实验二 遥感图像的辐射定标

实验二  遥感图像的辐射定标
实验二  遥感图像的辐射定标

实验二遥感图像的辐射定标

1.实验目的与意义:

(1)了解辐射定标原理

(2)使用ENVI软件自带的定标工具定标

(3)学习波段运算进行辐射定标

2.为什么要进行辐射定标,定标的原理是什么?

目的:消除传感器本身的误差,确定传感器入口处的准确辐射值。

原理:辐射定标是将传感器记录的电压或数字量化值(DN)转换为绝对辐射亮度值(辐射率)的过程,或者转换为与地表(表观)反射率、表面温度等物理量有关的相对值的处理过程。

3.辐射定标过程

一般有两种方式:

第一种:利用计算公式,在ENVI中利用band math计算福亮度和反射率。

第二种:利用ENVI自带的定标工具进行定标,获取福亮度或反射率。

第一种方法:用波段运算得到Radiance和Reflectance

(1)表观辅亮度radiance的计算

radiance=((lmax-lmin)/(qcalmax-qcalmin)*(qcal-qcalmin)+lmin

其中:radiance –表观辐亮度

qcal-----DN(也就是影像数据本身);

lmax 和lmin是从参数表中查询;

qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255;

Qcalmin 是DN值的最小值,一般为0

(2)表观反射率的计算

ρ=π*L*d2/(ESUN*cos(θ))

其中ρ为表观反射率;

L为上一步计算出来的表观辐亮度;

d为日地距离,这个数据通过下面的表格中获取;

ESUN为大气层外的太阳辐射,也可以说是传感器接收处的太阳辐射;

θ为太阳天顶角。(这个可以通过影像的元数据获取)在本次实验的数据中radiance=(193+1.52)/255*b1-1.52

Reflectance=3.14*(b1)*1.0128^2/(1957*0.7381)步骤如下:打开文件L5120036_03620100819_MTL.txt ,点击Band Math,输入(193+1.52)/255*b1-1.52,之后即可计算出辐射度,文件保存为radiance1。

第二种方法:

点击Preprocessing>Calibration Utilites>Landsat Calibration选择所要校正的波段,如下图:

\

点击OK,之后选择输出为radiance文件,命名为radiance2。打开radiance1和radiance2,右击选择link,将两个图像连接起来,然后右击鼠标,选择Cursor Location,出现窗口的内可以看到两种方法得到的辐射度的数值对比。我们可以看到两者有差距,但是很小,这是因为ENVI软件内的数据不是最新的,计算出来会有一定的误差。

下面进行反射度的计算,同样的,点击Preprocessing>Calibration Utilites>Landsat Calibration选择所要校正的波段,点击OK,之后选择输出为reflence文件,命名reflence2。

在Band Math输入3.14*(b1)*1.0092*1.0092/(1957*sin(58.8459801)*3.14计算出辐射度,之后保存为reflence1。

打开reflence1和reflence2,将其连接起来,通过Cursor Location可以看到两者的对比。

4.实验体会

通过这次辐射定标实验,了解到两种方法可以实现辐射定标的方法。虽然操作步骤简单,但是对其中的知识点不是很了解,知其然,而不知其所以然。另外,我明白到数据也是在不断更新换代的,而辐射定标还是用公式计算来求得的准确性更高一点。

实验二 遥感图像的辐射定标

实验二遥感图像的辐射定标 1.实验目的与意义: (1)了解辐射定标原理 (2)使用ENVI软件自带的定标工具定标 (3)学习波段运算进行辐射定标 2.为什么要进行辐射定标,定标的原理是什么? 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值。 原理:辐射定标是将传感器记录的电压或数字量化值(DN)转换为绝对辐射亮度值(辐射率)的过程,或者转换为与地表(表观)反射率、表面温度等物理量有关的相对值的处理过程。 3.辐射定标过程 一般有两种方式: 第一种:利用计算公式,在ENVI中利用band math计算福亮度和反射率。 第二种:利用ENVI自带的定标工具进行定标,获取福亮度或反射率。 第一种方法:用波段运算得到Radiance和Reflectance (1)表观辅亮度radiance的计算 radiance=((lmax-lmin)/(qcalmax-qcalmin)*(qcal-qcalmin)+lmin 其中:radiance –表观辐亮度 qcal-----DN(也就是影像数据本身); lmax 和lmin是从参数表中查询; qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255; Qcalmin 是DN值的最小值,一般为0 即 (2)表观反射率的计算 ρ=π*L*d2/(ESUN*cos(θ)) 其中ρ为表观反射率; L为上一步计算出来的表观辐亮度; d为日地距离,这个数据通过下面的表格中获取; ESUN为大气层外的太阳辐射,也可以说是传感器接收处的太阳辐射; θ为太阳天顶角。(这个可以通过影像的元数据获取)在本次实验的数据中radiance=(193+1.52)/255*b1-1.52 Reflectance=3.14*(b1)*1.0128^2/(1957*0.7381)步骤如下:打开文件L5120036_03620100819_MTL.txt ,点击Band Math,输入(193+1.52)/255*b1-1.52,之后即可计算出辐射度,文件保存为radiance1。

ENVI遥感图像的地辐射定标

实用标准文案 实验:遥感图像的辐射定标 1.实验目的与任务: (1)了解辐射定标的原理; (2)使用ENVI软件自带的定标工具定标 (3)学习使用波段运算进行辐射定标。 2.实验设备与数据: 设备:遥感图像处理系统 数据:焦作2004年3-7和4-8数据 【备注:当 ENVI 第一次打开一个文件,它需要关于文件特征的特定信息。通常,这些信息存储在与图像文件同名的一个独立的文本头文件,但是文件扩展名为.hdr 。若文件打开时没有找到ENVI头文件,你必须在 Header Information 对话框中输入一些基本的参数. 另外一些数据格式没有 .hdr 文件也能自动打开。这些格式包括:TIFF、 GeoTIFF、 GIF、 JPEG、 BMP、 SRF、 HDF、 PDS、 MAS-50、 NLAPS、RADARSAT 和 AVHRR 。 关于ENVI的一些基本知识,我们就介绍到这里,如果想了解更多的,请参考用户手册和ENVI中的HELP.】。下面是关于ENVI的一些具体应用. 3 辐射定标的过程 拿到一幅原始图像,我们先要进行辐射定标,目的是把图像上的DN值转为辐亮度或者是反射率(即辐射定标).另外通过大气纠正,我们可以消除一些大气的干扰(即大气校正). 本实验主要学习辐射定标。辐射定标的结果可以是表观辐亮度(L),也可以是表观反射率()。大气校正部分,感兴趣的同学可以自己去关注6S或者其ρ它大气校正的软件。 一般有两种方式:第一种:利用计算公式,在ENVI中利用band math(波段运算)计算辐亮度或者反射率;第二种:利用ENVI自带的对TM的定标工具,进行定标,获取辐亮度或者反射率。 第一种方法:利用计算公式,通过ENVI的波段运算进行定标: 1)计算表观辐亮度的公式: radiance=((lmax-lmin)/(qcalmax-qcalmin)*(qcal-qcalmin)+lmin 其中:radiance –表观辐亮度 qcal-----DN(也就是影像数据本身); lmax 和lmin是从参数表中查询; qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255; Qcalmin 是DN值的最小值,一般为0。 所以上面的公式针对TM数据可以简写成: 精彩文档. 实用标准文案 radiance=((lmax-lmin)/qcalmax)*qcal + lmin 即:

20-红外热像仪的研究和使用实验

实验二十 红外热像仪的研究和使用 红外热像仪是一种利用红外线辐射而拍摄的摄像仪,热成像显示系统是一种处理热信息的微机处理系统。红外热像技术与X 射线,B 超,CT ,磁共振和核显像原理不同,它不主动发射任何射线,而只接受物体辐射出的“热”线——红外线,从而形成物体的“热”影象,是物体的三维“热”(温度)分布图象。热像处理技术在军事上运用很广,而且即有相当重要的地位,如,夜间跟踪目标,武器瞄准器等。但在民用上的运用是这几年的事,比如,医学上通过热拍摄来分析人体各部分的热分布,从而找出病变的部分;电学中对电路板上各元器件的热分布的合理性的研究,从而改善各元器件的分布结构等等。 【实验目的】 1. 熟悉热像仪的基本结构原理。 2. 学会使用热颜色处理热源的软件包。 3. 观察和分析电路板的热分布特性。 4. 描绘电路板的热分布图。 【实验原理】 自然界存在着一种不为人们所注意的客观现象,这就是任何物体都具有一定的温度,它们都是“热”的,所不同的只是热的程度有差异而已。在物理学中,热是用绝对温度来表示的(即用K 表示)。因此,上述现象又可表示为:自然界不存在绝对温度为零的物体。 绝对温度=摄氏温度+273 热与光,电,磁一样,具有辐射特性(热辐射),只是辐射波长有长短。将热,光,电,磁等的辐射,按其辐射波长的长短依次排列,便是人们熟知的波谱(图1)所示。 10-5 0.2 0.4 0.75 1.00 波长(μm ) 图1 红外线在波谱中的位置 热辐射又称红外辐射,这是因为其辐射波长的位置与可见的红光相临并在其外。红外辐射为英国科学家赫胥尔于1800年所发现。 物体的红外辐射波长与其自身温度有关,服从维恩定律: C T m =λ (1) 式中:λm-----物体红外辐射的峰值波长(um ) T ------物体的绝对温度(K ) C ------常数2898。 从式(1)中可看出,物体绝对温度越高,其辐射波长越短;反之亦然。 物体的绝对温度不仅决定了物体辐射的波长,而且也确定了物体的辐射出射度(单位

ENVI+遥感图像的辐射定标

实验:遥感图像的辐射定标 1.实验目的与任务: (1)了解辐射定标的原理; (2)使用 ENVI 软件自带的定标工具定标 (3)学习使用波段运算进行辐射定标。 2.实验设备与数据: 设备:遥感图像处理系统 数据:焦作 2004 年 3-7 和 4-8 数据 【备注:当 ENVI第一次打开一个文件,它需要关于文件特征的特定信息。通常,这些信 息存储在与图像文件同名的一个独立的文本头文件,但是文件扩展名为.hdr。若文件打开 时没有找到ENVI 头文件,你必须在Header Information对话框中输入一些基本的参数. 另外一些数据格式没有.hdr 文件也能自动打开。这些格式包括:TIFF 、 GeoTIFF 、GIF 、 JPEG、 BMP 、 SRF、 HDF 、 PDS、 MAS-50 、 NLAPS 、RADARSAT和AVHRR。关于 ENVI 的一些基本知识 ,我们就介绍到这里 ,如果想了解更多的 ,请参考用户手册和 ENVI 中的HELP. 】。下面是关于 ENVI 的一些具体应用 . 3辐射定标的过程 拿到一幅原始图像,我们先要进行辐射定标,目的是把图像上的DN 值转为辐亮度或者是反射率(即辐射定标) .另外通过大气纠正,我们可以消除一些大气的干扰(即大气校正). 本实验主要学习辐射定标。辐射定标的结果可以是表观辐亮度(L ),也可以是表观反射率 (ρ)。大气校正部分,感兴趣的同学可以自己去关注 6S 或者其它大气校正的软件。 一般有两种方式:第一种:利用计算公式,在 ENVI 中利用 band math(波段运算)计算辐亮度或者反射率;第二种:利用ENVI 自带的对TM 的定标工具,进行定标,获取辐亮度或者反射率。 第一种方法:利用计算公式,通过ENVI 的波段运算进行定标: 1)计算表观辐亮度的公式: radiance=(( lmax-lmin ) /( qcalmax-qcalmin ) *( qcal-qcalmin ) +lmin 其中: radiance –表观辐亮度 qcal-----DN (也就是影像数据本身); lmax 和 lmin 是从参数表中查询; qcalmax 是 DN 值的最大值,对于TM 是 8bit 来说, qcalmax=255; Qcalmin 是 DN 值的最小值,一般为0。 所以上面的公式针对TM 数据可以简写成:

Landsat系列辐射定标参数整理

辐射定标参数整理 1.亮度温度计算 亮度温度是一个常用的温度概念,是在卫星高度上传感器探测波段范围内普朗克黑体辐射函数与传感器响应函数乘积积分得到的辐射值.亮度温度包含有大气和地表对热辐射传导的影响,不是真正意义上的地表温度。 计算公式: 其中,Lλ为传感器探孔处光谱辐射强度,即星上辐射亮度值,实现像素DN值转化为绝对辐射亮度值。 1.1.星上辐射亮度(Lλ) 遥感影像的亮度值(DN值)都是经过量化和纠正过的以8bit编码的数字影像,为了精确反演地物特性,有必要将DN值转化为星上辐射亮度值。 https://www.360docs.net/doc/0712096113.html,ndsat8 Lλ= M L*Q cal + A L 通过查看影像的头文件,可以获取偏差参数:M L(RADIANCE_MULT_BAND_x)和A L(RADIANCE_ADD_BAND_x)为图像的增益和偏置。 1.1. https://www.360docs.net/doc/0712096113.html,ndsat5/7

QCAL为经过辐射校正的图像灰度值即DN值;L max为探测器可检测到的最大辐射亮度,也是最大灰度值所相应的辐射亮;L min为探测器可检测到的最小辐射亮度,也是最小灰度值所相应的辐射亮度。 表 1 Landsat5 TM的Lmin和Lmax值 表 2 Landsat7 ETM+的Lmin和Lmax值 QCAL max为传感器接收到的最大灰度值,QCAL min为传感器接收到的最小灰度值。(1)如

果没有元数据信息,QCAL MIN默认值1(TM和ETM+1)或者0(MSS);QCAL MAX取默认值255(TM 和ETM+)或者127(MSS)。(2)如果有元数据信息,QCAL MIN取值如下:对于LPGS Products(The level 1 product generation system)取值为1,对于NLAPS Products(National Landsat Archive Production System)在04 April 2004之前取值为0,在04 April 2004之后取值为1;QCAL MAX 取值为127(MSS), 255(TM、ETM)。 注:LPGS和NLAPS分别是两种数据处理系统得到的产品,从2008年12月份开始,L7 ETM+ 和L5都是以LPGS系统处理,L4 TM和MSS以NLAPS系统处理。 表 3 Landsat5/7的QCALmin和QCALmax的值 1.2.预设常量K K1和K2是发射前预设的常量,具体值如下表所示。 2.大气顶层反射率(表观发射率) https://www.360docs.net/doc/0712096113.html,ndsat 5/7(TM/ETM) ρ= π?Lλ?d2 ESUN?cosθ 其中:ρ——地面相对反射率;D——日地天文单位距离;Lλ——传感器光谱辐射值,即大气顶层的辐射能量;ESUN——大气顶层的太阳平均光谱辐射,即大气顶层太阳辐照度;1注:Landsat7热红外波段(Band 6)在格式1时总设置为低增益(6L),格式2时总设置为高增益(6H)

热辐射成像实验

实验3 热辐射成像实验 热辐射是19世纪发展起来的新学科,至19世纪末该领域的研究达到顶峰,以致于量子论这个婴儿注定要从这里诞生。黑体辐射实验是量子论得以建立的关键性实验之一,也是高校实验教学中一重要实验。物体由于具有温度而向外辐射电磁波的现象成为热辐射,热辐射的光谱是连续谱,波长覆盖范围理论上可从0到∞,而一般的热辐射主要靠波长较长的可见光和红外线。物体在向外辐射的同时,还将吸收从其他物体辐射的能量,且物体辐射或吸收的能量与它的温度、表面积、黑度等因素有关。 【实验目的】 1、研究物体的辐射面、辐射体温度对物体辐射能力大小的影响,并分析原因。 2、测量改变测试点与辐射体距离时,物体辐射强度P 和距离S 以及距离的平方S 2的关系,并描绘P-S 2曲线。 3、依据维恩位移定律,测绘物体辐射能量与波长的关系图。 4、测量不同物体的防辐射能力,你能够从中得到哪些启发?(选做) 5、了解红外成像原理,根据热辐射原理测量发热物体的形貌(红外成像)。 【实验原理】 热辐射的真正研究是从基尔霍夫(G.R.Kirchhoff )开始的。1859年他从理论上导入了辐射本领、吸收本领和黑体概念,他利用热力学第二定律证明了一切物体的热辐射本领r (ν,T )与吸收本领α(ν,T )成正比,比值仅与频率ν和温度T 有关,其数学表达式为: ),() ,(),(T F T T r νναν= (3-1) 式中F (ν,T )是一个与物质无关的普适函数。在1861年他进一步指出,在一定温度下用不透光的壁包围起来的空腔中的热辐射等同于黑体的热辐射。1879年,斯特藩(J.Stefan )从实验中总结出了黑体辐射的辐射本领R 与物体绝对温度T 四次方成正比的结论;1884年,玻耳兹曼对上述结论给出了严格的理论证明,其数学表达式为: 4T R T σ= (3-2) 即斯特藩-玻耳兹曼定律,其中4212/10673.5K cm w -?=σ为玻耳兹曼常数。 1888年,韦伯(H.F.Weber )提出了波长与绝对温度之积是一定的。1893年维恩(wilhelmwien )从理论上进行了证明,其数学表达式为:

遥感图像的辐射校正实验报告

遥感图像的辐射校正实验报告 1. 实验目的和内容 实验目的: (1)复习巩固课堂上所学的对遥感图像的辐射校正,掌握这些校正方法的基本原理和方法,理解遥感图像辐射校正的意义; (2)实际学习对遥感图像进行绝对大气校正、相对大气校正的FLAASH和黑暗像元法; 实验内容: (1)绝对大气校正 将遥感图像的DN值转换为地表反射率、地表辐射率、地表温度等的方法。本次实验通过FLAASH法进行绝对大气纠正。 (2)相对大气校正 校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。本次实验通过黑暗像元法进行相对大气纠正。 2. 图像处理方法和流程 A.绝对大气校正 1、加载影像,打开ENVI,file>>open image file,打开L71120038_03820030128_MTL.txt

2、辐射定标 FLAASH模块需要输入的是经过辐射定标后的BIL/BIP文件,ENVI >> basic tools >>preprocessing > >calibration utilities >> Landsat calibration 3、格式转换 上述计算得到的存储方式为BSQ,FLAASH大气校正对于波段存储的要求

为BIL/BIP格式,ENVI >> basic tools>> convert data (BSQ ,BIL ,BIP) 4、FLAASH大气校正 (1)ENVI>>basic tools>>preprocessing>>calibration utilities>> FLAASH,选择需要校正的数据。选用第二种,设置Single scale factor:10。 (2)设置输入与输出文件 ①进入地理空间数据云,查询影像参数。点击数据资源—LANDSAT系列数据

绝对辐射定标系数

国产陆地观测卫星2013年外场绝对辐射定标系数 1、 资源三号(ZY-3)卫星绝对辐射定标系数见表2 表2 ZY-3卫星在轨绝对辐射定标系数 卫星载荷 波段 光谱范围(μm ) Gain 资源三号 多光谱相机 Band-1 0.45 ~ 0.52 0.2551 Band-2 0.52 ~ 0.59 0.2353 Band-3 0.63 ~ 0.69 0.1944 Band-4 0.77 ~ 0.89 0.2107 注:利用绝对定标系数将ZY-3卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN Bias λ=?+ 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???,Bias 为定标截距,单位为211W m sr m μ---???。

2、 资源一号02C (ZY-1 02C )卫星绝对辐射定标系数见表3 表3 ZY-1 02C 星CCD 相机的定标系数 卫星载荷 波段号 Gain Bias ZY-1-02C-PMS Band1(P) 0.6208 -13.826 Band2 0.7397 -22.246 Band3 0.6904 -15.438 Band4 0.6369 -14.201 注:利用绝对定标系数将ZY-1 02C 卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN Bias λ=?+ 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???,Bias 为定标截距,单位为211W m sr m μ---???。

环境减灾星座AB星各载荷在轨绝对辐射定标系数

环境减灾星座A/B 星各载荷在轨绝对辐射定标系数 1、HJ1A/B 星各载荷在轨绝对辐射定标系数见表1和表2。 表1 HJ1A/B 星CCD 与IRS 绝对辐射定标系数 定标系数 卫星 传感器 增益 参数 Band1 Band2 Band3 Band4 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.57630.54100.6824 0.7209 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 9.31839.17587.5072 4.1484 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9160 0.9228 1.1277 1.0753 CCD1 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 7.3250 6.0737 3.6123 1.9028 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.63600.59100.8142 0.8768 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 7.55757.0944 4.1319 1.2232 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9997 1.0016 1.3777 1.3043 HJ1A CCD2 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 4.6344 4.0982 3.7360 0.7385 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.53290.528950.68495 0.72245 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 1.6146 4.0052 6.2193 2.8302 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.86850.9367 1.2433 1.3002 CCD1 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 3.0089 4.4487 3.2144 2.5609 a (DN/W ?m ?2 ?sr ?1?μm ?1) 0.57820.50870.6825 0.6468 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 3.4608 5.8769 8.0069 8.8583 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9076 0.8502 1.1635 0.9800 CCD2 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 2.2219 4.0683 5.2537 6.3497 g (DN/W ?m ?2 ?sr ?1?μm ?1) 4.285718.557912.662 61.472 HJ1B IRS 1 b (DN) - - 11.489 -44.598 表2 HJ1A 星HSI 绝对辐射定标系数(DN/W ?m ?2?sr ?1?μm ?1) HJ1AHSI 绝对定标系数 波长 定标系数 波长 定标系数 波长 定标系数 460.04 0.2927 561.88 1.5462 721.61 5.8620 462.14 0.3050 565.00 1.5896 726.77 5.1258 464.25 0.3447 568.16 1.6073 732.01 5.5057 466.38 0.3786 571.36 1.6783 737.33 4.3242

热成像仪原理

热成像仪原理 热成像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 热像仪的应用非常广泛,只要有温度差异的地方都有应用。比如:在建筑领域,检查空鼓、缺陷、瓷砖脱落、受潮、热桥等;在消防领域可以查找火源,判定事故的起因,查找烟雾中的受伤者;公安系统可以找夜间藏匿的人;汽车生产领域可以检测轮胎的行走性能、空调发热丝、发动机、排气喉等性能;医学可以检测针灸效果、早期发现鼻咽癌、乳腺癌等疾病;电力检查电线、连接处、快关闸、变电柜等。 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 任何有温度的物体都会发出红外线,热像仪就是接收物体发出的红外线,通过有颜色的图片来显示被测量物表面的温度分布,根据温度的微小差异来找出温度的异常点,从而起到与维护的作用。一般也称作红外热像仪。 一.热像仪的发展 热像仪在最早是因为军事目的而得以开发,近年来迅速向民用工业领域扩展。自二十世纪70年代,欧美一些发达国家先后开始使用热像仪在各个领域进行探索。 热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。由于测试往往产生的温度场差异不大和现场环境复杂等因素,好的热像仪必须具备160*120像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 二.热像仪的品牌 作为世界最先进的高科技产品,热像仪的知名品牌主要集中在美国。近年来,我国在热像仪领域也取得了巨大进步,但是在技术上相对美国还有一定差距,相信国内品牌再经过几年的发展,一定能够和美国品牌抗衡。 热像仪的品牌非常多,客户在选择时,有点无从下手,在选择热像仪时,建议选择大品牌的热像仪。 2012年4月,美国知名的Thermal infrared imager TIMES,发布了2011年全球热像仪品牌排名,美国RNO连续5年荣登销量榜首,其PC160G热像仪更是以40%的市场份额连续8年荣登单品销量冠军。在选择时,可以根据这个排名,进行参考选择。同时选择适合自己的型号。 1. 美国RNO RNO公司于1940年成立于美国芝加哥,是全球历史最为悠久的热像仪生产企业,在二战中,RNO热像仪曾广泛应用美国军方。经过70年的发展,RNO下设了美国RNO热像仪公司,美俄合资RNO夜视仪公司。RNO是全球最为专业的热像仪公司,其下属的RNO夜视仪,在3,4代高端夜视仪领域拥有极大的知名度。

热辐射实验

1.实验题目:热辐射与红外扫描成像系列实验 2.实验目的 1) 学习热辐射的背景知识及相关定律,理解科学家们创造性的思维方法和相关实验技术。 2) 学习用虚拟仪器研究热辐射基本定律,测量Planck 常数。 3) 了解红外扫描成像的基本原理,掌握扫描成像的实验方法和技术。 4) 培养学生运用热辐射的基本原理和相关技术进行基础研究和应用设计的能力。 3.实验内容 1) 验证热辐射基本定律,用黑体辐射公式测量Planck 常数 2) 研究和测定物体不同表面状态的辐射发射量 3) 研究辐射发射量与距离的关系 4) 红外扫描成像实验研究 5) 红外无损探伤实验研究 6) 红外温度计的设计与材料热性质的研究 7) 运用热辐射基本定律和本实验装置进行自主应用设计性实验 4.实验原理 1. 了解热辐射的基本概念和定律 当物体的温度高于绝对零度时,均有红外光向周围空间辐射出来,红外辐射的物理本质是热辐射。其微观机理是物体内部带电粒子不停的运动导致热辐射效应。热辐射的波长和频率在0.76?100μ之间,与电磁波一样具有反射、透射和吸收等性质。设辐射到物体上的能量为Q ,被物体吸收的能量为Q α,透过物体的能量为Q τ,被反射的能量为Q ρ。 由能量守恒定律可得: Q=Q α+Q τ+Q ρ归一化后可得: +1Q Q Q Q Q Q βαταβτ+=++= (1) 式中α为吸收率,τ为透射率,ρ为反射率。 1.1 基尔霍夫定律 基尔霍夫指出:物体的辐射发射量M 和吸收率α的比值M/α与物体的性质无关,都等同于在同一温度下的绝对黑体的辐射发射量M B ,这就是著名的基尔霍夫定律。

1 212()B M M M f t αα====L (2) 基尔霍夫定律不仅对所有波长的全辐射(或称总辐射)而言是正确的,而且对任意单色波长λ也是正确的。 1.2 绝对黑体 能完全吸收入射辐射,并具有最大辐射率的物体叫做绝对黑体。实验室中人工制作绝对黑体的条件是:1)腔壁近似等温,2)开孔面积<<腔体。 本实验中我们利用红外传感器测量辐射方盒表面的总辐射发射量M 。M 是所有波长的电磁波的光谱辐射发射量的总和,数学表达式为: M M d λλ∞ =∫ (3) 上式被称为斯蒂芬-玻尔兹曼定律。不同的物体,处于不同的温度,辐射发射量都不同,但有一定的规律。 比辐射率ε的定义:物体的辐射发射量与黑体的辐射发射量之比,即 00d =d B B T B M M M M λλλελελ ∞∞??==????∫∫物体辐射发射量黑体辐射发射量 (4) 由基尔霍夫定律可知,辐射发射量M与吸收率α的关系:B M M α= 由能量守恒定律和基尔霍夫定律,即公式(1)和(2)联立求解 1B M M αβτα++=??=? 可得: ()1B M M τρ=?? (5) 由上述知识可知,若我们测出物体的辐射发射量和黑体的辐射发射量,便可求出物体的吸收率,还可以获得物体反射率和透射率的有关信息。 2. 空气中热辐射的传播规律研究 我们知道,许多物理量都与距离 r 的反平方成正比。现代物理学认为,这很大程度上是由空间的几何结构决定的。以天体辐射为例,如果距离 r 的指数比 2 大或者比 2 小,就会影响太阳的辐射场,使地球温度过低或者过高,从而不适合碳基生命形式的存在。那么热源的辐射量与距离的关系是否也遵循这一规律呢?对于球形均值热源和各种不同形状和不同材料构成的热源的辐射量在空气中的衰减规律及其分布是否都遵循反平方定律呢? 我们首先引进几个概念。辐射功率 P :单位时间内传递的辐射能 W ,即

辐射定标

辐射定标(像元亮度值,辐射亮度/亮温)、表观反射率、地表反射率、反照率、比辐射率(转) (2012-11-28 13:58:29) 转载▼ 分类:科研 标签: 杂谈 (2012-01-26 01:18:44) 标签: 校园分类:工作篇

定标系数为:增益53.473,单位:DN/(W?m-2?sr-1?μm-1);截距26.965,单位:DN。利用绝对定标系数将DN值图像转换为辐亮度图像的公式为L=(DN-b)/coe,式中coe为绝对定标系数的增益,b为截距,转换后辐亮度单位为 W?m-2?sr-1?μm-1。HJ1B红外相机中红外波段则条带较为严重,不利于定量化应用。 遥感数字图像 遥感数字图像是以数字形式记录的二维遥感信息,即其内容是通过遥感手段获得的,通常是地物不同波段的电磁波谱信息。其中的像素值称为亮度值(或称为灰度值、DN值)。 遥感概念DN值(Digital Number )是遥感影像像元亮度值,记录的地物的灰度值。无单位,是一个整数值,值大小与传感器的辐射分辨率、地物发射率、大气透过率和散射率等有关。 遥感图像量化image quantification。释文:按一定的函数关系将图像所代表的物理量分割成有限的离散等级,以使观测数据可用一定字长的二进制码表示,因此又称为数据编码。量化后的级别称为图像的像元值、灰度或亮度,记为 DN(digital number)。 DN值没有单位,数量级与像素深度有关,如果是无符号整型的就是0-255,符点型,无符号16位均根据其类型确定。 在遥感领域,定标一般分为几何定标和辐射定标两种。 几何定标即指对遥感图像几何特性进行校正,以还原为真实情况。 辐射定标指对遥感图像的辐射度进行校准,以实现定量遥感。 辐射定标一般也可称为校准,其主要目的是保证传感器获取遥感数据的准确性。通常,采用系统自身内部监视环路和外部标准目标方法对系统链路中的各个环节进行误差修正,来实现辐射定标过程。 一般在主动式遥感系统中,辐射定标可以作得很好,可以认为在一定误差范围内实现了定量遥感。而被动式遥感系统相对困难些。 几何定标相对简单,就不多说了。 辐射定标是对传感器引起的误差校正,将影像校正为星上反射率 辐射定标和辐射校正——遥感数据定量化的最基本环节 由于遥感图像成像过程的复杂性,传感器接收到的电磁波能量与目标本身辐射的能量是不一致的。传感器输出的能量包含了由于太阳位置、大气条件、地形影响和传感器本身的性能等所引起的各种失真,这些失真不是地面目标的辐射,因此对图像的使用和理解造成影响,必须加以校正和消除,而校正和消除的基本方法就是辐射定标和辐射校正。

作业标准1:辐射定标及波段运算

一总述 1 遥感图像处理的目的 遥感的目的是为了获得地物的几何属性和物理属性.但是由于受到大气,目标,传感器等诸多因素的影响,原始的遥感影像中除了有目标地物的信息以外还包含有大气,传感器的运行状态等信息,如果我们只是利用原始的遥感影像,将不能提取出所感兴趣的有效信息, 所以为了实现遥感的最终目的,提取所需的信息,我们必须对遥感影像进行处理. 2 ENVI简介 目前已经开发了一些进行遥感图像处理的软件,例如ENVI,PCI,ERDAS等.现在就简单介绍一下ENVI. ENVI是由美国RSI公司开发的一套功能齐全的遥感图像处理系统,是处理、分析并显示多光谱数据、高光谱数据和雷达数据的高级工具。其完全是由IDL开发,方便灵活,可扩展性强,并可用IDL进行二次开发。现在最高版是4.7版本的. 我们来大概熟悉一下 ENVI的主菜单: 可以看出ENVI的主菜单中主要有以下一些工具: 基本工具,分类,空间变换,滤波,波谱工具,制图工具,矢量工具,地形分析,雷达工具 来看一下主菜单中的FILE菜单, 通过选择Open Image File可以打开ENVI 图像文件或其它已知格式的二进制图像文件。ENVI 自动地识别和读取下列类型的文件:TIFF、GeoTIFF、GIF、JPEG、BMP、SRF、HDF、PDS、MAS-50、NLAPS、RADARSAT 和A VHRR 。数据仍保留它原有格式,必要的信息从数据头文件中读取。ENVI也直接读取其它几种文件类型(参见“O pen External File”)。 注意: 若你得到“File does not appear to be a valid Radarsat file” 这样一个错误消息,使用File > Open External File 来选择正确的数据类型。 当ENVI 第一次打开一个文件,它需要关于文件特征的特定信息。通常,这些信息存储在与图像文件同名的一个独立的文本头文件,但是文件扩展名为.hdr 。若文件打开时没有找到ENVI头文件,你必须在Header Information 对话框中输入一些基本的参数. 另外一些数据格式没有.hdr 文件也能自动打开。这些格式包括:TIFF、GeoTIFF、GIF、JPEG、BMP、SRF、HDF、PDS、MAS-50、NLAPS、RADARSAT 和A VHRR 。(ENVI 头文件中含有丰富的信息,例如: ENVI description = { Create New File Result [Tue Oct 19 15:47:45 2004]} samples = 2000 lines = 2000 (图像的大小) bands = 7 header offset = 0 file type = ENVI Standard

热辐射实验报告

热辐射实验报告 组员:丁博G012012297 郝景龙G012012311郭有信G012012115 何思文G012012297付光顺G012012297 一、 实验原理 理论研究表明处于热平衡时,物体的辐射强度由下式确定:4I=T εσ 上式中的σ=5.6703*-81024W m K 是斯特藩-玻尔兹曼常数;T 是物体 的绝对温度,ε 是物体表面的吸收率,一般ε≤1,对于理想辐射体,ε=1。 最大光强度对应的波长由下式确定: max c 0.002898m K ==T T λ? T 是物体的绝对温度。 二、 仪器安装:实验平台线路已连接 三、 实验内容 1、 当立方体处于热平衡时,旋转立方体将其有洞的一面正对红外光传感器,并使两者间距2cm 。 2、 用导轨上的夹子确定转动传感器的起始位置,将红外传感器放置在立方体左侧开始扫描。 3、 按红外传感器上的清零键“TARE ”,点击数据处理软件的“START ”。移动转动传感器使红外光传感器完整扫描立方体。点击“STOP ”。 4、 记录腔体温度。

5、将黑色一面正对红外传感器,重复扫描。按红外传感 器的清零键“TARE”,从同一位置开始扫描。 6、将光滑面正对红外传感器,再次扫描。将白色面正对 红外传感器,再次扫描。 四、注意事项: 1在加热立方腔过程中,注意红外传感器不要正对立方体。 2在移动转动传感器时注意移动速度不要太慢,防止红外传感器过热损坏。 3试验线路不要乱接,防止损坏仪器。 五、实验结果

六、实验反思: 1在实验过程中,不要乱改线路。由于我们组实验时盲目按照

课本接线,致使实验无法进行。 2熟练应用软件是实验成功的另一必然要求。当打开软件时,感觉对其都不了解,定义各个接口就花费了我们很长时间。3熟练掌握实验内容,首先应熟识各个实验仪器,如转动传感器、红外光传感器、温度传感器。

辐射定标及波段运算遥感实验二

测绘与海洋信息学院 《遥感原理与应用技术A》 实验报告 实验名称:遥感图像的辐射定标 姓名: 学号: 班级: 指导教师: 日期:2018-4-8 地理信息系统实验室 2017-2018学年第二学期

一、实验目的与任务 (1)了解辐射定标的原理; (2)使用ENVI软件自带的定标工具定标 (3)学习使用波段运算进行辐射定标。 二、试验设备与数据 设备:遥感图像处理系统 数据:焦作2004年3-7和4-8数据 三、辐射定标原理及目的 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值。 原理:辐射定标是将传感器记录的电压或数字量化值DN转化为绝对辐射亮度的过程,或者转化为与地表反射率、表面温度等物理量有关的 相对值的处理过程。 四、实验过程 辐射定标的结果可以是表观辐亮度(L),也可以是表观反射率(ρ) 一般有两种方式:第一种:利用计算公式,在ENVI中利用band math(波段运算)计算辐亮度或者反射率;第二种:利用ENVI自带的对TM的定标工具,进行定标,获取辐亮度或者反射率。 第一种方法:利用计算公式,通过ENVI的波段运算进行定标: 1)计算表观辐亮度的公式: radiance=((lmax-lmin)/(qcalmax-qcalmin))*(qcal-qcalmin) +lmin 其中:radiance –表观辐亮度 qcal-----DN(也就是影像数据本身); lmax 和lmin是从参数表中查询; qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255; Qcalmin 是DN值的最小值,一般为0。 所以上面的公式针对TM数据可以简写成: radiance=((lmax-lmin)/qcalmax))*qcal + lmin 即: 上面的这个公式还可以进一步简化为: 两个公式比较,可以看出,公式的中字母的对应关系。 注意:公式中需要的数据,可以通过后面的表格中查询获取 2)表观反射率的计算 ρ =π*L*d2/(ESUN*cos(θ)) 其中ρ为表观反射率; L为上一步计算出来的表观辐亮度;

2014年国产遥感卫星外场绝对辐射定标系数1、高分一号(GF-1)卫星

2014年国产遥感卫星外场绝对辐射定标系数 1、 高分一号(GF-1)卫星绝对辐射定标系数 表1 GF-1卫星各载荷的绝对辐射定标系数 注:利用绝对定标系数将GF-1卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN λ=? 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???。

2、 环境减灾-AB (HJ-1A/B )卫星绝对辐射定标系数 表2 HJ-1A/B 星CCD 相机(增益2)的定标系数 注:利用绝对定标系数将HJ-1A/B 卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN Offset λ=?+ 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???,Offset 为绝对定标系数偏移量,单位为211W m sr m μ---???。

3、 资源三号(ZY-3)卫星绝对辐射定标系数 表3 ZY-3卫星在轨绝对辐射定标系数 注:利用绝对定标系数将ZY-3卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN λ=? 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???。

遥感图像辐射定标

遥感图像辐射定标 时间:2010-02-19 17:10来源:未知作者:admin 我们常用影像的像元值大多是经过量化的、无量纲的DN值,而进行遥感定量化分析时,常用到辐射亮度值、反射率值、温度值等物理量。传感器定标就是要获得这些物理量的过程。传感器定标很多地方又名为辐射定标,严格意义上讲,辐射定标是传感器定标的一部分内容 我们常用影像的像元值大多是经过量化的、无量纲的DN值,而进行遥感定量化分析时,常用到辐射亮度值、反射率值、温度值等物理量。传感器定标就是要获得这些物理量的过程。 传感器定标很多地方又名为辐射定标,严格意义上讲,辐射定标是传感器定标的一部分内容。以下是国内的定义,如赵英时等《遥感应用分析原理与方法》上描述:定标是将遥感器所得的测量值变换为绝对亮度或变换为与地表反射率、表面温度等物理量有关的相对值的处理过程。或者说,遥感器定标就是建立遥感器每个探测器输出值与该探测器对应的实际地物辐射亮度之间的定量关系;建立遥感传感器的数字量化输出值DN与其所对应视场中辐射亮度值之间的定量关系(陈述彭)。辐射亮度的典型的单位为:W/cm2.μm.sr(瓦特/平方厘米.微米.球面度)我们总结以上的定义,通俗的说法:传感器定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面温度等物理量的处理过程。其中反射率又分为大气外层表观反射率和地表实际反射率,后者又属于大气校正的范畴,有的时候也会将大气校正纳入传感器定标的一种途径。 传感器定标可分为绝对定标和相对定标。绝对定标是获取图像上目标物的绝对辐射值等物理量;相对定标是将图像目标物辐射量归一化某个值范围内,比如以其他数据作为基准。 传感器定标可分为三个阶段或者说三个方面内容:①发射前的实验室定标;②基于星载定标器的星上定标;③发射后的定标(场地定标)。 ENVI支持很多数据的定标,包括ASTER、MODIS、AVHRR, MSS, TM ,QuickBird, WorldView-1,TIMS等。也可以根据定标参数利用BandMath工具很方便的完成定标。

辐射定标

辐射定标 辐射定标定义:建立遥感传感器的数字量化输出值DN与其所对应视场中辐射亮度值之间的定量关系。 分为三类: 1.实验室定标:在遥感器发射之前对其进行的波长位置、辐射精度、空间定位等的定标,将仪器的输出值转换为辐射值。有的仪器内有内定定标系统。但是在仪器运行之后,还需要定期定标,以监测仪器性能的变化,相应调整定标参数。 1光谱定标,其目的是确定遥感传感器每个波段的中心波长和带宽,以及光谱响应函数 2辐射定标 绝对定标:通过各种标准辐射源,在不同波谱段建立成像光谱仪入瞳处的光谱辐射亮度值与成像光谱仪输出的数字量化值之间的定量关系相对定标:确定场景中各像元之间、各探测器之间、各波谱之间以及不同时间测得的辐射量的相对值。 2.机上和星上定标 机上定标用来经常性的检查飞行中的遥感器定标情况,一般采用内定标的方法,即辐射定标源、定标光学系统都在飞行器上,在大气层外,太阳的辐照度可以认为是一个常数,因此也可以选择太阳作为基准光源,通过太阳定标系统对星载成像光谱仪器进行绝对定标。 3.场地定标(是最难的一个) 场地定标指的是遥感器处于正常运行条件下,选择辐射定标场地,通过地面同步测量对遥感器的定标,场地定标可以实现全孔径、全视场、全动态范围的定标,并考虑到了大气传输和环境的影响。该定标方法可以实现对遥感器运行状态下与获取地面图像完全相同条件的绝对校正,可以提供遥感器整个寿命期间的定标,对遥感器进行真实性检验和对一些模型进行正确性检验。但是地面目标应是典型的均匀稳定目标,地面定标还必须同时测量和计算遥感器过顶时的大气环境参量和地物反射率。 原理:在遥感器飞越辐射定标场地上空时,在定标场地选择偌干个像元区,测量成像光谱仪对应的地物的各波段光谱反射率和大气光谱等参量,并利用大气辐射传输模型等手段给出成像光谱仪入瞳处各光谱带的辐射亮度,最后确定它与成像光谱仪对应输出的数字量化值的数量关系,求解定标系数,并估算定标不确定性。 基本技术流程:获取空中、地面及大气环境数据,计算大气气溶胶光学厚度,计算大气中水和臭氧含量,分析和处理定标场地及训练区地物光谱等数据,获取定标场地数据时的几何参量和时间,将获取和计算的各种参数带入大气辐射传输模型,求取遥感器入瞳时的辐射亮度,计算定标系数,进行误差分析,讨论误差原因。 方法:

相关文档
最新文档