C086.专题复习-圆周运动类问题(上)

合集下载

《圆周运动》专题复习

《圆周运动》专题复习

《圆周运动》专题复习曹传涛河南郏县一高 467100一.知识综述圆周运动是机械运动中一种典型的曲线运动。

高考对该知识点的考查主要有三个方面,一是基本概念,如线速度、角速度、向心加速度、向心力、转速;二是水平面内的匀速圆周运动,以考查圆周运动的基本规律及其应用为主;三是竖直平面内非匀速圆周运动,以考查受力分析、临界条件、极值、向心力公式和机械能守恒及功能关系为主。

圆周运动中涉及的基本概念是历所高考选择题的重要素材;而竖直平面内圆周运动问题,作为匀速圆周运动的方法解决变速圆周运动问题的应用,更是今后考查的热点。

因此,在复习本知识点时,既要注重对基础知识的熟练掌握,又要对典型问题进行归纳总结。

另外,由于这部分知识扩展空间很大,因此还要兼顾机械能守恒、功能关系、电场力、洛仑兹力等相关知识的复习。

二.基础知识归纳1.线速度(1)定义:做圆周运动的物体,通过的弧长l ∆跟通过这段弧长所用时间t ∆的比值,叫圆周运动的线速度。

(2)定义式:tl v ∆∆=。

(3)方向:与圆弧的切线方向相同。

2.角速度(1)做圆周运动的物体,连接物体和圆心的半径转过的角度θ∆跟所用时间t ∆的比值,叫做圆周运动的角速度。

(2)定义式:t∆∆=θω。

(3)国际单位:弧度/秒(rad/s)。

3.周期、频率和转速(1)周期T :做匀速圆周运动的物体,运动一周所用的时间,叫做周期。

国示单位是秒(s) ;(2)频率f :做匀速圆周运动的物体,一秒内运动的周数,叫做频率。

国际单位是赫兹(Hz 或1-s) ,Tf 1=;(3)转速n :做匀速圆周运动的物体在单位时间内转过的转数。

国际单位是转/秒(r/s )。

4.向心加速度(1)表达式:rvr a n 22==ω。

(2)方向:时刻改变且总是指向圆心。

温馨提示:①当v 一定时,n a 与r 成反比; ②当ω一定时,n a 与r 成正比。

5.向心力(1)表达式:rvmr m ma F n n 22===ω(2)方向:时刻改变且总是指向圆心。

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.2.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

(完整版)圆周运动及其应用专题复习(解析版)

(完整版)圆周运动及其应用专题复习(解析版)

圆周运动及其应用专题复习(答案版 )课前复习1. 描绘圆周运动的物理量主要有线速度、角速度、周期、转速、向心加快度、向心力等,现比较以下表:物理量 意义、方向公式、单位线速度① 描绘做圆周运动的物体运动快慢的物理量(v) ①v = l = 2πr② 方向与半径垂直,和圆周相切t T② 单位: m/s角速度① 描绘物体绕圆心转动快慢的物理量 (ω)Δθ 2π②中学不研究其方向① ω= t =T②单位: rad/s周 期 和 ① 周期是物体沿圆周运动一圈的时间 (T)① T =2πr;单位: s转速② 转速是物体在单位时间内转过的圈数((n),也v叫频次 (f)② n 的单位 r/s 、r/min1③ f 的单位: Hz③ 周期与频次的关系为 T = f(a n )向 心 加①描绘速度方向变化快慢的物理量a n =v2速度②方向指向圆心① =ω2rr② 单位: m/s 24π向心力 ①作用成效是产生向心加快度,只改变线速度的v2① F n =m ω2r = m2方向,不改变线速度的大小r = m T 2 r② 方向指向圆心 .②单位: N2.匀速圆周运动有关性质:(1) 定义 :物体沿圆周运动,而且线速度大小到处相等的运动. (2) 匀速圆周运动的特色速度大小不变而速度方向时辰变化的变速曲线运动.只存在向心加快度,不存在切向加快度. 合外力即产生向心加快度的力,充任向心力(3) 条件:合外力大小不变,方向一直与速度方向垂直且指向圆心.课前练习1.某型石英表中的分针与时针可视为做匀速转动,分针的长度是时针长度的 1.5 倍,则以下说法中正确的选项是 ()A .分针的角速度与时针的角速度相等B .分针的角速度是时针的角速度的 60 倍C .分针端点的线速度是时针端点的线速度的18 倍D .分针端点的向心加快度是时针端点的向心加快度的 1.5 倍【分析】 分针的角速度 ω1= 2π π rad/min ,时针的角速度 ω2= 2π πrad/min.T = 30 T = 36012ω1∶ω2= 12∶1, v 1∶v 2 =ω1r 1∶ω2r 2= 18∶1, a 1∶a 2= ω1 v 1∶ω2v 2= 216∶1,故只有 C 正确. 【答案】C2.摆式列车是集电脑、自动控制等高新技术于一体的新式高速列车,以下图.当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时, 车厢又恢还原状, 就像玩具“不倒翁”同样. 假定有一超高速列车在水平面行家驶,以 360 km/h 的速度拐弯,拐弯半径为1 km ,则质量为 50 kg 的乘客,在拐弯过 程中所遇到的火车给他的作使劲为 (g 取 10 m/s 2)( )A . 500 NB .1 000 N C. 500 2 N D . 0【分析】 乘客所需的向心力:v 2F = m500 N ,故火车对乘客的R = 500 N ,而乘客的重力为作使劲大小为 N = F 2 +G 2= 500 2 N , C 正确. 【答案】 C讲堂复习:考点 1: 圆周运动的运动学剖析21.对公式 v = ωr 和 a = vr = ω2r 的理解(1) 由 v =ωr 知, r 一准时, v 与 ω成正比; ω一准时, v 与 r 成正比; v 一准时, ω与 r 成反比.2(2) 由 a =v= ω2r 知,在 v 一准时, a 与 r 成反比;在ω一准时, a 与 r 成正比.r(1) 同轴传动:固定在一同共轴转动的物体上各点角速度同样.(2) 皮带传动:不打滑的摩擦传动和皮带(或齿轮 )传动的两轮边沿上各点线速度大小相等.例 1:(2013 届连云港高三模拟 )以下图,半径为r =20 cm 的两圆柱体 A 和 B ,靠电动机带动按同样方向均以角速度 ω= 8 rad/s 转动,两圆柱体的转动轴相互平行且在同一平面内, 转动方向已在图中标出,质量平均的木棒水平搁置其上,重心在刚开始运动时恰在 B 的正上 方,棒和圆柱间动摩擦因数μ=,两圆柱体中心间的距离 s = 1.6 m ,棒长 l >m ,重力加快度取 10 m/s 2,求从棒开始运动到重心恰在A 的正上方需多长时间?【审题视点】(1) 开始时,棒与 A 、B 有相对滑动先求出棒加快的时间和位移.(2)棒匀速时与圆柱边沿线速度相等,求出棒重心匀速运动到A 正上方的时间. 【分析】棒开始与 A 、 B 两轮有相对滑动,棒受向左摩擦力作用,做匀加快运动,末速度v = ωr=8× 0.2 m/s = 1.6 m/s ,加快度a = μg= 1.6 m/s 2,时间vt 1= a =1 s ,t 1 时间内棒运动位移12s 1= 2at 1 = 0.8 m.今后棒与A 、B 无相对运动,棒以v = ωr 做匀速运动,再运动s 2= s - s 1= 0.8 m ,重心到 A 的正上方需要的时间s 2t 2= v = 0.5 s ,故所求时间 t =t 1+ t 2= 1.5 s.【答案】1.5 s例 2.小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:迅速丈量自行车的骑行速度. 他的假想是: 经过计算脚踏板转动的角速度, 计算自行车的骑行速度. 经过骑行,他获得以下的数据:在时间t 内脚踏板转动的圈数为N ,那么脚踏板转动的角速度ω= ________;要计算自行车的骑行速度, 还需要丈量的物理量有 ____________________ ;自行车骑行速度的计算公式 v = ________.【分析】 θ 依照角速度的定义式ω==2N πtv t ;要计算自行车的骑行速度,因为 =ω 后 R ,还要知道自行车后轮的半径 R ,r 1ω后= ω飞轮 ,而 ω飞轮 r 2= ω牙盘 r 1,ω牙盘 = ω,联立以上各式解得 v = R ω r 2 Nr 1 =2 πR tr 2【答案】.故还需知道后轮半径R ,牙盘半径 r 1,飞轮半径r 2. 2N πtr 2r 1 R ω 或r 2Nr 12πR tr 2考点 2:圆周运动的动力学剖析 1.向心力的根源向心力是按力的作用成效命名的,能够是重力、弹力、摩擦力等各样力,也能够是几个力的协力或某个力的分力,所以在受力剖析中要防止再此外增添一个向心力. 2. 向心力确实定(1) 确立圆周运动的轨道所在的平面,确立圆心的地点.(2) 剖析物体的受力状况,找出全部的力沿半径方向指向圆心的协力就是向心力.3. 解决圆周运动问题的主要步骤(1) 审清题意,确立研究对象.(2) 剖析物体的运动状况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等. (3) 剖析物体的受力状况,画出受力表示图,确立向心力的根源. (4) 据牛顿运动定律及向心力公式列方程.(5) 求解、议论.例 3:(2012 福·建高考 )以下图,置于圆形水平转台边沿的小物块随转台加快转动,当转速达到某一数值时,物块恰巧滑离转台开始做平抛运动.现测得转台半径 R = 0.5 m ,离水平 地面的高度 H = 0.8 m ,物块平抛落地过程水平位移的大小 s =0.4 m .设物块所受的最大静 摩擦力等于滑动摩擦力,取重力加快度 g = 10 m/s 2.求:(1) 物块做平抛运动的初速度大小v 0;(2) 物块与转台间的动摩擦因数μ. 【审题视点】(1) 应理解掌握好 “ 转台边沿 ” 与 “恰巧滑离 ” 的含义.(2)临界问题是静摩擦力达到最大值.【分析】 (1) 物块做平抛运动,在竖直方向上有H = 1gt 2①2在水平方向上有 s = v 0t ②g由①②式解得v0= s2H ③代入数据得v0= 1 m/s.(2)物块走开转台时,最大静摩擦力供给向心力,有2v0f m= m R④f m=μN=μ mg⑤2v0由④⑤式得μ=gR代入数据得μ=0.2.【答案】(1)1 m/s规律总结:(1)不论是匀速圆周运动仍是非匀速圆周运动,沿半径方向指向圆心的协力均为向心力.(2)当采纳正交分解法剖析向心力的根源时,做圆周运动的物体在座标原点,必定有一个坐标轴沿半径方向指向圆心.例 4.(2013 届淮州中学四月调研 )以下图,用一根长为 l= 1 m 的细线,一端系一质量为 m =1 kg 的小球 (可视为质点 ),另一端固定在一圆滑锥体顶端,锥面与竖直方向的夹角θ= 37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为 T.(g 取 10 m/s 2,结果可用根式表示)求:(1)若要小球走开锥面,则小球的角速度ω0起码为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?【分析】(1)若要小球恰巧走开锥面,则小球遇到重力和细线拉力如图示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定2律及向心力公式得: mgtan θ= mω0lsin θ2=g=g解得:ω0,即ω0= 12.5 rad/s.l cos θlcos θ(2)同理,当细线与竖直方向成 60°角时,由牛顿第二定律及向心力公式: mgtan α= mω′2lsin α解得:ω′2=g ,即ω′=lcos α【答案】(1) 12.5 rad/s (2) 20 rad/sg=20 rad/s. lcos α考点 3:“轻绳模型”与“轻杆模型”轻绳模型轻杆模型均是没有支撑的小球均是有支撑的小球常有种类v 2过最高点的临界条件由 mg =m r 得v 临= 0v 临 = gr(1) 当 v = 0 时, F N =mg ,F N为支持力,沿半径背叛圆心(1)过最高点时, v ≥ gr ,F N (2) 当 0< v < gr 时, mg - F N+mg =m v 2 v 2r ,绳、轨道对球产 = m ,F N 背叛圆心, 随 v 的r议论剖析生弹力 F N增大而减小 (2)当 v < gr 时,不可以过最高 (3) 当 v = gr 时, F N =0点,在抵达最高点前小球已经 (4) 当 v > gr 时, F N + mg =离开了圆轨道v 2m r ,F N 指向圆心并随 v 的增大而增大例 5:长 L =0.5 m 质量可忽视的轻杆,其一端可绕 O 点在竖直平面内无摩擦地转动,另一端固定着一个小球 A.A 的质量为 m = 2 kg ,当 A 经过最高点时,以下图,求在以下几种状况下杆对小球的作使劲:(1)A 在最高点的速率为1m/s(2)A 在最高点的速率为 4m/s(3) 假如将原题中的轻杆换成轻绳,则结果怎样?【分析】( 1)向上的支持力 16N(2) 向下的压力 44N(3)换成细绳最小速度为根号5,故只好是向下压力课后思虑: (4)A 在最低点的速率为21m/s ;(5) A 在最低点的速率为 6 m/s.44N( 1)动能定理求出最高点速度1m/s, 向上的支持力 16N(2) 动能定理求出最高点速度 4m/s ,向下压力 44N.圆周运动及其应用课后练习 :●考察圆周运动中的运动规律1.(2010 ·纲全国高考大 )如图是利用激光测转速的原理表示图,图中圆盘可绕固定轴转动,盘边沿侧面上有一小段涂有很薄的反光资料.当盘转到某一地点时,接收器能够接收到反光涂层所反射的激光束,并将所收到的光信号转变为电信号,在示波器显示屏上显示出来 (如图 ).(1)若图中示波器显示屏横向的每大格(5 小格 )对应的时间为× 10-2 s,则圆盘的转速为______转 /s.(保存 3 位有效数字 )(2)若测得圆盘直径为 10.20 cm,则可求得圆盘侧面反光涂层的长度为 ______ cm.( 保存 3 位有效数字 )【分析】(1)从图可知圆盘转一圈的时间在横坐标上显示22 格,由题意知图中横坐标上每小格表示× 10-2 s,所以圆盘转动的周期是0.22 s,则转速为 4.55 转 /s.(2)反射光惹起的电流图象在图中的横坐标上每次一小格,说明反光涂层的长度占圆盘周长12πr×的22,则涂层长度L=22=22cm= 1.46 cm.【答案】●利用圆周运动测分子速率散布2. (多项选择 )(2012 上·海高考 )图为丈量分子速率散布的装置表示图.圆筒绕此中心匀速转动,侧面开有狭缝N,内侧贴有记录薄膜,M 为正对狭缝的地点.从原子炉R 中射出的银原子蒸汽穿过屏上S缝后进入狭缝 N,在圆筒转动半个周期的时间内接踵抵达并堆积在薄膜上.展开的薄膜如图 b 所示, NP, PQ 间距相等.则 ()A .抵达 M 邻近的银原子速率较大B.抵达 Q 邻近的银原子速率较大C.位于 PQ 区间的分子百分率大于位于NP 区间的分子百分率D.位于 PQ 区间的分子百分率小于位于NP 区间的分子百分率d【分析】分子在圆筒中运动的时间t=v,可见速率越大,运动的时间越短,圆筒转过的角度越小,抵达地点离M 越近,所以 A 正确, B 错误;依据题图 b 可知位于 PQ 区间的分子百分率大于位于 NP 区间的分子百分率,即 C 正确, D 错误.【答案】AC●圆周运动的动力学识题3.(多项选择 )(2012 绍·兴一中月考 )以下图,放于竖直面内的圆滑金属圆环半径为 R,质量为 m 的带孔小球穿于环上同时有一长为 R 的细绳一端系于球上,另一端系于圆环最低点.当圆环以角速度ω绕竖直直径转动时,发现小球受三个力作用.则ω可能是 ()3gB.3gA. 2R Rg1g C.R D. 2R【分析】以下图,若绳上恰巧无拉力,则有mgtan 60°= mRω2sin 60°,ω=2g R,所以当ω>2gA 、B 选项正确.R时,物体受三个力的作用【答案】AB●圆周、平抛相联合4. (多项选择 )(2012 浙·江高考 )由圆滑细管构成的轨道以下图,此中AB 段和 BC 段是半径为 R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平川面高为H 的管口 D 处静止开释,最后能够从A 端水平抛出落到地面上.以下说法正确的选项是()A .小球落到地面时有关于 A 点的水平位移值为2 RH- 2R2B .小球落到地面时有关于 A 点的水平位移值为2 2RH- 4R2C.小球能从细管 A 端水平抛出的条件是H> 2R5D.小球能从细管 A 端水平抛出的最小高度H min=2R【分析】要使小球从 A 点水平抛出,则小球抵达 A 点时的速度 v> 0,依据机械能守恒定12,所以 H> 2R,应选项 C 正确,选项 D 错误;小球从 A 点水平律,有 mgH-mg·2R= mv212抛出时的速度 v=2gH-4gR,小球走开 A 点后做平抛运动,则有2R=2gt ,水平位移 x =v t,联立以上各式可得水平位移 x= 2 2RH- 4R2,选项 A 错误,选项 B 正确.【答案】BC●竖直面内圆周运动问题5. (2011 北·京高考 )以下图,长度为l 的轻绳上端固定在O 点,下端系一质量为m 的小球(小球的大小能够忽视).(1) 在水平拉力 F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力争,并求力 F 的大小;(2)由图示地点无初速开释小球,求当小球经过最低点时的速度大小及轻绳对小球的拉力. (不计空气阻力 ).【分析】(1)受力剖析如图依据均衡条件,应知足T cos α= mg,Tsin α= F则拉力大小 F = mgtan α.(2)运动中只有重力做功,系统机械能守恒12mgl(1- cos α)= mv则经过最低点时,小球的速度大小v=2gl 1-cos αv2依据牛顿第二定律T′ - mg= m l解得轻绳对小球的拉力v2T′= mg+ m l= mg(3- 2 cos α),方向竖直向上.【答案】(1)看法析(2) 2gl 1- cos αmg(3- 2 cos α),方向竖直向上。

考点01圆周运动的运动学问题

考点01圆周运动的运动学问题

[考点01] 圆周运动的运动学问题1.描述圆周运动的物理量2.匀速圆周运动(1)定义:如果物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.1.对公式v =ωr 的理解 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 3.常见的传动方式及特点同轴转动皮带传动齿轮传动装置A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点角速度、周期相同线速度大小相等典例1(圆周运动物理量的分析和计算)(2023·罗平县·月考)小红同学在体验糕点制作“裱花”环节时,她在绕中心匀速转动的圆盘上放置一块直径8英寸(20 cm)的蛋糕,在蛋糕边缘每隔4 s 均匀“点”一次奶油,蛋糕转动一周正好均匀“点”上15点奶油.下列说法正确的是( )A .圆盘转动的转速为2π r/minB .圆盘转动的角速度大小为π30 rad/sC .蛋糕边缘的线速度大小为π3m/sD .蛋糕边缘的奶油半个周期内的平均速度为0 答案 B解析 由题意可知,圆盘转动的周期为T =15×4 s =60 s =1 min ,则圆盘转动的转速为1 r/min ,A 错误;圆盘转动的角速度为ω=2πT =2π60 rad/s =π30 rad/s ,B 正确;蛋糕边缘的线速度大小为v =rω=0.1×π30 m/s =π300 m/s ,C 错误;蛋糕边缘的奶油半个周期内的平均速度约为v=2r T 2=0.230 m/s =1150 m/s ,故D 错误. 典例2(圆周传动问题)(多选)如图所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三个轮的半径关系是r A =r C =2r B .若皮带不打滑,则A 、B 、C 三轮边缘上a 、b 、c 三点的( )A.角速度之比为2∶1∶2B.线速度大小之比为1∶1∶2C.周期之比为1∶2∶2D.转速之比为1∶2∶2 答案 BD解析 A 、B 两轮通过皮带传动,皮带不打滑,则A 、B 两轮边缘的线速度大小相等;B 、C 两轮固定在一起绕同一轴转动,则B 、C 两轮的角速度相等. a 、b 比较:v a =v b由v =ωr 得:ωa ∶ωb =r B ∶r A =1∶2 b 、c 比较:ωb =ωc由v =ωr 得:v b ∶v c =r B ∶r C =1∶2 所以ωa ∶ωb ∶ωc =1∶2∶2v a ∶v b ∶v c =1∶1∶2,A 错误,B 正确; 由ω=2πn 知,n a ∶n b ∶n c =1∶2∶2,D 正确; T =1n,故T a ∶T b ∶T c =2∶1∶1,C 错误.典例3(圆周运动的多解问题)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘L ,且对准圆盘上边缘的A 点水平抛出(不计空气阻力,重力加速度为g ),初速度为v 0,飞镖抛出的同时,圆盘绕垂直圆盘过盘心O 的水平轴匀速转动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A.d =L 2g v20B.ω=π(2n +1)v 0L (n =0,1,2,3…)C.v 0=ωd2D.ω2=g π2(2n +1)2d(n =0,1,2,3…)答案 B解析 依题意飞镖做平抛运动的同时,圆盘上A 点做匀速圆周运动,恰好击中A 点,说明A 正好在最低点被击中,平抛的时间t =Lv 0,可得ω=(2n +1)πt =π(2n +1)v 0L (n =0,1,2,3…),v 0=Lω(2n +1)π(n =0,1,2,3…),B 正确;平抛的竖直位移为d ,则d =12gt 2=12g (L v 0)2=gL 22v 20,故A 、C错误;ω2=π2(2n +1)2v 20L 2=π2(2n +1)2g2d (n =0,1,2,3…),故D 错误.1.火车以60 m/s 的速率驶过一段圆弧弯道,某乘客发现放在水平桌面上的指南针在10 s 内匀速转过了10°.在此10 s 时间内,火车( ) A .运动位移为600 m B .加速度为零 C .角速度约为1 rad/s D .转弯半径约为3.4 km 答案 D解析 由Δs =v Δt 知,弧长Δs =600 m 是路程而不是位移,A 错误;火车在弯道内做曲线运动,加速度不为零,B 错误;由10 s 内匀速转过10°知,角速度ω=ΔθΔt =10°360°×2π10 rad/s =π180 rad/s ≈0.017 rad/s ,C 错误;由v =rω知,r =v ω=60π180m ≈3.4 km ,D 正确. 2.如图所示为“南昌之星”摩天轮,它的转盘直径为153米,转一圈的时间大约是30分钟.乘客乘坐观光时,其线速度大约为( )A .5.0 m/sB .1.0 m/sC .0.50 m/sD .0.27 m/s答案 D解析 半径R =1532m ,周期T =30 min =1 800 s ,根据匀速圆周运动各物理量间的关系可得v =ωR =2πTR ,代入数据得v ≈0.27 m/s ,故选D.3.(2021·全国甲卷·15)“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50 r/s ,此时纽扣上距离中心 1 cm 处的点向心加速度大小约为( )A .10 m/s 2B .100 m/s 2C .1 000 m/s 2D .10 000 m/s 2答案 C解析 根据匀速圆周运动的规律,此时ω=2πn =100π rad/s ,向心加速度a =ω2r ≈1 000 m/s 2,故选C.4.(2023·泰州市·期中)甲、乙两物体都做匀速圆周运动,甲的转动半径为乙的一半,当甲转过60°时,乙在这段时间内正好转过45°,则甲、乙两物体的线速度大小之比为( ) A .1∶4 B .4∶9 C .2∶3 D .9∶16 答案 C解析 当甲转过60°时,乙在这段时间内正好转过45°,由角速度的定义式ω=ΔθΔt 有:ω1ω2=60°45°=43,甲的转动半径为乙的一半,根据线速度与角速度的关系式v =rω可得:v 1v 2=ω1r 1ω2r 2=43×12=23,故选项C 正确,A 、B 、D 错误. 5.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R 和r ,且R =3r ,A 、B 分别为两轮边缘上的点,则皮带运动过程中,关于A 、B 两点,下列说法正确的是( )A .向心加速度大小之比a A ∶aB =1∶3 B .角速度大小之比ωA ∶ωB =3∶1C .线速度大小之比v A ∶v B =1∶3D .在相同的时间内通过的路程之比为s A ∶s B =3∶1 答案 A解析由于两轮为皮带传动,A、B线速度大小相等,由a n=v2r可知,a n与r成反比,所以向心加速度大小之比a A∶a B=1∶3,故A正确,C错误;由ω=vr可知,ω与r成反比,所以角速度大小之比ωA∶ωB=1∶3,故B错误;由于A、B的线速度大小相等,在相同的时间内通过的路程相等,所以s A∶s B=1∶1,故D错误.6.(多选)(2023·辽宁省·质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,关于小齿轮边缘的A点和大齿轮边缘的B点,()A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.以上三个选项只有一个是正确的答案AC解析题图中三个齿轮边缘线速度相等,A点和B点的线速度大小之比为1∶1,由v=ωr 可得,线速度一定时,角速度与半径成反比,A点和B点角速度之比为3∶1,选项A、C 正确,选项B、D错误.7.如图所示是一辆自行车,A、B、C三点分别为自行车轮胎和前后两齿轮外沿上的点,其中R A=2R B=5R C,下列说法中正确的是()A.ωB=ωCB.v C=v AC.2ωA=5ωBD.v A=2v B答案C解析B轮和C轮是链条传动,v B=v C,根据v=ωR,得5ωB=2ωC,故A错误;由于A轮和C轮同轴,故两轮角速度相同,根据v=ωR,得v A=5v C,故B错误;因v A=5v C,v A=ωA R A,v C=v B=ωB R B,故v A=5v B,2ωA=5ωB,故C正确,D错误.8.某新型自行车,采用如图甲所示的无链传动系统,利用圆锥齿轮90°轴交,将动力传至后轴,驱动后轮转动,杜绝了传统自行车“掉链子”问题.如图乙所示是圆锥齿轮90°轴交示意图,其中A 是圆锥齿轮转轴上的点,B 、C 分别是两个圆锥齿轮边缘上的点,两个圆锥齿轮中心轴到A 、B 、C 三点的距离分别记为r A 、r B 和r C (r A ≠r B ≠r C ).下列有关物理量大小关系正确的是( )A.B 点与C 点的角速度:ωB =ωCB.C 点与A 点的线速度:v C =r Br A v AC.B 点与A 点的线速度:v B =r Ar B v AD.B 点和C 点的线速度:v B >v C 答案 B解析 B 点与C 点的线速度相等,由于r B ≠r C ,所以ωB ≠ωC ,故A 、D 错误;B 点的角速度与A 点的角速度相等,所以v B r B =v A r A ,即v B =r Br A v A ,故C 错误;B 点与C 点的线速度相等,所以v C =v B =r Br Av A ,故B 正确.9.(2022·南通市高一期末)如图所示为旋转脱水拖把,拖把杆内有一段长度为25 cm 的螺杆通过拖把杆下段与拖把头接在一起,螺杆的螺距(相邻螺纹之间的距离)d =5 cm ,拖把头的半径为10 cm ,拖把杆上段相对螺杆向下运动时拖把头就会旋转,把拖把头上的水甩出去. 某次脱水时,拖把杆上段1 s 内匀速下压了25 cm ,该过程中拖把头匀速转动,则( )A .拖把杆向下运动的速度为0.1π m/sB .拖把头边缘的线速度为π m/sC .拖把头转动的角速度为5π rad/sD .拖把头的转速为1 r/s 答案 B解析 拖把杆向下运动的速度v 2=lt=0.25 m/s ,故A 错误;拖把杆上段1 s 内匀速下压了25 cm ,则螺杆转动5圈,即拖把头的转速为n =5 r/s ,则拖把头转动的角速度ω=2πn =10π rad/s 拖把头边缘的线速度v 1=ωR =π m/s ,故B 正确,C 、D 错误.10.(2023·嘉兴市·期中)如图为车牌自动识别系统的直杆道闸,离地面高为1 m 的细直杆可绕O 在竖直面内匀速转动.汽车从自动识别线ab 处到达直杆处的时间为3.3 s ,自动识别系统的反应时间为0.3 s ;汽车可看成高1.6 m 的长方体,其左侧面底边在aa ′直线上,且O 到汽车左侧面的距离为0.6 m ,要使汽车安全通过道闸,直杆转动的角速度至少为( )A.π4 rad/sB.3π4 rad/sC.π6 rad/sD.π12 rad/s 答案 D解析 由题意可知,在汽车行驶至a ′b ′时,横杆上a ′上方的点至少要抬高1.6 m -1 m =0.6 m ,即横杆至少转过π4,所用时间为t =3.3 s -0.3 s =3 s ,则角速度ω=θt =π12 rad/s ,故选D.11.(多选)如图所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( )A.线速度大小之比为3∶3∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.周期之比为2∶3∶3 答案 AD解析 A 轮、B 轮靠摩擦传动,边缘点线速度相等,故v a ∶v b =1∶1,根据公式v =rω,有ωa ∶ωb =3∶2,根据ω=2πn ,有n a ∶n b =3∶2,根据T =2πω,有T a ∶T b =2∶3;B 轮、C轮是同轴转动,角速度相等,故ωb ∶ωc =1∶1,根据v =rω,有v b ∶v c =3∶2,根据ω=2πn ,有n b ∶n c =1∶1,根据T =2πω,有T b ∶T c =1∶1,联立可得v a ∶v b ∶v c =3∶3∶2,ωa ∶ωb ∶ωc=3∶2∶2,n a ∶n b ∶n c =3∶2∶2,T a ∶T b ∶T c =2∶3∶3,故A 、D 正确,B 、C 错误. 12.两个小球固定在一根长为L 的杆的两端,绕杆上的O 点做圆周运动,如图所示.当小球1的速度大小为v 1时,小球2的速度大小为v 2,则O 点到小球2的距离是( )A.L v 1v 1+v 2B.L v 2v 1+v 2C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2答案 B解析 两球在同一杆上,旋转的角速度相等,均为ω,设两球的转动半径分别为r 1、r 2,则r 1+r 2=L .又知v 1=ωr 1,v 2=ωr 2,联立得r 2=L v 2v 1+v 2,B 正确.13.(多选)如图所示,直径为d 的纸筒以角速度ω绕中心轴匀速转动,将枪口垂直指向圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,若忽略空气阻力及子弹自身重力的影响,则子弹的速度可能是( )A.dωπB.dω2πC.dω3π D.dω4π答案 AC解析 由题意知圆筒上只有一个弹孔,说明子弹穿过圆筒时,圆筒转过的角度应满足θ=(2k +1)π(k =0,1,2…),子弹穿过圆筒所用的时间t =d v =θω,则子弹的速度v =dω(2k +1)π(k =0,1,2…),故选项A 、C 正确.14.如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一小球,不计空气阻力,重力加速度为g ,要使球与盘只碰一次,且落点为B ,求小球的初速度v 及圆盘转动的角速度ω的大小.答案 Rg2h2n πg2h(n =1,2,3…) 解析 设球在空中运动时间为t ,此圆盘转过θ角,则 R =v t ,h =12gt 2故初速度大小v =R g 2hθ=n ·2π(n =1,2,3…) 又因为θ=ωt则圆盘角速度ω=n ·2πt=2n πg2h(n =1,2,3…).15.(多选)(2023·江西南昌·校考)如图所示,靠在一起的M 、N 两转盘靠摩擦传动,两盘均绕过圆心的竖直轴转动,M 盘的半径为r ,N 盘的半径R=2r ,A 为M 盘边缘上的一点,B 、C 为N 盘直径的两个端点,当O '、A 、B 、C 共线时(如图所示的位置),从O '的正上方P 点以初速度v 0地沿O O '方向水平抛出一小球,小球落至圆盘C 点,重力加速度为g ,则下列5r0,1,2),可以落0,1,2),可知当的角速度为M ω=.若小球抛出时到O 下落的时间2t =1,2,3),可以落在2,3)可知当的角速度为''M 2ωω==。

圆周运动问题

圆周运动问题

圆周运动问题圆周运动问题是物理中的一类重要问题,它涉及到行星公转、地球自转等多种自然现象,也是人类生活中常见的问题,例如车轮旋转、摆钟摆动等。

圆周运动问题的核心是描述物体在一个圆周轨迹上的运动状态,理解圆周运动在应用中的运用和物理学中的应用是非常关键的。

一、圆周运动的基本特征圆周运动是物体沿着标准圆弧运动的过程。

圆周运动有其独特的特征:运动轨迹是一个圆,物体在圆周轨迹上的运动叫做圆周运动。

在圆周运动中,物体因为受到力的作用向心运动,在圆周运动中物体的速度和加速度方向不同。

由于物体运动的轨迹是圆形的,在圆周运动中,物体所受的力称为向心力,向心力是一种向圆心的力。

随着物体在圆周轨迹上运动,物体的角位移会不断改变。

二、圆周运动的物理学原理圆周运动的物理学原理是牛顿第二定律。

牛顿第二定律描述了物体所受的合力和物体的加速度之间的关系,加速度的方向和质量的加速度比例成正比。

根据牛顿第二定律,物体的加速度和向心力成正比,和物体的质量成反比。

当一个物体在圆周轨迹上运动时,它必须受到向圆心的力才能继续运动。

这个向圆心的力称为向心力,向心力与物体的速度和质量有关。

三、圆周运动的公式与单位在圆周运动中,物体的速度和加速度与它所在的位置和时间都有关。

描述圆周运动的公式中必须包含以下三个元素:圆周的半径R,物体所在位置的角度值θ,以及给物体施加的力F。

物体的角位移量叫做Δθ,时间间隔叫做Δt。

某个物体在垂直于向心力方向的最大速度是叫做vmax,向心加速度是a,角速度是ω,线速度是v,单位是米每秒(m/s)。

圆周运动中,常见的单位有弧度,角速度,线速度,转速,牛顿、千克等。

四、圆周运动的应用圆周运动是物理学中的核心问题,在实际生活中也有着广泛的应用。

实际应用中常常需要用到角速度,线速度,和转速等参数。

例如在车轮等的结构设计中经常需要考虑到圆周运动的因素,摩托车的转弯等等。

星球和星系的运动中,圆周运动也是一个重要的概念。

例如,太阳系中,所有行星都按照椭圆形轨道绕着太阳运行,而对于每个行星来说,这种运动可以近似为圆周运动。

物理(圆周运动)复习要点及例题解答

物理(圆周运动)复习要点及例题解答

物理(圆周运动)复习要点及例题解答Ⅰ基础知识:一.向心力1.概念:做匀速圆周运动的物体受到一个指向圆心的合力的作用,这个力叫向心力。

2.方向:向心力指向圆心,方向不断变化。

3.作用:向心力的作用效果——只改变运动物体的速度方向,不改变速度大小4.大小:r a 2ω=; r v a 2=二.向心加速度1.概念:做圆周运动的物体,在向心力F 的作用下必然要产生一个加速度,据牛顿运动定律得到:这个加速度的方向与向心力的方向相同,叫做向心加速度。

2.向心加:速度的方向同于向心力的方向,时刻指向圆心,由于a 向的方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。

3大小:结合牛顿运动定律推导得到r a 2ω= r v a 2=三.描述匀速圆周运动快慢的物理量1.线速度:线速度是物体做匀速圆周运动的瞬时速度;线速度的大小t s v =,线速度是矢量,它既有大小,也有方向。

2.角速度:角速度是物体做圆周运动单位时间转过的角度;匀速圆周的角速度ω 是恒定的;单位的写法rad/s3.周期(T )、频率(f )和转速(n )4.线速度、角速度、周期之间的关系wr v T r w t rr v =⇒⎪⎪⎭⎪⎪⎬⎫==ππ22 Ⅱ.例题分析例题1.如图1所示,一圆盘可绕一通过圆心O 且垂直盘面的竖直轴转动。

在圆盘上放置一木块,木块圆盘一起作匀速运动,则 [ ]A.木块受到圆盘对它的摩擦力,方向与木块运动方向相反B.木块受到圆盘对它的摩擦力,方向与木块运动方向相同C.木块受到圆盘对它的摩擦力,方向指向圆心D.木块受到圆盘对它的摩擦力,方向背离圆心例题2.如图3所示的皮带传动装置中,轮A和B同轴,A、B、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A:a B:a C等于 [ ]A.4:2:1B.2:1:2C.1:2:4D.4:1:4例题3.如图2所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是 [ ]A.重力B.弹力C.静摩擦力D.滑动摩擦力例题4.一可转动的圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的动摩擦因数为μ,两物体用一根长为L的轻绳连在一起,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过多少例题5.如图,一质量为0.5kg的小球,用0.4m长的细线拴住在竖直面内作圆周运动,求:(1)当小球在圆上最高点速度为4m/s时,细线的拉力是多少?(2)当小球在圆下最低点速度为6m/s时,绳拉力是多少?(g=10m/s2)例题6.如图所示,飞机在半径为R的竖直平面内翻斤斗,已知飞行员质量为m,飞机飞至最高点时,对座位压力为N,此时飞机的速度多大?例题7.如图MN为水平放置的光滑圆盘,半径为1.0m,其中心O处有一个小孔,穿过小孔的细绳两端各系一小球A和B,A、B两球的质量相等。

圆周运动知识点与经典练习

圆周运动知识点与经典练习

圆周运动知识点与经典练习一、圆周运动的基本概念圆周运动是指物体沿着圆周路径进行的运动。

在圆周运动中,物体的运动轨迹是一个圆,其速度方向不断变化。

1、线速度(v)线速度是物体在圆周运动中通过的弧长与所用时间的比值。

线速度的大小等于弧长除以时间,即 v =Δs/Δt。

线速度的方向沿圆周的切线方向。

2、角速度(ω)角速度是物体在单位时间内转过的角度。

角速度的大小等于角度的变化量除以时间,即ω =Δθ/Δt。

角速度的单位是弧度每秒(rad/s)。

3、周期(T)和频率(f)周期是物体做圆周运动一周所用的时间,频率则是单位时间内完成圆周运动的次数。

它们之间的关系是 T = 1/f。

4、转速(n)转速是指物体单位时间内转过的圈数,单位通常为转每秒(r/s)或转每分钟(r/min)。

二、圆周运动的线速度、角速度、周期之间的关系1、线速度与角速度的关系v =ωr,其中 r 是圆周运动的半径。

2、线速度与周期的关系v =2πr/T3、角速度与周期的关系ω =2π/T三、向心加速度向心加速度是描述物体在圆周运动中速度方向变化快慢的物理量。

向心加速度的大小为 a = v²/r =ω²r,方向始终指向圆心。

四、向心力1、向心力的定义向心力是使物体做圆周运动的力,其方向始终指向圆心。

2、向心力的来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由某个力的分力提供。

3、向心力的大小F = ma = mv²/r =mω²r五、常见的圆周运动模型1、水平圆盘上的物体随圆盘转动当圆盘匀速转动时,物体受到的摩擦力提供向心力。

若摩擦力不足以提供所需的向心力,物体将相对圆盘滑动。

2、圆锥摆摆球在水平面内做圆周运动,摆线的拉力和重力的合力提供向心力。

3、汽车在弯道上行驶汽车在水平弯道上转弯时,地面对汽车的摩擦力提供向心力。

为了安全,弯道通常设计成外高内低的倾斜路面,以减小对摩擦力的依赖。

4、拱形桥和凹形桥汽车通过拱形桥的最高点时,重力和支持力的合力提供向心力;通过凹形桥的最低点时,支持力和重力的合力提供向心力。

圆周运动及其应用专题复习整理

圆周运动及其应用专题复习整理

圆周运动及其应⽤专题复习整理圆周运动及其应⽤专题复习⼀、圆周运动中的运动学分析(1)定义:线速度⼤⼩不变的圆周运动。

(2)性质:加速度⼤⼩不变,⽅向总是指向圆⼼的变加速曲线运动。

2.描述匀速圆周运动的物理量(1)v =ωr =2πTr =2πrf 。

(2)a n =v 2r =r ω2=ωv =4π2T2r =4π2f 2r 。

4.常见的三种传动⽅式及特点(1)⽪带传动:如图甲、⼄所⽰,⽪带与两轮之间⽆相对滑动时,两轮边缘线速度⼤⼩相等,即v A =v B 。

(2)摩擦传动:如图甲所⽰,两轮边缘接触,接触点⽆打滑现象时,两轮边缘线速度⼤⼩相等,即v A =v B 。

(3)同轴传动:如图⼄所⽰,两轮固定在⼀起绕同⼀转轴转动,两轮转动的⾓速度⼤⼩相等,即ωA =ωB 。

【典例1】科技馆的科普器材中常有如图所⽰的匀速率的传动装置:在⼤齿轮盘内嵌有三个等⼤的⼩齿轮。

若齿轮的齿很⼩,⼤齿轮的半径(内径)是⼩齿轮半径的3倍,则当⼤齿轮顺时针匀速转动时,下列说法正确的是( )A.⼩齿轮逆时针转动B.⼩齿轮每个齿的线速度均相同C.⼩齿轮的⾓速度是⼤齿轮⾓速度的3倍D.⼤齿轮每个齿的向⼼加速度⼤⼩是⼩齿轮的3倍【答案】 C【典例2】如图所⽰是⼀个玩具陀螺,a 、b 和c 是陀螺表⾯上的三个点。

当陀螺绕垂直于地⾯的轴线以⾓速度ω稳定旋转时,下列表述正确的是( ) A .a 、b 和c 三点的线速度⼤⼩相等 B .b 、c 两点的线速度始终相同 C .b 、c 两点的⾓速度⽐a 点的⼤ D .b 、c 两点的加速度⽐a 点的⼤【答案】: D⼆圆周运动中的动⼒学分析 1.匀速圆周运动的向⼼⼒(1)作⽤效果:产⽣向⼼加速度,只改变线速度的⽅向,不改变线速度的⼤⼩。

(2)⼤⼩:F =m v 2r =mr ω2=m 4π2r T2=m ωv =m ·4π2f 2r 。

2.向⼼⼒的确定(1)确定圆周运动的轨道所在的平⾯,确定圆⼼的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专 题 复 习 — 圆周运动类问题 ( 上 )
庞留根 吕叔湘中学 2007年7月 Email: dyszplg@
专题复习 —圆周运动类问题 (上) 一、命题趋向与考点 二、复习精要 向心力来源 处理圆周运动的方法和注意点 绳、杆模型 天体的运动研究思路及方法 天体的有关数据 (一)重力场中的圆周运动问题. 例1 例2 05年广东卷14 06年江苏省盐城中学模拟17 (二) 天体(卫星)运动类问题 练习 05年广东卷15 2006年江苏卷14 2006年全国卷Ⅰ16 2006年广东卷17 2006年天津理综卷25 例3 (三) 综合力作用下的圆周运动问题. 例4 例5 2005年上海卷23
R
b
题目
C
a
2页
B
3页
末页
解:
(1) 对a球:3mg+mg=mva2/R
v a 4 gR
对b球:mg - 0.75mg = mvb2/R
vb
1 gR 4
4R S a v a t 4 gR 4R g SB vBt 1 4R gR R 4 g
b ∴Sa—Sb=3R
④当 v Lg 时, FN随v增大 而增大,且FN >0( FN为拉力, 方向指向圆心)
v
FN2
L
FN1 mg O
4、天体的运动研究思路及方法: (1) 基本方法:把天体运动近似看作圆周运动,它所需 要的向心力由万有引力提供,即: Mm v2 4 2 G 2 m m 2 r m 2 r r r T (2) 估算天体的质量和密度 Mm 4 2 4 2 r 3 由 G 2 m 2 r 得:M .即只要测出环绕 2 r T GT 星体M运转的一颗卫星运转的半径和周期,就可以计 算出中心天体的质量. 3 3r M 4 3 由 , ,V R 得: 2 3 GT R V 3 R为中心天体的星体半径 3 特殊:当r=R时,即卫星绕天体M表面运行时, GT 2 由此可以测量天体的密度.
例2、 如图示,M为悬挂在竖直平面内某一点O的木质小球, (可以看作质点)悬线长为L,质量为m 的子弹以水平初 速v0射入球在中而未穿出,要使子弹射入小球后,小球能 在竖直平面内运动,悬线始终不发生松弛,求子弹的初速 度v0的大小应满足的条件(不计空气阻力) 解: 若小球能在竖直平面内作圆周运动,到最高点的速度为V m1V2 / L ≥ m1 g 式中m1 =(M+m) 由机械能守恒定律 1/2 m V2+m g×2L= 1/2 m V 2 O
1 1 1 1
V1 5 gL v0 由动量守恒定律 m v0 = (M+m) V1 m M m M v0 5 gL m 2 若小球只能在下半个圆周内作摆动 1/2 m1V2 =m1gh ≤m1gL m M V2 2 gL v0 2 gL m
05年广东卷14 14.如图所示,半径R=0.40m的光滑半圆环轨道处于竖直 平面内,半圆环与粗糙的水平地面切于圆环的端点A.一 质量为m=0.10kg的小球,以初速度v0=7.0m/s在水平地面 上向左作加速度a=3.0m/s2 的匀减速直线运动,运动 4.0m后,冲上竖直半圆环,最后小球落在C点。求A、 C间的距离(取重力加速度g=10m/s2)。 vA2 -v02 =-2as 解: 匀减速运动过程中有 mg=mvB12 / R 恰好能做圆周运动,在最高点B满足 ∴ vB1=2m/s 假使物体能到达半圆环最高点B, 由机械能守恒定律: B 2 =2mgR+ 1/2 mv 2 1/2 mvA B
题目
2页
3页
末页
(3)球从水平半径右端点C到最高点过程中, , 由机械能守恒定律 1 1 2 2 va 2 6 gR 对a球: mv a mv a 2 mg R 2 2 9 1 1 2 2 vb 2 gR 对b球: mv b mv b 2 mg R 4 2 2
1、重力场中的匀速圆周运动:明确天体运动的向 心力是由万有引力来提供的,常见问题如计算天体 质量和密度,星体表面及某一高度处的重力加速度 和卫星运行的变轨等。不同星球表面的力学规律相 同,但g不同,解决该类问题应注意求解该星球表 面的重力加速度。
2、竖直圆轨道的圆周运动:质点在竖直面内的圆周 运动的问题是牛顿定律与机械能守恒应用加小球通过 最高点有极值限制的综合题,解题的关键在于判断不同 约束条件下的速度临界问题。
3、绳、杆模型——圆周运动的两种临界问题 (1) 绳的模型:如图所示,没有物体支承的小球,在 竖直平面作圆周运动: 最高点F1+mg=mv12/R, 最低点F2 -mg=mv22/R ①过最高点临界条件:绳子和轨道对小球刚好没有力 的作用。 v临界 Rg 由mg=mv2/R 得 注意:如果小球带电,且空间存在电、磁场时,临界 条件应是小球所受重力、电场力和洛仑兹 v 1 力的合力等于向心力, 此时临界速度 R F1 mg v临界 Rg OF 2 ②能过最高点条件:v≥v临界 ③不能过最高点条件:v<v临界 mg
r月地=3.84×108m t23=1.28s
(一)重力场中的圆周运动问题. 例1 长L的轻绳一端固定在O点,另一端拴一质量为m的小球, 现使小球在竖直平面内作圆周运动,小球通过最低点和最 高点时所受的绳拉力分别为T1和T2 ( 速度分别为v0和v ). 求证:(1)T1-T2=6mg (2) v 0 5 gL v 证明:(1)由牛顿第二定律,在最低点和 mgT2 最高点分别有: O T1-mg=mv02/L ① T2+mg=mv2/L ② L T1 T1-T2=2mg+(m/L)(v02-v2) ③ v0 由机械能守恒得:mv02/2=mv2/2+mg2L, mg 得:v02-v2=4gL ④ 由③、④两式得:T1-T2=6mg (2)由②式知,由于绳拉力T2≥0,可得 v gL 代入④式得: v 0 5 gL
Mm v2 ①由 G 2 m r 得: r r
v
即轨道半径越大,绕行速度越小

GM r GM r3
Mm ②由 G 2 m 2 r 得: r
即轨道半径越大,绕行角速度越小 即轨道半径越大,绕行周期越大
r3 Mm 4 2 ③由 G m 2 r 得: T 2 GM r2 T
(5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它 的周期T=24h. 要使卫星同步,同步卫星只能位于赤道正上方某一确定 高度h. 即: 周期一定, 高度一定, 位置一定, 三颗卫星覆盖赤道 Mm 4 2 m 2 ( R h) 由: G 得: 2 ( R h) T 4 2 h3 R 3.6 104 km 5.6 R R表示地球半径 GMT 2 (6)对于人造卫星运动应注意 ①圆周运动的轨道问题----圆轨道的圆心必过地心 ②发射速度与运行环绕速度的区分 ③同步卫星与近地卫星的区分 ④人造卫星的圆周运动与地球自转的圆周运动的区分
∴ vB=3 m/s
R A
v0 C
因为vB > vB1 小球能通过最高点B,
小球从B点作平抛运动, B→C 有 2R=1/2 gt2
SAC =vB t 解得 SAC =1.2m
06年江苏省盐城中学模拟17、 17、如图所示,半径为R,内径很小的光滑半圆管竖 直放置。两个质量均为m的小球a、b以不同的速度进 入管内,a通过最高点A时,对管上部的压力为3mg, b通过最高点A时,对管壁下部的压力为0.75mg。求: (1)a、b两球落地点间的距离; (2)a、b两球通过光滑半圆管最低点B时圆管对 a、b两球的弹力如何? (3)a、b两球通过光滑半圆管水平半径右端点C时 圆管对a、b两球的弹力如何? A
题目
A R
a
2页
C
B
3页
末页
(2)球从最低点到最高点过程中,由机械能守恒定律 1 1 2 2 对a球: mv a mv a1 mg 2 R va 1 8 gR 2 2
1 1 2 2 对b球: mv b mv b1 mg 2 R 2 2
v b1
17 gR 4
球在最低点受力分析,根据牛顿第二定律得 2 va1 N a1 9mg 对a球: N a 1 mg m R 2 21 v b1 N b1 mg N b1 mg m 对b球: 4 R
球在水平半径右端点C受力分析,由牛顿第二定律得
对a球: 对b球:
2 va 2 Na2 m R 2 vb 2 N b2 m R
N a 2 6mg
N b2 9 mg 4
Hale Waihona Puke 题目2页3页末页
(二) 天体(卫星)运动类问题 2005年江苏卷5.某人造卫星运动的轨道可近似看作 是以地心为中心的圆,由于阻力作用,人造卫星 到地心的距离从r1慢慢变到r2 ,用EK1 、EK2分别 表示卫星在两个轨道上的动能, 则 ( B ) A . r1 < r2, EK1 < EK2 C. r1 < r2, EK1 > EK2 B. r1 > r2, EK1 < EK2 D. r1 > r2, EK1 > EK2
二、复习精要 1.圆周运动的问题重点是向心力的来源和运动的规律, 主要利用F向=mv2/R=mω2R=m(4π2/T2) R求解. 对于匀速圆周运动,合外力为向心力,利用F向=mv2/R, 求 解. (1)匀速圆周运动: 受力特征——合外力大小不变,方向始终与速度垂直 且指向圆心 运动特征——速度和加速度大小不变,方向时刻变化 的变加速曲线运动 (2)非匀速圆周运动: 受力特征——合外力大小和方向都在变,一方面提供圆 周运动所需的向心力,另一方面提供切向分力以改变速 度的大小 运动特征——速度和加速度的大小及方向都在变化的 变加速曲线运动
⑶向心力来源:
①在重力场中天体运动:F万=F心 ②在匀强磁场中—带电粒子的匀速圆周运动: F洛=F心 ③在电场中—原子核外电子绕核的旋转运动:
相关文档
最新文档