x y 处的表面方向(,)p q 来恢复表面形状.注意我们只有一个方程,但是有两个未知数p 和q .因此,必须附加额外的限制条件才有可能求解方程.一个常用的附加约束是表面光滑性.我们假定物体是由逐段光滑的表面组成,只在边缘处才不受光滑约束的限制.

一个光滑表面是以其梯度p 和q 缓慢变化为特征的.因此,如果p x ,p y ,q x 和q y 表示p 和q 在x 和y 方向上的偏微分,我们规定光滑性约束是这些偏微分平方和的积分最小:

??+++=dxdy q q p p e y x y x s ))()((2222 (9.27)

严格地说,我们必须在方程9.26给定的约束下求这个积分的最小极值.但是,考虑到噪声使所求的值偏离了理想值,问题就变为求解总偏差e 的极小值:

e e e s i =+λ (9.28)

式中,λ是一个光滑度约束误差的加权参数,e i 是图象辐照方程误差:

e E x y R p q dxdy i =-??((,)(,))2 (9.29)

这是一个变积分问题.在第()n +1次迭代中,更新(,)p q 值的迭代结果由下式给出:

q

R q p R E q q p R q p R E p p n ij n ij ij n ij n ij n ij n ij ij n ij n ij ??λ??λ)],([)]

,([11***+***+-+=-+= (9.30) 式中*表示在22?邻域中计算出的均值.注意,虽然对一个给定迭代的计算是局部的,通过多次迭代中的约束传播可以得到全局的一致.

上面所述的基本步骤已经通过许多途径得到了证明.具体的内容可在本章末所附的参考书中找到.虽然从明暗恢复形状的基本原理很简单,但是却有很多实践上的困难,特别是表面的反射特性并不总是知道得很精确,也不容易控制场景中的照明,这些都限制了其应用.

9.5 光度立体

我们知道,图像辐照方程包含有两个未知数,表面方向p 和q 。在由图象明暗恢复形状方法中,为了能求解这两个参数,增加了一个光滑连续约束。本节将介绍另一种方法,称为光度立体视觉。其基本思想是通过不同的光源产生不同的图像辐射方程来增加方程数目,以求解表面方向p 和q 。

假定获取两幅采用不同照明图像,如图9.6所示。这样,对于图像中的每一点,将产生两个图像辐照方程:

),(),(11q p R y x E = ),(),(22q p R y x E =

图9.6 在两个不同光源照射下,同一物体表面将产生不同的亮度

图9.7 在两个不同光源照射下的两个反射图迭加示意图

如果这些方程是线性的,而且是线性无关,则p 和q 具有唯一解。如果方程是非线性的,则方程无解或无唯一解,如图9.7所示。例如,两个图像辐射方程为: 222222222212122111111),(111),(q p q p q

q p p q p R q p q p q q p p q p R ++++++=++++++=

可以验证,当1R 和2R 分别取不同值时,上述方程将会有一个解、两个解、或无解,当),(),(2211q p q p =,将有无穷解。

实际上,当假定场景中所有表面都具有Lambertian 反射时,对于一个特定方向的点光源,可用二阶多项式来描述恒值反射(见方程9.24).图象中每一点(,)x y 都有一个亮度函数),(y x E ,所有可能的表面方向),(q p 将被限制在由二阶多项式定义的反射图中的一条曲线上.因为约束方程是二次多项式,如上所述,含有两个未知数的两个二次方程是没有唯一

解的,因此必须使用三个方程,即三种不同的照明.如图9.8 所示.

图9.8立体光度原理示意图.图象辐照测量值被归一化成单位间隔

到目前为止,我们的讨论都略去了辐射度效应,即所有的入射光线都不是从一个表面发射的.这种效应可以很容易地通过一个Albedo 因子加入到图象辐照方程:

).(),(q p R y x E ρ= (9.31)

其中albedo 因子的取值范围是10<<ρ.术语albedo 来源于拉丁语,意思是白色.

对于一个albedo 变化的Lambertian 表面,表面方向和albedo 可同时得到恢复.设表面法线的表示式如下:

221)1,,(?q

p q p ++-=n (9.32) 假设有三个照明点光源.点光源i 的方向由单位矢量表示:

221)1,,(?i

i i i i q p q p ++-=s (9.33) 从前面已知,由一个点光源照明的散射表面的亮度取决于表面法线和照明方向间的夹角的余弦值,因此,亮度就与这两个矢量的点积有关.对每一个照明的点光源,因为有不同的反射图,所以就有不同的图象辐照方程.对点光源i ,图象辐照方程是:

n s

???=i i E ρ (9.34) 由点光源的方向矢量形成一个3×3矩阵:

????? ??=????? ??=z y x

z y x z y x

s s s s s s s s s S ,3,3,3,2,2,2,1,1,1321???s s s (9.35) 在图象中的每一点得到三个图象辐照测值的一个矢量:

????

? ??=321E E E E (9.36)

图象中每一点的图象辐照方程组可重新表示为:

n

E ?S ρ= (9.37) 注意:E ,ρ和n

?取决于图象平面中的位置,但S 不取决于图象平面中的位置,对于一个给定排列位置的光源组,S 是一个常值.对于图象中的每个点,求解表示albedo 和表面方

向的矢量:

E n

1?-=S ρ (9.38) albedo ),(y x ρ是矢量的幅值.表面方向的单位法线可通过除以albedo 得到.

对于一个给定分布的光源组,S 矩阵的逆可以通过使用上下三角形矩阵分解(LU 分解)求得,不必对图象中每个点重新计算来求得逆矩阵.实际上,对每一个应用,只计算一次S 矩阵的逆,并存贮起来以便在后续的表面方向计算中重复使用.使用向后置换法[197,

pp .39-45],从图象辐照矢量E 计算ρ n

值.使用一个查找表可以迅速求解图象辐照方程组,查找表图象辐照三元组),,(321E E E 映射到albedo 和表面方向),,(q p ρ.

练习

9.1 考虑一个Lambertian 表面反射图。设表面方向为(,,)--p q 1,光源的方向为

(,,)--p q s s 1,

a. 推导该Lambertian 表面反射图,

22

22111),(s s s

s q p q p qq pp q p R ++++++=

b. 在梯度空间中求最亮的点,

c. 在梯度空间中求0=R 的轮廓线,

d. 证明:对于球面物体,当光源位于观察者所在方向时,R 的等亮度线轮廓为同心圆。

9.2 方程9.7将一个特定方向放射的能量与入射的能量相联系.证明这种关系是线性系

统.线性系统有同一性和叠加性的性质.假定入射照明和BRDF 是任意的.

a . 证明:如果对一个常数α,入射光线是I I =α1,那么辐射就是αI 1,式中L 1是对

应于照明I 1时的辐射.这种性质就是同一性.

b .证明:如果照明是I I I =+12,那么辐射就是L L 12+.式中1L 和2L 分别是照明I 1

和I 2时的辐射.这些性质表明对任意线性组合的光源产生的辐射是每个单独光源

产生辐射的线性组合.

计算机作业

9.1假设有一个摄象机,图象平面的初始位置是(0, 1, 0),透镜中心位于(0, 0, 4).假定远处有一个Lambertian 物体,其中心位于正z 轴上.图象平面在x ,y 轴方向上仅限于(-1, -1),而一个位于(,,)p q r 000点光源照明物体.

a .写一个程序,从键盘上获取p q r 000,,的值,计算出反射图,并作图显示.将R p q (,)的值标准化,使其最大值相当于255(显示为白色).让R (,)00位于显示器的中心.注意p q ,都是无限的.但图图象是256×256.为从背景中分辨出物体,将背景图象素设置为强度值64.

b .假设物体是一个球,其半径为3,中心位于(0, 0, 20).计算并显示由摄像机获取的物体图象.归一化强度值使得图象强度值分布在0和255之间.为了将物体同背景分开,将所有背景象素值设置成64.

第九章 相关与简单线性回归分析

第九章相关与简单线性回归分析 第一节相关与回归的基本概念 一、变量间的相互关系 现象之间存在的依存关系包括两种:确定性的函数关系和不确定性的统计关系,即相关关系。 二、相关关系的类型 1、从相关关系涉及的变量数量来看:简单相关关系;多重相关或复相关。 2、从变量相关关系变化的方向看:正相关;负相关。 3、从变量相关的程度看:完全相关;不相关;不完全相关。 二、相关分析与回归分析概述 相关分析就是用一个指标(相关系数)来表明现象间相互依存关系的性质和密切程度;回归分析是在相关关系的基础上进一步说明变量间相关关系的具体形式,可以从一个变量的变化去推测另一个变量的变化。 相关分析与回归分析的区别: 目的不同:相关分析是用一定的数量指标度量变量间相互联系的方向和程度;回归分析是要寻求变量间联系的具体数学形式,要根据自变量的固定值去估计和预测因变量的值。 对变量的处理不同:相关分析不区分自变量和因变量,变量均视为随机变量;回归区分自变量和因变量,只有因变量是随机变量。 注意:相关和回归分析都是就现象的宏观规律/平均水平而言的。 第二节简单线性回归 一、基本概念 如果要研究两个数值型/定距变量之间的关系,以收入x与存款额y为例,对n个人进行独立观测得到散点图,如果可以拟合一条穿过这一散点图的直线来描述收入如何影响存款,即简单线形回归。 二、回归方程 在散点图中,对于每一个确定的x值,y的值不是唯一的,而是符合一定概率分布的随机变量。如何判断两个变量之间存在相关关系?要看对应不同的x,y的概率分布是否相同/y的总体均值是否相等。 在x=xi的条件下,yi的均值记作E(yi),如果它是x的函数,E(yi) =f(xi),即回归方程,就表示y和x之间存在相关关系,回归方程就是研究自变量不同取值时,因变量y的平均值的变化。当y的平均值和x呈现线性关系时,称作线性回归方程,只有一个自变量就是一元线性回归方程。 一元线性回归方程表达式:E(y i )= α+βx i ,其中α称为常数,β称为回

第九章相关与回归分析答案如下

第九章相关与回归分析答案如下 *9-1 在相关分析中,对两个变量的要求是(A)。(单选题) A. 都是随机变量 B. 都不是随机变量 C. 其中一个是随机变量,一个是常数。 D. 都是常数。 *9-2 在建立与评价了一个回归模型以后,我们可以(D )。(单选题) A. 估计未来所需要样本的容量。 B. 计算相关系数与判定系数。 C. 以给定因变量的值估计自变量的值。 D. 以给定自变量的值估计因变量的值。 9-3 对两变量的散点图拟合最好的回归线必须满足一个基本条件是(D )。(单选题) 最小 y2 最小 yii y i 最大B. y i 最大D. y2 yi?i A. C. y yi?i *9-4 如果某地区工人的日工资收入(元)随劳动生产率(千元/人时)的变动符合简单线性方程Y=60+90X,请说明下列的判断中正确的有(AC)(多选) A.当劳动生产率为1千元/人时,估计日工资为150元;B.劳动生产率每提高1千元/人时,则日工资一定提高90元;C.劳动生产率每降低0.5千元/人时,则日工资平均减少45元;D.当日工资为240元时,劳动生产率可能达到2千元/人。 *9-5 变量之间的关系按相关程度可分为(B CD )(多选) A.正相关B.不相关C.完全相关D.不完全相关 *9-6 简单线性回归分析的特点是:(AB )。(多选题) A. 两个变量之间不是对等关系 B. 回归系数有正负号 C. 两个变量都是随机的 D. 利用一个方程两个变量可以互相推算E.有可能求出两个回归方程 *9-7 一元线性回归方程中的回归系数b可以表示为(BC)。(多选题) A. 两个变量之间相关关系的密切程度 B. 两个变量之间相关关系的方向 C. 当自变量增减一个单位时,因变量平均增减的量 D. 当因变量增减一个单位时,自变量平均增减的量E.回归方程的拟合优度 *9-8 回归分析和相关分析的关系是(ABE )。(多选题) A. 回归分析可用于估计和预测 B. 相关分析是研究变量之间的相关关系的密切程度 C. 回归分析中自变量和因变量可以互相推导并进行预测 D. 相关分析需要区分自变量和因变量E.相关分析是回归分析的基础

第五章质谱分析法(教案)

第五章质谱分析法 质谱法是通过将样品转化为运动的气态离子并按质荷比(M/Z)大小进行分离并记录其信息的分析方法。所得结果以图谱表达,即所谓的质谱图(亦称质谱,Mass Spectrum)。根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。 从20世纪60年代开始,质谱法更加普遍地应用到有机化学和生物化学领域。化学家们认识到由于质谱法的独特的电离过程及分离方式,从中获得的信息是具有化学本性,直接与其结构相关的,可以用它来阐明各种物质的分子结构。正是由于这些因素,质谱仪成为多数研究室及分析实验室的标准仪器之一。 质谱仪 (一)质谱仪的工作原理 质谱仪是利用电磁学原理,使带电的样品离子按质荷比进行分离的装置。离子电离后经加速进入磁场中,其动能与加速电压及电荷Z有关,即 (二)质谱仪的主要性能指标

1.质量测定范围 质谱仪的质量测定范围表示质谱仪所能够进行分析的样品的相对原子质量(或相对分子质量)范围,通常采用原子质量单位(unified atomic mass unit,符号u)进行度量。原子质量单位是由12C来定义的,即一个处于基态的12C中性原子的质量的1/2。 而在非精确测量物质的场合,常采用原子核中所含质子和中子的总数即“质量数”来表示质量的大小,其数值等于其相对质量数的整数。 测定气体用的质谱仪,一般质量测定范围在2~100,而有机质谱仪一般可达几千。现代质谱仪甚至可以研究相对分子质量达几十万的生化样品。 2.分辨本领 所谓分辨本领,是指质谱仪分开相邻质量数离子的能力,一般定义是:对两个相等强度的相邻峰,当两峰间的峰谷不大于其峰高10%时,则认为两峰已经分开,其分辨率

第9章方差分析与回归分析习题答案

第九章 方差分析与回归分析习题参考答案 1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显着影响. (0.05(2,9) 4.26F =,0.01(2,9) 8.02F =) 34 2 11 1310ij i j x ===∑∑ 解:r=3, 12444n n 321=++=++=n n , T=120 ,120012 1202 2===n T C 3 4 2 211 131********(1)1110110T ij T i j SS x C S n s ===-=-==-=?=∑∑或S 322.1112721200724(31)429724A i A A i SS T C S s ==-=-==-=??=∑或S 3872110=-=-=A T e SS SS SS 计算统计值722 8.53, 389 A A A e e SS f F SS f = =≈…… 方差分析表 结论:由于0.018.53(2,9)8.02, A F F ≈>=故果树品种对产量有特别显着影响. 2. ..180x = 43 2 11 2804ij i j x ===∑∑ 解:22..4,3,12,180122700l m n lm C x n =======

43 2211 28042700104(1)119.45 104T ij T i j S x C S n s ===-=-==-=?≈∑∑&&或 422 .1 12790270090(1)331090 3A i A A i S x C S m l s ==-=-==-≈??=∑或322 .1 12710.5270010.5(1)8 1.312510.5 4B j B B j S x C S l m s ==-=-==-≈?=∑或1049010.5 3.5e T A B S S S S =--=--= 计算统计值90310.52 51.43,93.56 3.56 A A B B A B e e e e S f S f F F S f S f = =≈==≈ 结论: 由以上方差分析知,进器对火箭的射程有特别显着影响;燃料对火箭的射程有显着影响. 31,58,147,112,410.5,i i i i i i x y x y x y =====(1)求需求量Y 与价格x 之间 的线性回归方程; (2)计算样本相关系数; (3)用F 检验法作线性回归关系显着性检验. ??? ? ??====56.10)9,1(,26.11)8,1(12.5)9,1(,32.5)8,1(01.001.005.005.0F F F F 解:引入记号 10, 3.1, 5.8n x y === ()()14710 3.1 5.832.8xy i i i i l x x y y x y nx y =--=-=-??=-∑∑ 2 222()11210 3.115.9xx i i l x x x nx =-=-=-?=∑∑ 22 ()(1)9 1.766715.9xx i x l x x n s =-=-≈?≈∑或 2 222()410.510 5.874.1yy i i l y y y ny =-=-=-?=∑∑ 22()(1)98.233374.1yy i y l y y n s =-=-≈?≈∑或 ?(1) b Q 32.8??2.06, 5.8 2.06 3.112.1915.9xy xx l a y bx l -==≈-=-≈+?≈ ∴需求量Y 与价格x 之间的线性回归方程为 ?y ??12.19 2.06a bx x =+≈-

仪器分析第9章 质谱分析法

第9章质谱分析法(MS) 1概述 质谱法是通过将样品转化为运动的气态离子并按质荷比(M/Z)大小进行分离并记录其信息的分析方法。 ?分析对象:样品离子 ?质谱不是光谱,而是带电离子的质量谱。 根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等 1.1分类 1有机质谱仪: 1)气相色谱-质谱联用仪 2)液相色谱-质谱联用仪 3)其他质谱仪:傅立叶变换质谱仪、基质辅助激光解吸-飞行时间变质谱仪 2无机质谱仪:ICP-MS 3同位素质谱仪:轻元素同位素,重元素同位素 4气体分析质谱仪 1.2质谱分析基本术语 1.2.1质量数和质量范围 ?在质谱分析中,被测定的分子和原子都是以离子形式记录的,如果离 子只带一个电荷,则离子的质荷比在数值上就等于它的质量数 ?质谱仪的质量范围是指仪器所能测量的离子质荷比范围.气体分析用 质谱仪的质量范围一般从2~100,而有机质谱仪的质量范围一般从几 十到几千,如果离子带的电荷增多,则,质量范围也增大。 1.2.2分辨率:表示仪器分开两个相邻质量数离子的能力 对两个相等强度的相邻峰,当两峰间的峰谷不大于其峰高的10%时,可认 为此两峰已经分开(图9-6),这时,仪器的分辨率R用下式计算 1.2.3灵敏度: ?灵敏度对于不同用途的质谱仪有不同的表示方法.有机质谱常用绝对 灵敏度,无机质谱常用相对灵敏度,而同位素分析质谱常用丰度灵敏 度。 ?绝对灵敏度是指仪器能检测的最小样品量.目前,有机质谱仪灵敏度 可优于10-10g

?相对灵敏度:仪器可以同时检测的大组分与小组分含量之比 ?分析灵敏度:输入仪器的样品量和输出仪器的信号之比 1.3质谱基本原理: 加速电场中所获得的势能转化为动能:Vz=v2 在磁场中运动,向心力等于离心力:Hzv= 联立上述两式,可得: 质核比:,运动半径R:R2= 加速电压V,磁场强度H,离子电荷z,离子速度v,离子质量m,R离子运动半径 (1)固定H、V,改变R:离子的m/z大,偏转半径也大,通过磁场可以把不同离子分开 (2)固定R,连续改变H、V。在一定磁感应强度B下,改变加速电压V可以使不同离子先后通过检测器,实现质量扫描,得到质谱。 2质谱仪器——质谱仪 质谱分析的一般过程:通过合适的进样装置将样品引入并进行气化,气化后的样品进入离子源进行电离,电离后的离子经过适当加速后进入质量分析器,按不同质核比进行分离,然后到达检测系统,将生成的离子流变成放大的电信号,并按照对应的质核比记录下来。 2.1进样系统 ?进样系统一般由管道、阀门、压力表、样品贮存器和漏口组成. ?它适用于室温下气体或易挥发液体样品的分析 ?有机质谱仪常与色谱仪联用.色谱仪是质谱仪的进样系统,由色谱柱流出的 样品经喷射式分子分离装置将载气分离后进入质谱仪 ?用于无机物分析的质谱仪,没有专门的进样系统,一般是把要分析的样品制 成电极,置于离子源中,靠高频高压使它电离 2.2离子源:用于产生离子的装置(把样品分子或原子电离成离子) 主要有电子电离源、化学电离源、火花电离源和高频火花源等

统计学原理第九章(相关与回归)习题答案

第九章相关与回归 一.判断题部分 题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。() 答案:× 题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。() 答案:√ 题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。() 答案:× 题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。() 答案:× 题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。() 答案:× 题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。() 答案:√ 题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。() 答案:×

题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。() 答案:× 题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。() 答案:√ 题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。() 答案:× 题目11:完全相关即是函数关系,其相关系数为±1。() 答案:√ 题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。() 答案× 二.单项选择题部分 题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。 A.相关关系 B.函数关系 C.回归关系 D.随机关系 答案:B 题目2:现象之间的相互关系可以归纳为两种类型,即()。 A.相关关系和函数关系 B.相关关系和因果关系

第九章 质谱法

第九章质谱法 9.1 概述 质谱分析法(mass spectrometry)是通过样品离子的质量和强度的测定,来进行成分和结构分析的一种分析方法。 1.质谱过程与光谱过程对比 图9-1 质谱过程与光谱过程对比 质谱与光谱的过程类似,但基本原理不同(图9-1) 图9-1(3)显示了质谱的全过程:样品通过进样系统进入离子源,由于结构性质不同而电离为各种不同质荷比(m/z)的离子碎片,而后带有样品信息的离子碎片被加速进入质量分析器,在其磁场作用下,离子的运动半径与其质荷比的平方根成正比,因而使不同质荷比的离子在磁场中被分离,并按质荷比大小依次抵达检测器,经记录即得样品的质谱(mass spectrum MS)。 2.质谱分析法的特点和用途 质谱是定性鉴定与研究分子结构的有效方法。主要特点是: (1)灵敏度高,样品用量少:目前有机质谱仪的绝对灵敏度可达5 pg(pg为10-12 g),有微克量级的样品即可得到分析结果。 (2)分析速度快:扫描1~1000u①一般仅需1~几秒,最快可达1/1000秒,因此,可实现色谱-质谱在线联接。 (3)测定对象广:不仅可测气体、液体,凡是在室温下具有10-7Pa蒸气压的固体,如低熔点金属(如锌等)及高分子化合物(如多肽等)都可测定。 质谱法的用途: (1)求准确的分子量:由高分辨质谱获得分子离子峰的质量,可测出精确的分子量。 (2)鉴定化合物:如果事先可估计出样品的结构,用同一装置,同样操作条件测定标准样品及未知样品,比较它们的谱图可进行鉴定。 ①u=原子质量单位,1u=1.6605655×10-27kg

(3)推测未知物的结构:从离子碎片获得的信息可推测分子结构。 (4)测定分子中Cl 、Br 等的原子数:同位素含量比较多的元素(Cl 、Br 等),可通过同位素峰强度比及其分布特征推算出这些原子的数目。 9.2 质谱仪及其工作原理 9.2.1 原理 图9-2是质谱仪的示意图。质谱仪由离子化、质量分离和离子检测等三部分组成。 被气化的分子,受到高能电子流(~70eV )的轰击,失去一个电子,变成带正电的分子离子。这些分子在极短的时间内,又碎裂成各种不同质量的碎片离子、中性分子或自由基。 在离子化室被电子流轰击而生成的各种正离子,受到电场的加速,获得一定的动能,该动能与加速电压之间的关系为: zV mv 212 = (9.1) m ——正离子质量,v ——正离子速度 z ——正离子电荷,V ——加速电压 图9-2 质谱分析仪示意图 加速后的离子在质量分析器中,受到磁场力(Lorentz 力)的作用,作圆周运动时,运动轨迹发生偏转。而圆周运动的离心力等于磁场力: m · R v 2 =Hzv (9.2) 式中H —磁场强度,R —离子偏转半径。 经整理: V 2H R z m 2 2= / (9.3) z m H V 2R 2 ? = (9.4) 后边两式,为磁偏转分析器的质谱仪方程。式中单位m ,原子质量单位;z ,离子所带电荷的数目;H ,高斯;V ,伏特;R ,厘米。 在上式,依次改变磁场强度H 或加速电压V ,就可以使具有不同质荷比m/z 的离子按次序沿半径为R 的轨迹飞向检测器,从而得到一按m/z 大小依次排列的谱—质谱。 9.2.2 离子源 离子源的功用是将样品分子或原子电离成离子。质谱仪的离子源种类很多,其原理和用途各不相同,离子源的选择对样品测定的成败至关重要,尤其当分子离子不易出峰时,选择适当的离子源,就能得到响应较好的质谱信息。下边简单介绍几种常用的离子源。 1.电子轰击源(Electron impact Source EI ) 电子轰击源由离子化区和离子加速区组成(见图9-3)。在外电场的作用下,用(8~100ev )的热电子流去轰击样品,产生各种离子,然后在加速区被加速而进入质量分析器。这是一种最常用的离子化方法。

应用回归分析-第9章课后习题答案

第9章 含定性变量的回归模型 思考与练习参考答案 9.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为: t t t t kt k t t D D D X X Y μαααβββ++++++=332211110 其中含有k 个定量变量,记为x i 。对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为: ????? ? ?? ?? ? ?=00011001011000101001 0010100011 )(6 165154143 132121 11k k k k k k X X X X X X X X X X X X D X, 显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。这就是所谓的“虚拟变量陷井”,应避免。 当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。称Tol j =1-2 j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。 ??? ??? ? ??=k βββ 10β??? ??? ? ??=4321ααααα

应用多元统计分析习题解答_朱建平_第九章

Abbo无私奉献,只收1个金币,BS收5个金币的… 何老师考简单点啊……

第九章 典型相关分析 9.1 什么是典型相关分析?简述其基本思想。 答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法。用于揭示两组变量之间的内在联系。典型相关分析的目的是识别并量化两组变量之间的联系。将两组变量相关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系。 基本思想: (1)在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。即: 若设(1) (1)(1) (1)12(,,,)p X X X =X 、(2) (2)(2)(2) 12(,,,)q X X X =X 是两组相互关联的随机变量, 分别在两组变量中选取若干有代表性的综合变量Ui 、Vi ,使是原变量的线性组合。 在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大。(2)选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对。 (3)如此继续下去,直到两组变量之间的相关性被提取完毕为此。 9.2 什么是典型变量?它具有哪些性质? 答:在典型相关分析中,在一定条件下选取系列线性组合以反映两组变量之间的线性关系,这被选出的线性组合配对被称为典型变量。具体来说, ()(1) ()(1)()(1)()(1) 11 22i i i i i P P U a X a X a X ' =+++a X ()(2) ()(2)()(2) ()(2) 11 22i i i i i q q V b X b X b X ' =+++b X 在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大,则称 (1)(1)'a X 、(1)(2) 'b X 是(1)X 、(2)X 的第一对典型相关变量。 典型变量性质: 典型相关量化了两组变量之间的联系,反映了两组变量的相关程度。 1. ()1,()1 (1,2,,)k k D U D V k r === (,)0, (,)0 ()i j i j C ov U U C ov V V i j ==≠ 2. 0 (,1,2,,)(,)0()0()i i j i j i r C ov U V i j j r λ≠==?? =≠??>? 9.3 试分析一组变量的典型变量与其主成分的联系与区别。 答:一组变量的典型变量和其主成分都是经过线性变换计算矩阵特征值与特征向量得出的。主成分分析只涉及一组变量的相互依赖关系而典型相关则扩展到两组变量之间的相互依赖关系之中,度量了这两组变量之间联系的强度。 ()(1)()(1)()(1)()(1) 1122i i i i i P P U a X a X a X '=+++a X ()(2)()(2)()(2)()(2) 1122i i i i i q q V b X b X b X '=+++b X (1)(1)(1)(1)1 2 (,,,)p X X X = X 、(2)(2)(2)(2)1 2 (,,,)q X X X = X

第九章---spss的回归分析

第九章spss的回归分析 1、利用习题二第4题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。 选择fore和phy两门成绩做散点图 步骤:图形→旧对话框→散点图→简单散点图→定义→将phy导入X轴、将fore导入Y 轴,将sex导入设置标记→确定 图标剪辑器内点击元素菜单→选择总计拟合线→选择线性→确定→再次选择元素菜单→点击子组拟合线→选择线性→确定 分析:如上图所示,通过散点图,被解释变量y与fore有一定的线性相关关系。 2、线性回归分析与相关性回归分析的关系是怎样的? 线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或者减少。

3、为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验? 线性回归方程能够较好地反映被解释变量和解释变量之间的统计关系的前提是被解释变量和解释变量之间确实存在显著的线性关系。 回归方程的显著性检验正是要检验被解释变量和解释变量之间的线性关系是否显著,用线性模型来描述他们之间的关系是否恰当。一般包括回归系数的检验,残差分析等。 4、SPSS多元线性回归分析中提供了哪几种解释变量筛选策略? 包括向前筛选策略、向后筛选策略和逐步筛选策略。 5、先收集到若干年粮食总产量以及播种面积、使用化肥量、农业劳动人数等数据,请利用建立多元线性回归方程,分析影响粮食总产量的主要因素。数据文件名为“粮食总产量.sav”。 步骤:分析→回归→线性→粮食总产量导入因变量、其余变量导入自变量→确定 结果如图: Variables Entered/Removed b Model Variables Entered Variables Removed Method 1 农业劳动者人数(百万人), 总播种面积(万公顷), 风灾 面积比例(%), 粮食播种面 积(万公顷), 施用化肥量 (kg/公顷), 年份a . Enter a. All requested variables entered. b. Dependent Variable: 粮食总产量(y万吨) ANOVA b Model Sum of Squares df Mean Square F Sig. 1 Regression 2.025E9 6 3.375E8 414.944 .000a Residual 2.278E7 28 813478.405 Total 2.048E9 34 a. Predictors: (Constant), 农业劳动者人数(百万人), 总播种面积(万公顷), 风灾面积比例(%), 粮食播种面积(万公顷), 施用化肥量(kg/公顷), 年份 b. Dependent Variable: 粮食总产量(y万吨) Coefficients a Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta

第九章 相关与回归分析

第9章相关与回归分析 【教学内容】 相关分析与回归分析是两种既有区别又有联系的统计分析方法。本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。 【教学目标】 1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系; 2、掌握相关分析的定性和定量分析方法; 3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。 【教学重、难点】 1、相关分析与回归分析的概念、特点、区别与联系; 2、相关与回归分析的有关计算公式和应用条件。 第一节相关分析的一般问题 一、相关关系的概念与特点 (一)相关关系的概念 在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。 相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。例如,商品销售额与流通费用率之间的关系就是一种相关关系。 (二)相关关系的特点 1、相关关系表现为数量相互依存关系。 2、相关关系在数量上表现为非确定性的相互依存关系。 二、相关关系的种类 1、相关关系按变量的多少,可分为单相关和复相关 2、相关关系从表现形态上划分,可分为直线相关和曲线相关 3、相关关系从变动方向上划分,可分为正相关和负相关 4、按相关的密切程度分,可分为完全相关、不完全相关和不相关 三、相关分析的内容

相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。其目 的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。 相关分析的内容和程序是: (1)判别现象间有无相关关系 (2)判定相关关系的表现形态和密切程度 第二节相关关系的判断与分析 一、相关关系的一般判断 (一)定性分析 对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。例如,根据经济理论来判断居民的货币收入与社会商品购买力是否存在相关关系;根据会计学理论来判断生产成本与利润有无相关关系;根据生物遗传理论来判断父辈的身高与子辈的身高是否存在相关关系等。定性分析是进行相关分析的基础,在此基础上,根据需要通过编制相关表和绘制相关图来进行分析。 (二)相关表 相关表就是把被研究现象的观察值对应排列所形成的统计表格,如某地区工业固定资产 投资与工业增加值的历史资料对应排列所形成的表9-1。 表9-1 某地区工业固定资产投资与工业增加值相关表 单变量分组相关表是在具有相关关系的两个变量中,只对自变量进行分组的相关表(见表9-2)。 表9-2 商品销售额与流通费用率相关表

第十五章 质谱法 - 章节小结

1.基本概念及术语 质谱分析法:质谱分析法是利用多种离子化技术,将物质分子转化为离子,选择其中带正电荷的离子使其在电场或磁场的作用下,按其质荷比m/z的差异进行分离测定,从而进行物质成分和结构分析的方法。 相对丰度:以质谱中基峰(最强峰)的高度为100%,其余峰按与基峰的比例加以表示的峰强度为相对丰度,又称相对强度。 离子源:质谱仪中使被分析物质电离成离子的部分。常见的有电子轰击源EI、化学电离源CI、快原子轰击源FAB等。 分子离子:分子通过某种电离方式,失去一个外层价电子而形成带正电荷的离子,用m·+表示。 碎片离子:当分子在离子源中获得的能量超过其离子化所需的能量时,分子中的某些化学键断裂而产生的离子。 亚稳离子:离子(m1+)脱离离子源后,在飞行过程中发生裂解而形成的低质量离子(m2+),通常用m+表示。 同位素离子:质谱图中含有同位素的离子。 单纯开裂:仅一个键发生开裂并脱去一个游离基,称单纯开裂。 重排开裂:通过断裂两个或两个以上化学键,进行重新排列的开裂方式。重排开裂一般脱去一中性分子,同时发生重排,生成重排离子。 2.重点和难点 (1)离子化机理及其特点 ①电子轰击电离(EI):气化后的样品分子进入离子化室后,受到由钨或铼灯丝发射并加速的电子流的轰击产生正离子。轰击电子的能量大于样品分子的电离能,使样品分子电离或碎裂。电子轰击质谱能提供有机化合物最丰富的结构信息,有较好的重现性,其裂解规律的研究也最为完善,已经建立了数万种有机化合物的标准谱图库可供检索。其主要缺点在于不适用于分析难挥发和热稳定性差的样品。 ②化学电离(CI):引入一定压力的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或者裂解。生成的离子和反应气分子进一步反应或与样品分子发生离子-分子反应,通过质子交换使样品分子电离。化学电离属于软电离方式,通常准分子离子峰强度大,易获得有关化合物基团的信息。其主要缺点是重现性较差,且不适合于难挥发、热不稳定样品的分析。 ③快原子轰击(FAB):将样品分散于基质(常用甘油等高沸点溶剂)制成溶液,涂布于金属靶上送入FAB离子源中。将经强电场加速后的惰性气体中性原子束(如氙)对准靶上样品轰击。基质中存在的缔合离子及经快原子轰击产生的样品离子一起被溅射进入气相,并在电场作用下进入质量分析器。此法优点在于离子化能力强,可用于强极性、挥发性低、热稳定性差和相对分子质量大的样品及EI和CI难于得到有意义的质谱的样品。FAB比EI容易得到比较强的分子离子或准分子离子;不同于CI的一个优势在于其所得质谱有较多的碎片离子峰信息,有助于结构解析。缺点是对非极性样品灵敏度下降,而且基质在低质量数区(400以下)产生较多干扰峰。FAB是一种表面分析技术,应注意优化表面状况的样品处理过程。 值得一提的是,在FAB离子化过程中,可同时生成正负离子,这两种离子都可以用质谱进行分析。样品分子如带有强电子捕获结构,特别是带有卤原子,可以产生大量的负离子。负离子质谱已成功用于农药残留物的分析。 (2)质谱中的主要离子及其在质谱解析中的作用 ①分子离子:大多数有机化合物分子通过某种电离方式,在离子源中失去一个电子而形成带正电荷的离子(z=1),即分子离子。由于确认了分子离子即可确定化合物的相对分子质量,因而分子离子峰的正确识别十分重要。由CI、FAB等软电离方式获得的准分子离子,其作用与分子离子相当。分子离子峰一般位于质谱图中质荷比的最高端,但有时最高质荷比峰不一定是分子离子峰。其原因为: M+n(n=1、2…)同位素峰可能出现在质荷比最高处;杂质峰可能出现在最高质荷比处;当样品分子的稳定性差时,分子离子峰很弱甚至不出现,此时最高质荷比的离子是碎片离峰子。 确认分子离子峰时应依据分子离子的稳定性规律及质量数的奇偶规律,即由C、H、O组成的化合物,

第9章 相关与回归分析

第九章相关与回归分析 习题 一、单选题 1.下面的函数关系是()。 A、销售人员测验成绩与销售额大小的关系 B、圆周的长度决定于它的半径 C、家庭的收入和消费的关系 D、数学成绩与统计学成绩的关系 2.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于()。 A、+1 B、0 C、0.5 D、+1或-1 3.回归系数和相关系数的符号是一致的,其符号均可用来判断现象()。 A、线性相关还是非线性相关 B、正相关还是负相关 C、完全相关还是不完全相关 D、单相关还是复相关 4.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为( )。 A、8 B、0.32 C、2 D、12.5 5.下面现象间的关系属于相关关系的是()。 A、圆的周长和它的半径之间的关系 B、价格不变条件下,商品销售额与销售量之间的关系 C、家庭收入愈多,其消费支出也有增长的趋势 D、正方形面积和它的边长之间的关系 6.下列关系中,属于正相关关系的是()。 A、合理限度内,施肥量和平均单产量之间的关系 B、产品产量与单位产品成本之间的关系 C、商品的流通费用与销售利润之间的关系 D、流通费用率与商品销售量之间的关系 7.相关分析是研究()。 A、变量之间的数量关系 B、变量之间的变动关系 C、变量之间的相互关系的密切程度 D、变量之间的因果关系 8.在回归直线y=a+bx中,b<0,则x与y之间的相关系数( )。 A、r=0 B、r=l C、0

第九章 相关分析

第九章相关分析――Correlate菜单详解 在医学中经常要遇到分析两个或多个变量间关系的情况,有时是希望了解某个变量对另一个变量的影响强度,有时则是要了解变量间联系的密切程度,前者用下一章将要讲述的回归分析来实现,后者则需要用到本章所要讲述的相关分析实现。 SPSS的相关分析功能被集中在Statistics菜单的Correlate子菜单中,他一般包括以下三个过程: ?Bivariate过程此过程用于进行两个/多个变量间的参数/非参数相关分析,如果是多个变量,则给出两两相关的分析结果。这是Correlate子菜单中最为常用的一个过程,实际上我们对他的使用可能占到相关分析的 95%以上。下面的讲述也以该过程为主。 ?Partial过程如果需要进行相关分析的两个变量其取值均受到其他变量的影响,就可以利用偏相关分析对其他变量进行控制,输出控制其他变量影响后的相关系数,这种分析思想和协方差分析非常类似。Partial过程就是专门进行偏相关分析的。 ?Distances过程调用此过程可对同一变量内部各观察单位间的数值或各个不同变量间进行距离相关分析,前者可用于检测观测值的接近程度,后者则常用于考察预测值对实际值的拟合优度。该过程在实际应用中用的非常少。 §9.1Bivariate过程 9.1.1 界面说明 【Variables框】 用于选入需要进行相关分析的变量,至少需要选入两个。 【Correlation Coefficients复选框组】 用于选择需要计算的相关分析指标,有: ?Pearson复选框选择进行积距相关分析,即最常用的参数相关分析 ?Kendall's tau-b复选框计算Kendall's等级相关系数 ?Spearman复选框计算Spearman相关系数,即最常用的非参数相关分析(秩相关) 【Test of Significance单选框组】

华中师范大学等六校合编《分析化学》(第4版)(下册)配套题库-课后习题-质谱分析法【圣才出品】

第十章质谱分析法 1.试说明质谱仪主要部件的作用及其工作原理。 答:质谱仪主要部件的作用及其工作原理如下: (1)真空系统:为了降低背景及减少离子间或离子与分子间的碰撞,离子源、质量分析器及检测器必须处于高真空状态。 (2)进样系统:质谱进样系统的目的是在不破坏仪器真空环境、具有可靠重复性的条件下将试样引入离子源。 (3)离子源:离子源的作用是使试样分子或原子离子化,同时具有聚焦和准直的作用,使离子汇聚成具有一定几何形状和能量的离子束。 (4)质量分析器:质量分析器的作用是将离子源产生的离子按m/z的大小分离聚焦。 (5)离子检测器和记录系统:经离子检测器检测后的电流,经放大器放大后,用记录仪快速记录到光敏记录纸上,或者用计算机处理结果。 2.有一束含有各种不同m/z值的离子,在一个具有固定狭缝位置和恒定电位的质谱仪中运动,磁感应强度慢慢地增加,首先通过狭缝的是最低还是最高m/z值的离子?为什么? 答:首先通过狭缝的是m/z值最小的离子,因为固定狭缝位置,恒定电位和扫描磁场强度与质荷比成正比。 3.何谓分子离子?在质谱图中如何确定分子离子峰? 答:(1)分子离子:有机化合物的分子在高真空下,被电子流轰击出一个电子,形成一个带正电的正离子,称为分子离子。

(2)分子离子峰的m/z 值就是中性分子的相对分子质量。 4.写出氯仿中所有12C、13C、35Cl、37Cl 可能的同位素组合。在质谱图上的分子离子区内有哪些同位素峰? 答:氯仿可能的同位素组合有:12CH 35Cl 3,12CH 37Cl 3,13CH 35Cl 3,13CH 37Cl 3,12CH 35Cl 137Cl 2,12CH 35Cl 237Cl 1,13CH 37Cl 135Cl 2,13CH 37Cl 35Cl 1。 5.计算下列物质(M+2)+峰相对于M +峰的丰度。 (1)C 10H 6Br 2;(2)C 3H 7ClBr;(3)C 6H 4C12。 解:丰度比为35Cl:37Cl=3:1,79Br:81Br=1:1 (1)C 10H 6Br 2:1,1,2a b n ===,()121n a b +=++,所以[][]2:2:1M M ++ +=。(2)C 3H 7ClBr:1,1,1,3,1,1a b n a b n '''======,() ()3:4:1n n a b a b '''++=, 所以[][]2:4:3M M +++=。(3)C 6H 4Cl 2:3,1,2a b n ===,()961n a b +=++,所以[][]2:6:9M M ++ +=。6.某化合物质谱图在最高质量处有两个峰,m/z 172,m/z 187,并在附近找到亚稳离子峰m/z 170.6。试问离子峰m/z 172与m/z 187间是否存在裂解关系?m/z 187的峰是否为分子离子峰? 解:设 m 1=187,m 2=172,m *=170.6则m 22/m 1=1722/187=158.2≠170.6 所以m 1和m 2无裂解关系。

第9章 相关与回归分析-含答案

第9章相关与回归分析 一、单项选择题 1.当变量X按一定数量减少时,变量Y也随之发生大致等量的减少,那么这两个变量之间存在()。 A、函数关系 B、直线正相关关系 C、直线负相关关系 D、曲线相关关系 答案:B 2.当居民的收入减少时,居民的储蓄存款也会相应减少,二者之间的关系是()。 A、负相关关系 B、曲线相关关系 C、零相关关系 D、正相关关系 答案:D 3.线性相关系数反映了()。 A、两个变量线性关系的密切程度 B、两个变量线性关系的拟合程度 C、两个变量变动的一致性程度 D、自变量变动对因变量变动的解释程度 答案:A 4.在一元线性回归方程Y=A+BX中,回归系数B表示()。 A、当X=0时,Y的期望值 B、当X变动1个单位时,Y的变动总额 C、当Y变动1个单位时,X的平均变动额 D、当X变动1个单位时,Y的平均变动额 答案:D 5.在一元线性回归方程Y=A+BX中,回归系数A表示()。 A、当X=0时,Y的期望值 B、当X变动1个单位时,Y的变动总额 C、当Y变动1个单位时,X的平均变动额 D、当X变动1个单位时,Y的平均变动额 答案:A

6.利用最小二乘法求解回归系数的基本要求是( )。 A 、∑-t Y Y ()2=任意值 B 、∑-t Y Y ()2=最小值 C 、∑-t Y Y ()2=最大值 D 、∑-t Y Y ()2=0 答案:B 7.从回归方程Y =7.4910-0.5655X 可以得出( )。 A 、X 每增加1个单位,Y 增加0.5655个单位 B 、X 每增加1个单位,Y 减少0.5655个单位 C 、X 每增加1个单位,Y 平均增加0.5655个单位 D 、X 每增加1个单位,Y 平均减少0.5655个单位 答案:D 8.某产品产量为1000件时,其生产成本为30000元,其中不变成本为6000元,则总成本对产量的一元线性回归方程为( )。 A 、Y =6000+24X B 、Y =6+0.24X C 、Y =24000+6X D 、Y =24+6000X 答案:A 9.在一元线性回归方程Y =A +BX 中,如回归系数B =0,则表示( )。 A 、 Y 对X 的影响是显著的 B 、Y 对X 的影响是不显著的 C 、 对Y 的影响是显著的 D 、X 对Y 的影响是不显著的 答案:D 10.如果变量X 、Y 的相关系数为0,则表示( )。 A 、 二者没有相关关系 B 、二者存在高度相关 C 、二者没有线性相关关系 D 、二者不存在曲线相关 答案:C 11.相关系数的取值范围为( )。 A 、0≤R ≤1 B 、0

相关文档
最新文档