A Comparative Performance Evaluation of RSS-Based Positioning Algorithms Used in WLAN Network

合集下载

人力资源管理之绩效管理专业术语英语翻译

人力资源管理之绩效管理专业术语英语翻译

人力资源管理之绩效管理专业术语英语翻译1绩效管理,2绩效评价3绩效计划4绩效目标5绩效辅导6绩效沟通7绩效分析8绩效评价面谈9绩效反馈10排序法11强制分布法12关键事件法13图尺度评价法14配对比较法,行为锚定等15级评价法16目标管理法17绩效评价标准不清,趋紧,趋松,居中趋势,18晕轮效应19效度、信度20关键绩效指标21 360反馈过程22平衡记分卡23绩效改进24高绩效工作系统1, performance management,2 Performance Evaluation3 Performance Plan4 performance targets5 Performance counseling6 the performance of communication7 Performance Analysis8 Performance Evaluation interviews9 Performance Feedback10 Sort11 mandatory distribution12 critical incident method13 map-scale evaluation14 pairs of comparative law, and other acts of anchoringEvaluation 15Management Act, 16 goals17 Performance evaluation criteria clear, tight, more loose, center trend18 halo effect19 validity, reliability20 Key Performance IndicatorsFeedback processes 21,36022 Balanced Scorecard23 performance improvement24 high-performance work systems下面红色字体部分是赠送的散文欣赏摘自网络,不需要的朋友下载后可以编辑删除谢谢可依靠的唯有自己犹太家庭的孩子都要回答这样一个问题:“假如有一天房子被烧着了,你将带着什么东西逃跑?”如果孩子回答是钱财,母亲会进一步问:“有一种没有形状、没有颜色、没有气味的宝贝,你知道是什么吗?”如果孩子回答不出来,母亲会告诉他:“孩子,你要带走的不是钱财,而是智慧。

介绍各自的性能英语作文

介绍各自的性能英语作文

介绍各自的性能英语作文Title: Comparative Analysis of Performance: A Study of Two Entities。

In the realm of performance evaluation, understanding the intricacies of different entities is pivotal. This essay delves into a comparative analysis of two distinct entities, shedding light on their respective performances. Through an exploration of their attributes, strengths, and weaknesses, we aim to glean insights into their operational efficacies.Entity A, characterized by its dynamic nature and adaptability, boasts a formidable performance record. With a keen focus on innovation and agility, Entity A consistently outpaces competitors in the market. Itsability to swiftly respond to changing market dynamics positions it as a frontrunner in the industry. Furthermore, Entity A's commitment to continuous improvement fosters a culture of excellence, driving its performance metrics tonew heights.On the other hand, Entity B, while possessing commendable stability and reliability, faces challenges in keeping pace with rapidly evolving market trends. Its traditional approach to operations, though time-tested, sometimes hinders its ability to capitalize on emerging opportunities. However, Entity B's steadfast dedication to quality and customer satisfaction instills trust and loyalty among its clientele, serving as a cornerstone of its performance strategy.In terms of financial performance, Entity A demonstrates remarkable growth and profitability. Its strategic investments in research and development yield innovative products and services, contributing to revenue expansion. Additionally, robust marketing initiatives amplify brand visibility, further fueling revenue streams. Conversely, Entity B's financial performance, although steady, exhibits slower growth rates. Its conservative approach to investments and market expansion limits the magnitude of revenue gains, albeit ensuring sustainedprofitability.Operational efficiency is another crucial aspect of performance evaluation. Entity A leverages cutting-edge technology and process optimization techniques to streamline its operations. This results in enhanced productivity, reduced costs, and improved resource utilization. Conversely, Entity B, while proficient in its operations, grapples with inefficiencies stemming from legacy systems and bureaucratic processes. Nevertheless,its emphasis on quality control mitigates operational risks and upholds standards of excellence.Employee engagement and organizational culture play pivotal roles in driving performance outcomes. Entity A fosters a culture of creativity and empowerment, encouraging employees to voice ideas and contribute to organizational goals. This sense of ownership cultivates a motivated workforce, driving innovation and productivity. Conversely, Entity B's hierarchical structure and rigid protocols sometimes stifle creativity and autonomy among employees. Nonetheless, its emphasis on employee welfareand development fosters a sense of loyalty and commitment.In conclusion, both Entity A and Entity B exhibit distinct performance profiles shaped by their unique attributes and strategic orientations. While Entity A excels in agility, innovation, and financial growth, Entity B emphasizes stability, reliability, and quality. By understanding the nuances of their performances, stakeholders can glean insights to inform strategic decisions and foster sustainable growth. Ultimately, the journey towards performance excellence entails a nuanced understanding of organizational dynamics and a commitment to continual improvement.。

人力资源管理之绩效管理专业术语英语翻译

人力资源管理之绩效管理专业术语英语翻译

人力资源管理之绩效管理专业术语英语翻译集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#人力资源管理之绩效管理专业术语英语翻译1绩效管理,2绩效评价3绩效计划4绩效目标5绩效辅导6绩效沟通7绩效分析8绩效评价面谈9绩效反馈10排序法11强制分布法12关键事件法13图尺度评价法14配对比较法,行为锚定等15级评价法16目标管理法17绩效评价标准不清,趋紧,趋松,居中趋势,18晕轮效应19效度、信度20关键绩效指标21 360反馈过程22平衡记分卡23绩效改进24高绩效工作系统1, performance management,2 Performance Evaluation3 Performance Plan4 performance targets5 Performance counseling6 the performance of communication7 Performance Analysis8 Performance Evaluation interviews9 Performance Feedback10 Sort11 mandatory distribution12 critical incident method13 map-scale evaluation14 pairs of comparative law, and other acts of anchoringEvaluation 15Management Act, 16 goals17 Performance evaluation criteria clear, tight, more loose, center trend18 halo effect19 validity, reliability20 Key Performance IndicatorsFeedback processes 21,36022 Balanced Scorecard23 performance improvement24 high-performance work systems。

某某公司人力资源评估英文

某某公司人力资源评估英文
Evaluate training needs
Consult the type of training required, such as technical skills, leadership development, or soft skills, and identify the appropriate training methods and resources
Optimizing human resource allocation
By evaluating employees, understanding their characteristics and abilities, optimizing human resource allocation, and improving work efficiency.
Promote employee career development
By evaluating employees, discover their potential and strengths, and provide guidance and support for their career development.
Multidimensional evaluation: Evaluate employee performance from multiple dimensions, including work quality, work efficiency, teamwork, innovation ability, etc.
Objective and impartial: Ensure that the evaluation process is fair and objective, avoiding subjective biases and stereotypes.

performance evaluation的文章

performance evaluation的文章

主题:性能评估性能评估是指对某一系统、产品或服务的性能进行定量或定性的评定和分析的过程。

在现代社会中,性能评估已经成为各行各业中不可或缺的一部分。

本文将从性能评估的定义、内容、方法和意义等方面进行阐述,并探讨性能评估在不同领域的应用。

一、性能评估的定义性能评估是指对特定系统、产品、服务或个人在特定条件下的表现进行合理分析和评价的过程。

这个过程通常包括对性能指标的测量、分析和评定,以便为系统的改进和优化提供依据。

性能评估需要考虑多个方面的因素,如效率、准确性、稳定性、可靠性等,因此是一个复杂的过程。

二、性能评估的内容性能评估的内容通常包括以下几个方面:1.性能指标的明确定义:明确定义需要评估的性能指标,例如响应时间、吞吐量、错误率、资源利用率等。

2.性能测试的设计:设计合理的性能测试方案,包括测试环境的搭建、测试数据的准备、测试工具的选择等。

3.性能数据的收集和分析:对性能测试过程中产生的数据进行收集和整理,并进行合理的分析。

4.性能评估报告的撰写:根据性能测试结果撰写评估报告,对系统的性能进行客观、准确的评价,并提出改进建议。

三、性能评估的方法性能评估的方法多种多样,根据被评估对象的不同可以采用不同的方法。

常见的性能评估方法包括:1.基准测试法:通过与已知性能水平的系统进行对比,评价被评估系统的性能。

2.模拟仿真法:利用仿真软件模拟系统在不同条件下的运行情况,评估系统的性能。

3.负载测试法:通过模拟实际使用情况下的负载情况,评估系统在不同负载下的性能表现。

4.真实环境测试法:在真实的使用环境下进行性能测试,评估系统的实际性能表现。

四、性能评估的意义性能评估对于各行各业都具有重要的意义。

性能评估可以帮助组织或个人了解自己的实际表现,发现存在的问题并加以改进,提高工作效率和质量。

性能评估可以为决策提供依据,帮助领导层和管理者做出合理的决策,避免盲目投资和错误决策。

再次,性能评估可以促进技术的发展和创新,推动产品和服务的优化和改进。

毕业设计外文参考文献

毕业设计外文参考文献

[1] 王起江,洪杰.超超临界电站锅炉用新型管材的研制[J].宝钢技术,2008(5):44-53.[2] 王起江,邹凤鸣.T91高压锅炉管的研制与应用[J].发电设备,2005 (1):43-47.[3] Fujio Abe.Bainitic and martensitic creep-resistant steels[J].Solid State andMaterials Science,2004,8:305-311.[4] 马明编译.美国新的超临界机组考虑使用T/P92的原因[J].电力建设,2006,27(11):79-80.[5] 戴平.国产P91钢管道存在的问题及其解决[J].广东电力,2008,21(8):67-69.[6] 田党.关于难变形钢和合金管坯的二辊斜轧穿孔问题[J].钢铁,1998,33(1):33-36.[7] P J Ennis,A Czyrska-Filemonowicz.Recent advances in creep-resistant steelsfor power plant applications [J].Sādhanā,2003,28:709–730.[8] 刘立民,朱洪,刘志国.法国T91、P91钢管性能评定[J].电站系统工程,2002,18(1):63-64.[9] 彭孙鸿.T91钢管在我国的应用前景[J].宝钢技术,1997,6:48-50.[10] H.C. Furtado,L.H. de Almeida,I. Le May.Precipitation in 9Cr–1Mo steel aftercreep deformation[J].Materials Characterization,2007,58:72–77.[11] 蒯春光,彭志方.T/P91钢在450-1200℃区间各相元素的分配特征及相稳定性[J].金属学报,2008,44(8):897-900.[12] 孙智,董小文,张绪平,等.奥氏体化温度对9Cr-1Mo-V-Nb钢组织与性能的影响[J].金属热处理,2001,26(8):12-14.[13] 刘靖,周立新,傅晨光,等.电站锅炉用T91钢热穿孔性能的研究[J].钢管,2002,31(5):9-11.[14] 彭孙鸿,尤夙志,姜明娟,等.热穿孔温度对T91持久强度的影响[J].特殊钢,2001,22(2):10-12.[15] 崔光珠,朱伏先,高德福,等.T91钢高温变形特性研究[J].塑性工程学报,1999,6(2):13-16.[16] 余勇,周晓岚,赵志毅,等.T91变形抗力模型建立及理论轧制压力计算[J].宝钢技术,2006(3):31-34.[17] Polcik P,Sailer T,Blum W,et al.On the microstructural development of thetempered martensitic Cr-steel P91 during long-term creep[J].Materials Science and Engineering,1999,260:252-259.[18] Orlová A,Buršík J,Kucharová K,et al.Microstructural development duringhigh temperature creep of 9% Cr steel[J].Materials Science and Engineering,1998,254:39-48.[19] Sasaki,Terufumi,Kobayashi,et al.Production and properties of seamlessmodified 9Cr-1Mo steel boiler tubes[R].Kaw asaki Steel Technical Report,1991,25(4):78-87.[20] Bendick W,Vaillant JC,Vandenberghe B,et al.Properties and workability ofnew creep strength enhanced steels as known grades 23, 24, 911 and 92[J].International Journal of Pressure Vessels and Piping,2004,476:25-29.[21] 刘江南,王正品,束国刚,等.P91钢的形变强化行为[J].金属热处理,2009,34(1):28-32.[22] Tőkei Z S,Viefhaus H,Grabke H J.Initial stages of oxidation of a9CrMoV-steel: role of segregation and martensite laths[J].Applied Surface Science,2000,165:23-33.[23] Rajendran P S,Sankar P,Khatak H S.Cyclic oxidation of P91 at 1073, 1123 and1173K[J].High Temperature Materials and Processes,2004,23(3):195-204.[24] Ahmed Shibli,Fred Starr.Some aspects of plant and research experience in theuse of new high strength martensitic steel P91[J].International Journal of Pressure Vessels and Piping,2007,84:114-122.[25] J.C. Vaillant,B. Vandenberghe,B. Hahn,et al.T/P23, 24, 911 and 92: Newgrades for advanced coal-fired power plants—Properties and experience [J].International Journal of Pressure Vessels and Piping,2008,85:38-46.[26] Brett SJ.The creep strength of weak thick section modified 9Crforgings[C].Proceedings of Baltica,2001,1:39-45.[27] U.Gampe,P.Seliger.Creep crack growth testing of P91 and P22bends[J].International Journal of Pressure Vessels and Piping,2001,78:859-864.[28] L.Kunz,P.Lukáš.High temperature fatigure and cyclic creep of P91steel[J].European Structural Integrity Society,2002,29:37-44.[29] B.Fournier,M.Sauzay,C.Caës,et al.Creep-fatigue-oxidation interactions ina 9Cr-1Mo martensitic steel[J].International Journal of Pressure Vessels andPiping,2008,85:478-485.[30] 刘洪杰.电站锅炉用P91钢蠕变/疲劳交互作用的试验研究[J].动力工程,2007,27(6):990-995.[31] LIU Jiang-nan,JIE Wang-qi.Application of improved vacuum degassingtechnique to refinement of heat resistant steel P91[J].Trans. Nonferrous Met.Soc. China,2005,15:291-294.[32] 苏俊,张铮,李进.P91高压锅炉管的开发[J].钢管,2008,37(4):33-37.[33] 郭元蓉,吴红.P91无缝钢管国产化研究进展[J].钢管,2008,37(1):22-27.[34] 王起江,邹凤鸣,张瑞,等.宝钢T91高压锅炉管性能试验与研究[J].宝钢技术,2003,(4):46-50.[35] Miyata K,Sawaragi Y.Effect of Mo and W on the phase stability of precipitatesin low Cr heat resistant steels[J].ISIJ,2001,41:281-289.[36] Wachter O,Ennis PJ.Investigation of the properties of the 9% Cr steel of thetype 9Cr-0.5Mo-1.8W-V-Nb with respect to its application as a pipework and boiler steel operation at elevated temperatures[D].Germany,1995.[37] Hättestrand M,Andrén H O.Evaluation of particle size distribution in a 9% Crsteel using EFTEM[J].Micron,2001,32:789-797.[38] Sklenicka V,Kucharova K,Svoboda M,et al.Long-term creep behavior of9-12%Cr power plant steels [J].Mater. Character,2003,51:35-48.[39] Strang A,Foldyna V,Lenert J,et al.Prediction of the long-term creep ruptureproperties of 9-12Cr power plant steels [C].Proceedings of the 6th International Charles Parsons Turbine Conference,Dublin,2003,427-441.[40] Kimura K,Kushima H,Sawaka K.Long-term creep strength prediction of highCr ferritic creep resistant steels based on degradation mechanisms[C].Proceedings of the 6th International Charles Parsons Turbine Conference,Dublin,2003,444-456.[41] 高巍,刘江南,王正品,等.P92钢塑性变形行为[J].西安工业大学学报,2008,28(4):356-359.[42] 田党,张根良,卜玉钦.二辊斜轧穿孔时高合金钢的变形分布和分层缺陷形成机制[J].钢铁,1995,30(1):40-45.[43] 刘新生,赵定国,崔成业.冷轧薄板中分层现象的研究[J].钢铁,2008,43(5):40-43.[44] 崔风平,赵乾,唐愈.铸坯内部缺陷对钢板分层形成的影响[J].中国冶金,2008,18(2):14-18.[45] 唐生斌.板材分层缺陷产生原因分析[J].连铸,2003,4:32-34.[46] 洪小玲,肖荣仁,李端来.GH3030合金锻坯裂纹分析[J].钢铁研究,2002,128(5):11-12.[47] S.A.Sharadzenidze,E.A.Svetlitskii.High Quality Seamless Tubes[J]. Metallurg,1968,11:38-39.[48] 王建文.27SiMn钢管表面龟裂原因分析[J].湖南冶金,2000,5:25-26.[49] 任建国,祁晓英,马学军,等.低合金钢热轧缺陷分析[J].沈阳工业学院学报,1996,15(3):35-37.[50] 卢居桂,安自亮,刘钰.夹杂物引起的石油套管缺陷分析[J].天津冶金,2002,106(1):27-29.[51] 田党.关于锥形辊穿孔机轧辊转速对毛管分层缺陷影响的讨论[J].钢管,2006,35(4):12-16.[52] 王永吉,陈大国,王世英,等.二辊斜轧穿孔轧辊转速对高合金钢毛管质量的影响[J].钢铁,1985,20(2):25-30.[53] 严智.高温合金穿孔工艺的研究[J].特钢技术,1994,2:27-31.[54] 田党.高温合金无缝管材的研制与生产[J].钢管,2002,31(3):1-6.[55] 田党.关于毛管分层缺陷的试验研究[J].轧钢,1997,6:7-10.[56] 田党.高温合金管坯在二辊斜轧穿孔机上的穿孔实践[J].天津冶金,1996,4:25-28.[57] 田党.毛管分层缺陷形成过程的观察和分析[J].天津冶金,1996,1:24-26.[58] 田党.高温合金毛管分层缺陷形成的过程[J].钢管,1992,1:19-22.[59] 卢于逑,王先进.二辊斜轧穿孔中心金属断裂机理和穿孔变形工艺实质[J].钢铁,1980,6:7-15.[60] 卢于逑,王先进.二辊斜轧穿孔圆坯断面的变形分布[J].金属学报,1980,4:470-479.[61] 田党,张根良,卜玉钦.二辊斜轧穿孔时高温合金钢圆坯的变形分布及分层形成机制[J].钢铁,1995,30(1):40-46.[62] 田党,李群.关于锥形辊穿孔机的穿孔原理及应用问题的讨论[J].钢管,2003,32(6):1-4.[63] 赵咏秋,吴秀丽,陈菊芳.0Cr18Ni9Ti热轧荒管分层内裂原因分析[J].物理测试,1999,2:33-35.[64] 张存信,冯晓庭,项炳和,等.不锈钢无缝管加工过程中断裂原因简析[J].钢管,2008,37(3):38-42.[65] 袁桂林,苏殿荣.GCr15钢管环状层裂在二辊斜轧穿孔过程中的发生和发展[J].钢管,1983,3:15-18.[66] 张世文,刘仓理,李庆忠,等.初始应力状态对材料层裂破坏特性影响研究[J].力学学报,2008,40(4):535-542.[67] 侯凤桐.日本住友金属公司新开发的菌式穿孔机[J].钢管技术,1985,2:57-59.[68] Chihiro HAYASHI,Tomio YAMAKAWA.Influences of Feed and Cross Angleon Inside Bore and Lamination Defects in Rotary Piercing for Materials with Poor Hot Workability [J].ISIJ International,1997,37(2):153-160.[69] 嵇国金,彭颖红,阮雪榆.有关金属体积成形中的韧性断裂准则[J].金属成形工艺,1998,16(4):36-37.[70] 郭达人编译.金属材料的断裂及其断口分析[J].国外金属热处理,1996,17(4):25-31.[71] 黄建科,董湘怀.金属成形中韧性断裂准则的细观损伤力学研究进展[J].上海交通大学学报,2006,40(10):1748-1753.[72] Oyane M,Sota T,Okintoto K,et al.Criteria for ductile fractures and theirapplications[J].J Mech Work Tech,1980,4:65-81.[73] 郑长卿,张克实,周利.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995,28-32.[74] Venugopal Rao A,Ramakrishnan N,Krishna Kumar R.A comparativeevaluation of the theoretical failure criteria for workability in cold forging[J].Journal of Materials Processing Technology,2003,142(1):29-42.[75] Komori Kazutake.Effect of ductile fracture criteria on chevron crack formationand evolution in drawing[J].International Journal of Mechanical Sciences,2003,45(1):141-160.[76] Ozturk Fahrettin,Lee Daeyong.Analysis of forming limits using ductile fracturecriteria[J].Journal of Materials Processing Technology,2004,147(3):397-404.[77] Jeong Kim,Sung-Jong Kang,Beom-Soo Kang.A prediction of bursting failurein tube hydroforming processes based on ductile fracture criterion[J].Int J Adv Manuf Technol,2003,22:357-362.[78] 虞松,陈军,阮雪榆.韧性断裂准则的试验与理论研究[J].中国机械工程,2006,17(19):2049-2052.[79] 胡庆安,程侠,邰卫华.金属材料断裂预测损伤破坏准则的应用[J].长安大学学报,2007,27(4):100-102.[80] 俞树荣,严志刚,曹睿,等.有限元软件模拟裂纹扩展的方法探讨[J].甘肃科学学报,2003,15(4):15-21.[81] 陈乃超,田冠玉,郑博.12Cr1MoV短期高温冲击断裂韧性及其参数的研究[J].上海电力学院学报,2008,24(2):178-181.[82] Ken-ichiro Mori,Hidenori Yoshimura,Kozo Osakada.Simplified three-dimensional simulation of rotary piercing of seamless pipe by rigid-plastic finite-element method[J].Journal of Materials Processing Technology,1998,80-81:700-706.[83] Y van Chastel,Aliou Diop,Silvio Fanini,et al.Finite Element Modeling ofTube Piercing and Creation of a Crack[J].Int J Mater Form,2008,Suppl 1:355-358.[84] Hyoung Wook Lee,Geun An Lee,Eung Kim,et al.Prediction of plug tipposition in rotary tube piercing mill using simulation and experiment[J].International Journal of Modern Physics B,2008,22(31-32):5787-5792.[85] S Fanini,A Ghiotti,S Bruschi.Evaluation of Fracture Initiation in theMannesmann Piercing Process[C].The 10th ESAFORM Conference on Material Forming,2007,709-714.[86] Saurabh Dwivedi,Samuel H,Huang Jun Shi,et al.Yield prediction for seamlesstubing processes: a computational intelligence approach[J].Int Adv Manuf Technol,2008,37:314-322.[87] Elisabetta Ceretti,Claudio Glaudio,Aldo Attanasio.3D Simulation andValidation of Tube Piercing Process[C].NUMIFORM 07 Materials and Design: Modling, Simulation and Applications,2007,413-418.[88] Kazutake Komori.Simulation of Mannesmann piercing process by thethree-dimensional rigid-plastic finite-element method[J].International Journal of Mechanical Sciences,2005,47:1838-1853.[89] Hayashi C,Yamakawa T.Influence of feed and cross angle on rotary forgingeffects and redundant shear deformation in rotary piercing process[J].ISIJ International,1997,37:146-152.[90] 曾幼宗.斜轧穿孔工艺的有限元分析[J].钢管,2004,33(3):51-53.[91] 双远华,赖明道,张中元.斜轧穿孔过程金属流动的有限元模拟[J].机械工程学报,2004,40(3):140-144.[92] 双远华,赖明道,张中元.钢管斜轧过程应力应变与温度耦合模拟分析[J].锻压技术,2003(6):36-40.[93] 李胜衹,陈大宏,孙中建,等.二辊斜轧穿孔时圆管坯的变形与应力分布及其发展[J].钢铁研究学报,2000,12(5):26-30.[94] A Ghiotti,S Fanini,S Bruschi,et al.Modeling of the Mannesmanneffect[J].CIRP Annals-Manufacturing Technology,2009,58:255-258.[95] E.I. Panov.Shear Stresses and Their Dependence on Different ProcessParameters in The Helical Rolling of Solid Semifinished Products[J].Metallurgist,2005,49(7-8):280-292.[96] E.I. Panov.Certain Aspects of The Stress-Strain State of Semifinished Productsin Helical Rolling[J].Metallurgist,2003,47(11-12):499-505.[97] E.I. Panov.Effect of thrust and tension on the radial stresses in helical rolling[J].Metallurg,2004,4:50-57.[98] Z. Pater,J. Kazanecki,J. Bartnicki.Three dimensional thermo-mechanicalsimulation of the tube forming process in Diescher’s mill [J].Journal of Materials Processing Technology,2006,177:167-170.[99] 双远华,陈惠琴,赖明道.斜轧管材生产中内部组织有限元模拟和预测[J].中国有色金属学报,2001,11(2):238-242.[100] 双远华,张中元,赖明道.热轧穿孔内部组织控轧的工业性试验研究[J].钢铁,2002,37(6):42-47.[101] J C Prince,R Maroño,F León.Thermomechanical analysis of a piercing mandrel for the production of seamless steel tubes[J].J. Process Mechanical Engineering,2003,217:337-344.[102] W.A.Khudheyer,D.C.Barton,T.Z.Blazynski.A comparison between macroshear redundancy and loading effects in 2- and 3-roll rotary tube cone piercers[J].Journal of Materials Processing Technology,1997,65:191-202.[103] A.N.Nikulin,V.V. Streletskii.Deformation of continuous cast metal during rotary rolling[J].Metallurgist,2005,49(3-4):97-101.[104] Kazutake Komori,Kouta Mizuno.Study on plastic deformation in cone-type rotary piercing process using model piercing mill for modeling clay[J].Journal of Materials Processing Technology,2009,209:4994-5001.[105] 李连诗.钢管塑性变形原理(上册)[M],北京:冶金工业出版社,1985:178-185.[106] 卢于逑.斜轧穿孔过程中应力和变形的分布和中心金属断裂机构的某些特点分析[D].北京:北京钢铁学院,1963.[107] 卢于逑,王先进.二辊斜轧穿孔时圆坯断面的变形分布和发展[J].金属学报,1980,16(4):470-479.[108] 严泽生.现代热轧无缝钢管生产[M].北京:冶金工业出版社,2009:175-195.[109] Takuda H,Mori K,Hatta N.The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals[J].J Mater Process Technol,1999,95:116-121.[110] Takuda H,Mori K,Fujimoto H,et al.Prediction of the forming limit in bore-expanding of sheet metals using ductile fracture criteria[J].J Mater Process Technol,1999,92-93:433-438.[111] Mori K,Takuda H.Prediction of forming limit in deep drawing of finite element simulation and criterion for ductile fracture[J].Transaction of NAMRI/SME XXIV,1996,143-148.[112] Takuda H,Mori K,Takakura N,et al.Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture[J].Int J Mech Sci,2000,42:785-798.。

单尖法根管充填技术的研究进展

单尖法根管充填技术的研究进展

单尖法根管充填技术的研究进展笪东欣(综述);朱亚琴(审校)【摘要】随着旋转镍钛器械在根管预备中的应用,单尖法根管充填也随之流行。

单尖法相对于传统的冷牙胶侧压和热牙胶充填法,具有快速、与根管形态匹配良好、抗根折性能好等特点。

本文就单尖法根管充填的原理、优缺点、研究进展作一综述,以期为临床提供参考。

%With the widely use of rotary Ni-Ti files in the root canal preparation,taking matched-taper sin-gle cone techniques into use becomes popular.In contrast to the traditional cold lateral compaction and newly emerged warm gutta-percha techniques,single cone obturation is quick,highly efficient and well matching the root canal anato-my.This paper is to review the principles,improvements,advantages and drawbacks of single cone obturation tech-nique for clinical reference.【期刊名称】《牙体牙髓牙周病学杂志》【年(卷),期】2014(000)005【总页数】4页(P305-308)【关键词】根管充填;根尖封闭性;抗折性;单尖法根管充填术【作者】笪东欣(综述);朱亚琴(审校)【作者单位】上海交通大学医学院附属第九人民医院口腔综合科; 上海市口腔医学重点实验室,上海200011;上海交通大学医学院附属第九人民医院口腔综合科; 上海市口腔医学重点实验室,上海200011【正文语种】中文【中图分类】R780.2根管治疗术是治疗牙髓病和根尖周病最常用的方法,其原理是通过机械、化学预备和适当的根管消毒,以去除根管内的坏死组织、细菌及其产物;并通过严密充填根管、封闭冠部,防止发生根尖周病变或促进根尖周病变的愈合[1]。

供应商评估表(中英文对照)模板

供应商评估表(中英文对照)模板

供应商评估表(中英文对照)模板Supplier Evaluation Form (Chinese-English Comparative Template)Introduction 简介:本供应商评估表旨在帮助企业对供应商进行全面评估,以确保供应链的可靠性和效率。

本评估表将提供一份供应商的综合分析,包括质量管理、交货能力、价格竞争力、服务水平和合规性等方面的评估。

为了方便使用,本文提供了中英文对照的模板,供使用者参考和使用。

This Supplier Evaluation Form aims to assist businesses in conducting thorough assessments of their suppliers to ensure reliability and efficiency within the supply chain. The evaluation form will provide a comprehensive analysis of suppliers, including assessments of quality management, delivery capabilities, price competitiveness, service levels, and compliance. For easeof use, this article provides a template with both Chinese and English sections as a reference for users.供应商信息 Supplier Information:供应商名称:______________________________Supplier Name: _______________________________供应商地址:______________________________Supplier Address: _______________________________联系人:______________________________Contact Person: _______________________________联系电话:______________________________Contact Number: _______________________________评估日期:______________________________Evaluation Date: _______________________________评估人员:______________________________Evaluator: _______________________________供应商综合评估 Comprehensive Supplier Evaluation:1.质量管理 Quality Management:1.1 产品质量 Product Quality请根据以下指标对供应商的产品质量进行评估,请在右侧打"√"表示评估结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f X ( x)Biblioteka =1 2π .σ x.e

x2
2 2σ x
(2)
Where σx is defined for different models in Table 2.
Model A B C D E F dBP (m) 5 5 5 10 20 30 α1 before dBP 2 2 2 2 2 2 α2 after dBP 3.5 3.5 3.5 3.5 3.5 3.5 Shadow fading (dB) before dBP
A Comparative Performance Evaluation of RSS-Based Positioning Algorithms Used in WLAN Networks
Ahmad Hatami and Kaveh Pahlavan
Center for Wireless Information Network Studies Worcester Polytechnic Institute (WPI) hatami@ , kaveh@
IEEE Communications Society / WCNC 2005
2331
0-7803-8966-2/05/$20.00 © 2005 IEEE
L(d ) = LFS (d ) L(d ) = LFS (d BP ) − 10.α 2 . log10 ( d )+x d BP
d ≤ d BP d > d BP
I. INTRODUCTION
Proliferation of portable computers and hand held devices opened new paradigms in application domain. Location aware and pervasive computing are among these new applications [7]. Traditional methods for wireless positioning are based on time-of-arrival (TOA) or angle-of-arrival (AOA) measurements from several base stations (BS) and application of triangulation [10, 11]. The Global Positioning System (GPS) is the most widely used positioning system in this class. Unfortunately, there are two limitations in GPS based systems. First, these systems do not provide good accuracy inside buildings and other scenarios in which there is no direct Lineof-Site (LOS) between the mobile host (MH) and base station BS [1,13]. The second limitation is the need for an additional hardware and infrastructure that increases overall cost, weight, and power consumption of mobile devices. In recent years IEEE 802.11 established itself as the standard for WLAN. These networks are used in indoor and short distance outdoor areas with a transmission range between 30-200 m. Large number of existing 802.11 networks in addition to new applications with positioning requirements motivated research community for using WLAN as an alternative to other positioning systems. The main purpose of this article is to provide an overview of power based algorithms that have been used for location estimation in WLAN. Table 1 summarizes the acronyms that are common in literature and are used in subsequent sections.
Acronym
AP AOL BS CCF DV GPS LOS MH NLOS QOS RSS TOA VoIP WLAN
Description
Access Point Angle of Arrival Base Station Complementary Cumulative Function Distance Variance Global Positioning System Line of Site Mobile Host Non Line of Site Quality of Service Received Signal Strength [dBm] Time of Arrival Voice over IP Wireless LAN
(1)
LFS (d ) = L0 + 10 .α 1 log 10 (d )
Where L, d, dBP, α1, α2 represent path loss (dB), distance (m), breakpoint distance (m), power-distance gradient; before and after the breakpoint; respectively. x is the shadow fading component with a zero mean Gaussian probability distribution.
(LOS)
Shadow fading (dB) after dBP
(NLOS)
Consider a typical WLAN system in 100 x 100 m2 building as depicted in Figure 3. In this scenario five access points (AP1– AP5) provide coverage within a building. The goal is to locate a MH who is communicating through one AP in this building. We break down the process of positioning system into the following steps as suggested by Figure 4. Step 1 (Training / Profiling): We create a grid of reference points (known locations) within the network coverage area and collect average RSS values from existing AP’s and store them in a reference database. To reduce the effect of noise and interference in profiling, we measure RSS values multiple times in different directions and use the average value as the reference. This step can be done in two ways. First method is to do onsite measurements in all reference points with a user terminal that involves a rather exhaustive and costly measurement campaign [2]. In an alternative approach we can do limited number of onsite measurements and collect physical characteristics of an appropriate channel model. Then generate the reference database by simulation. The accuracy of this system depends on the accuracy of the underlying channel model.
Table 1 WLAN Positioning Systems Channel Model: Existing channel models for WLAN were developed in [14,15]. Different environments are grouped in five different models (A-E) based on various rms delay spread values: • Model A for a typical office environment, non-lineof-sight (NLOS) conditions, and 50 ns rms delay spread. • Model B for a typical large open space and office environments, NLOS conditions, and 100 ns rms delay spread. • Model C for a large open space (indoor and outdoor), NLOS conditions, and 150 ns rms delay spread. • Model D, same as model C, line-of-sight (LOS) conditions, and 140 ns rms delay spread (10 dB Ricean K-factor at the first delay). • Model E for a typical large open space (indoor and outdoor), NLOS conditions, and 250 ns rms delay spread. In our simulations we use a path loss model introduced in [16,17]. This model consists of a free space loss LFS with power distance gradient of 2 up to a breakpoint distance dBP. This corresponds to model B in [17]:
相关文档
最新文档