钢板弹簧悬架设计

钢板弹簧悬架设计
钢板弹簧悬架设计

专业课程设计说明书题目:商用汽车后悬架设计

学院机械与汽车学院

专业班级 10车辆工程一班

学生姓名

学生学号 201030081360

指导教师

提交日期 2013 年 7 月 12 日

1

一.设计任务:商用汽车后悬架设计

二.基本参数:协助同组总体设计同学完成车辆性能计算后确定

额定装载质量5000KG 最大总质量8700KG

轴荷分配

空载前:后52:48

满载前:后32:68

满载校核后前:后33::67

质心位置:

高度:空载793mm

满载1070mm

至前轴距离:空载2040mm

满载2890mm

三.设计内容

主要进行悬架设计,设计的内容包括:

1.查阅资料、调查研究、制定设计原则

2.根据给定的设计参数(发动机最大力矩,驱动轮类型与规格,汽车总质量和使用工况,前后轴荷,前后簧上质量,轴距,制动时前轴轴荷转移系数,驱动时后轴轴荷转移系数),选择悬架的布置方案及零部件方案,设计出一套完整的后悬架,设计过程中要进行必要的计算。

3.悬架结构设计和主要技术参数的确定

(1)后悬架主要性能参数的确定

(2)钢板弹簧主要参数的确定

(3)钢板弹簧刚度与强度验算

2

(4)减振器主要参数的确定

4.绘制钢板弹簧总成装配图及主要零部件的零件图

5.负责整车质心高度和轴荷的计算和校核。

*6.计算20m/s车速下,B级路面下整车平顺性(参见<汽车理论>P278 题6.5之第1问)。

四.设计要求

1.钢板弹簧总成的装配图,1号图纸一张。

装配图要求表达清楚各部件之间的装配关系,标注出总体尺寸,配合关系及其它需要标注的尺寸,在技术要求部分应写出总成的调整方法和装配要求。

2.主要零部件的零件图,3号图纸4张。

要求零件形状表达清楚、尺寸标注完整,有必要的尺寸公差和形位公差。在技术要求应标明对零件毛胚的要求,材料的热处理方法、标明处理方法及其它特殊要求。

3.编写设计说明书。

五.设计进度与时间安排

本课程设计为2周

1.明确任务,分析有关原始资料,复习有关讲课内容及熟悉参考资料0.5周。

2.设计计算0.5周

3.绘图0.5周

4.编写说明书、答辩0.5周

3

六、主要参考文献

1.成大先机械设计手册(第三版)

2.汽车工程手册机械工业出版社

3.陈家瑞汽车构造(下册)人民交通出版社

4.王望予汽车设计机械工业出版社

5.余志生汽车理论机械工业出版社

七.注意事项

(1)为保证设计进度及质量,设计方案的确定、设计计算的结果等必须取得指导教师的认可,尤其在绘制总成装配图前,设计方案应由指导教师审阅。图面要清晰干净;尺寸标注正确。

(2)编写设计说明书时,必须条理清楚,语言通达,图表、公式及其标注要清晰明确,对重点部分,应有分析论证,要能反应出学生独立工作和解决问题的能力。

(3)独立完成图纸的设计和设计说明书的编写,若发现抄袭或雷同按不及格处理。

八.成绩评定

出勤情况(20%)

设计方案与性能计算(40%)

图纸质量(20%)

说明书质量(20%)

注意:此任务书要妥善保管,最后要装订在设计说明书的第一页。

4

目录

一、悬架的静挠度 (6)

二、悬架的动挠度 (7)

三、悬架的弹性特性 (7)

四、弹性元件的设计 (8)

4.1 钢板弹簧的布置方案选择 (8)

4.2 钢板弹簧主要参数的确定 (8)

4.3 钢板弹簧刚度的验算 (13)

4.4 钢板弹簧总成在自由状态下的弧高及曲率半径计算 (15)

4.5 钢板弹簧总成弧高的核算 (18)

五、钢板弹簧强度验算 (18)

六、钢板弹簧主片的强度的核算 (19)

七、钢板弹簧弹簧销的强度的核算 (19)

八、减振器的设计计算 (20)

九*、计算20m/s车速下,B级路面下整车平顺性 (23)

十、附录计算程序 (27)

十一、参考文献 (30)

5

6

设计的主要数据

载质量:5000kg 整备量:3700kg

空车时:前轴负荷:18855N 后轴负荷:17405N 满载时:前轴负荷: 28136N 后轴负荷: 57124N 尺 寸: 轴 距: 4250mm

一、悬架的静挠度

悬架的静扰度 是指汽车满载静止时悬架上的载荷Fw 与此时悬架刚度c 之比,即

c F f w c /=

货车的悬架与其簧上质量组成的振动系统的固有频率,是影响汽车行驶平顺性的主要参数之一。因汽车的质量分配系数近似等于1,因此货车车轴上方车身两点的振动不存在联系。货车的车身的固有频率n,可用下式来表示:

n=π2//m c

式中,c 为悬架的刚度(N/m ),m 为悬架的簧上质量(kg ) 又静挠度可表示为:

c mg f c /=

g :重力加速度(9.8N/kg ),代入上式得到:

7

n=15.42/

c f

n: hz

c f : mm

分析上式可知:悬架的静挠度直接影响车身的振动频率,因此欲保证汽车有良好的行驶平顺性,就必须正确选择悬架的静挠度。

又因为不同的汽车对平顺性的要求不相同,货车的后悬架要求在1.70~2.17hz 之间,因为货车主要以载货为主,所以选取频率为:1.9hz. 由 n=15.42/

c f 得, c f =65.8mm ,取c f =66mm

二、 悬架的动挠度

悬架的动挠度是指从满载静平衡位置开始悬架压缩到结构容许的最大变形时,车轮中心相对车架的垂直位移。通常货车的动挠度的选择范围在6~9cm.。本设计选择:

d f =80mm

三、 悬架的弹性特性

悬架的弹性特性有线性弹性特性和非线性弹性特性两种。由于货车在空载和满载时簧上质量变

化大,为了减少振动频率和车身高度的变化,因此选用刚度可变的非线性悬架。

n=1.9hz , m=2637kg,代入公式:(满载时的簧上质量m=25843/9.8=2637kg ) n= 2//m c

可得

8

C=375.4N/mm

四、弹性元件的设计

4.1 钢板弹簧的布置方案选择

布置形式为对称纵置式钢板弹簧

4.2 钢板弹簧主要参数的确定

已知满载静止时负荷2G =5829kg 。簧下部分荷重kg G Z 5552=,由此可计算出单个钢板弹簧的载荷:

N g G G F Z W 258432

2

2=-=

由前面选定的参数知:

(动尧度) mm 80=d f

4.2.1满载弧高 :

满载弧高a f 是指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端连线间的高度差。常取a f =10~20mm.在此取:

mm f a 15=

4.2.2钢板弹簧长度L 的确定:

(1) 选择原则:

钢板弹簧长度是弹簧伸直后两卷耳中心之间的距离。轿车L=(0.40~0.55)轴距;货车前悬架:

9

L=(0.26~0.35)轴距,后悬架:L=(0.35~0.45)轴距。

(2) 钢板弹簧长度的初步选定:

根据经验L = 0.35?轴距,并结合国内外货车资料,初步选定主簧主片的长度为1490mm =m L ,

4.2.3钢板弹簧断面尺寸的确定:

(1) 钢板弹簧断面宽度

b 的确定:

有关钢板弹簧的刚度,强度可按等截面的简支梁计算,引入挠度增大系数δ加以修正。因此,可根据修正后的简支梁公式计算钢板弹簧所需的总惯性距0J 。对于对称式钢板弹簧

[]

E c kS L J 48/)(30δ-= 式中: S ——U 形螺栓中心距(mm )

k ——U 形螺栓夹紧(刚性夹紧,k 取0.5); c ——钢板弹簧垂直刚度(N/mm ),c=c W f F /; δ——为挠度增大系数。 挠度增大系数δ的确定:

先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得01/n n =η,然后

δ=1.5/[])5.01(04.1η+,初定δ。

对于弹簧:

L=1490mm k=0.5

10

S=200mm

1n =2 0n =14

14

2=

η δ=1.5/[])5.01(04.1η+=1.5/?????

?

?+?)1425.01(04.1=1.35

E=2.1510?N/4m m

计算主簧总截面系数0W :

0W [][]W W kS L F σ4/)(-≥

式中[]w σ为许用弯曲应力。[]w σ的选取:后主簧为450~550N/2m m ,后副簧为220~250 N/2m m 。

w F =m F =28225N L=1490mm k=0.5 S=200mm

[]w σ=500 N/2m m .

再计算主簧平均厚度:

11

[]ca

w p Ef kS L W J h 6)(/2200σδ-=

= =15.6mm 有了p h 以后,再选钢板弹簧的片宽b 。推荐片宽和片厚的比值在6~10范围内选取。 b =102mm

通过查手册可得钢板截面尺寸b 和h 符合国产型材规格尺寸。

(3)钢板断截面形状的选择: 本设计选取矩形截面。 (4) 钢板弹簧片数的选择:

片数n 少些有利于制造和装配,并可以降低片与片之间的干摩擦,改善汽车的行驶平顺性。但片数少了将使钢板弹簧与等强度梁的差别增大,材料的利用率变坏。多片钢板弹簧一般片数在6~14片之间选取,重型货车可达20片。用变截面少片弹簧时,片数在1~4选取。 根据货车的载荷并结合国内外资料初步选取本货车弹簧的片数为14片,

4.2.4 钢板弹簧各片长度的确定

先将各片的厚度i h 的立方值3

i h 按同一比例尺沿纵坐标绘制在图上,再沿横坐标量出主片长度的一半L/2和U 型螺栓中心距的一半s/2,得到A,B 两点,连接A ,B 两点就得到三角形的钢板弹簧展开图。AB 线与各片上侧边的交点即为各片的长度。如果存在与主片等长的重叠片,就从B 点到最后一个重叠片的上侧边断点连一直线,此直线与各片上侧边的交点即为各片长度。各片实,际长度尺寸需经圆整后确定。由图2确定主簧各片长度:

图4-1 确定主簧各片长度图表4-1钢板弹簧各片长度

12

13

4.3 钢板弹簧刚度的验算

在此之前,有关挠度增大系数δ,总惯性矩0J ,片长和叶片端部的形状都不够准确,所以有必要验算刚度。用共同曲率法计算刚度,刚度的验算公式为:

C=??

????-∑=++n i K K k Y Y a E 113

1)(/6α

其中,)(111++-=k k l l a ;∑==k

i i K J Y 1

/1 ;∑+=+=11

1/1k i i K J Y ;

式中,α为经验修正系数,取0.90~0.94,E 为材料弹性模量;,1l 1+k l 为主片和第(k+1)片的一般长度。

公式中主片的一半1l ,如果用中心螺栓到卷耳中心间的距离代入,求的刚度值为钢板弹簧总成自由刚度j c ;如果用有效长度,即)5.0(1'1kS l l -=代入上式,求得的刚度值为钢板弹簧总成的夹紧刚度z c 。

'

1l =1490/2-0.5*0.5*200=695mm

(1) 主簧刚度验算

表4-2 )(111++-=k k l l a

14

由公式∑==k

i i K J Y 1

/1(mm -4

),得:

Y 1=1.18×10

-4

Y 2=5.88×10-5 Y 3=3.92×10-5 Y 4=2.94×10

-5

Y 5=2.35×10-5

Y 6=1.96×10-5

Y 7=1.68×10-5

Y 8=1.47×10-5

Y 9=1.31×10-5

Y 10=1.18×10

-5

Y 11=1.07×10-5 Y 12=0.98×10

-5

Y 13=0.9×10

-5

Y 14=0.85×10

-5

表4-3 1

+-K K Y Y

)(13

1++-K K k Y Y a 、)('13

1++-K K k Y Y a 列表如下, (mm -1

)

表4-4 )(13

1++-K K k Y Y a 、)('13

1++-K K k Y Y a

15

将上述数据代入公式,得总成自由刚度jm C : 431N/mm =jm C

将上述数据代入公式有效长度,即ks l l 5.01'1-=,代入到公式所求得的是钢板弹簧总成的夹紧刚度

zm C

394N/mm =zm C 与设计值相差不大,基本满足主簧刚度要求。

4.4 钢板弹簧总成在自由状态下的弧高及曲率半径计算

(1)钢板弹簧总成在自由状态下的弧高0H

钢板弹簧总成在自由状态下的弧高0H ,用下式计算:

)(0f f f H a c ?++=

式中,c f 为静挠度;a f 为满载弧高;f ?为钢板弹簧总成用U 型螺栓夹紧后引起的弧高变化,

2

2)

)(3(L f f S L S f c a +-=

?;S 为U 型螺栓的中心距。L 为钢板弹簧主片长度。

下面分别计算主簧和副簧总成在自由状态下的弧高0H : 弹簧:

2

2)

)(3(L f f S L S f c a +-=

? =15.58mm

16

则)(0f f f H a cm ?++= =66+15+15.58=96.98mm

(2)钢板弹簧总成在自由状态下的曲率半径的确定:

钢板弹簧总成在自由状态下的曲率半径:0208/H L R ==2862mm. (3)钢板弹簧各片自由状态下曲率半径的确定 矩形断面钢板弹簧装配前各片曲率半径由下式确定

[]i i i Eh R R R /)2(1/000σ+=

式中,i R 为第i 片弹簧自由状态下的曲率半径(mm ),为钢板弹簧总成

0R 在自由状态下的曲率

半径(mm )为各片钢板弹簧预应力

i 0σ(N/2m m );E 为材料的弹性模量N/2m m ,取E 为5101.2? N/2m m ;为第

i h i 片的弹簧厚度(mm )。在已知

的条件下,可以用式和各片弹簧的预应力i R 00σ[]i i i Eh R R R /)2(1/000σ+=计算出各片钢板弹簧自由状态下的曲率半径R i 。

对于片厚相同的钢板弹簧,各片弹簧的预应力值应不宜选取过大;推荐主片在根部的工作应力与预应力叠和后的合成应力应在300~350N/2m m 内选取。1~4片长片叠加负的预应力,短片叠加正的预应力。预应力从长片由负值逐渐递增为正值。

在确定各片预应力时,理论上应满足各片弹簧在根部处的预应力所造成的弯矩之代数和等于零,即

i M : 01

=∑=n

i i M

或 01

0=∑=i n

i i W σ

17

下面分别计算主簧和副簧的各片在自由状态下曲率半径的确定: 主簧:

mm R 28620= E=5101.2? N/2m m i h =10mm 然后用上述公式计算主簧各片在自由状态下曲率半径,结果见表4: 表4-6 钢板弹簧在自由状态下曲率半径

(4)钢板弹簧总成各片在自由状态下弧高的计算:

如果第i 片的片长为i L ,则第i 片弹簧的弧高为: i i i R L H 8/2

= 主簧:将各片长度和曲率半径代入上式,得主簧总成各片在自由状态下

表4-7 簧总成各片在自由状态弧高

18

4.5、 钢板弹簧总成弧高的核算

根据最小势能原理,钢板弹簧总成的稳定平衡状态是各片势能总和最小状态,由此可求得等厚叶片弹簧的为:0R

1/0R =∑∑==n

i i i n i i L R L 1

1

/)/(

式中,为钢板弹簧i L 第i 片长度。

钢板弹簧的总成弧高为 H 028/R L ≈

上式计算的结果应与)(0f f f H a c ?++=计算的设计结果相近。如果相差太多,可重新选择各片预应力再行核算。 先对主簧的总成弧高核算

将主簧各片的长度和曲率半径代入上述公式可得: 2862mm =0R

然后再代入H 028/R L ≈ =96.86mm

原设计值为H 0=96.98mm ,相差不大,符合要求。

五、钢板弹簧强度验算

当货车牵引驱动时,货车的后钢板弹簧承受的载荷最大,在它的前半段出现的最大应力max σ用

下式计算

19

max σ=[]

[]02112'22)(/)(w l l c l l m G ++?+1'

22/bh m G ?

式中,2G 为作用在后轮上的垂直静载荷,'2m 为制动时后轴负荷转移系数;轿车:'2m =1.25~1.30;货车:'2m =1.1~1.2;?为道路附着系数;b 为钢板弹簧片宽;1h 为钢板弹簧主片厚度。许用应力[]σ取为1000N/mm 2。

由上式验算主簧强度:

Pa

MPa bh m G W l l c l m G l Gl pm M 1000][980)('

220212'2221max

=<+

++=σ??σ其中牵引驱动时,主簧载荷为 G=25000 '2m =1.15 ?=0.8

主副簧强度在许用应力范围内,符合强度要求。 验算汽车在不平路面上钢板弹簧的强度。

六、钢板弹簧主片的强度的核算

钢板弹簧主片应力σ是由弯曲应力和拉(压)应力合成,即:

1

2

11)(3bh F bh h D F s

s +

+=

σ 其中 ?'

22m G F s = 为沿弹簧纵向作用力在主片中心线上的力;mm 101=h 卷耳厚度;D 为卷耳内

径;b 为钢板弹簧宽度。许用应力[σ]取为350MPa 。代入上式得:

350MPa ][275=<=σσMPa

主片符合强度要求。

七、钢板弹簧弹簧销的强度的核算

对钢板弹簧销要验算钢板弹簧受静载荷时钢板弹簧销受到的挤压应力bd F S z /=σ。其中S F 为满

20

载静止时钢板弹簧端部的载荷,b 为主片叶片宽;d 为钢板弹簧直径。用20钢或20Cr 钢经渗碳处理或用45钢经高频淬火后,其[z σ]≤7—9 N/mm 2。

N G F S 142812/2== =/bd F S z =σ2/07.4mm N 弹簧销满足强度要求。

八、减振器的设计计算

8.1减振器的分类

减振器是车辆悬架系统中的重要部件,其性能的好坏对车辆的舒适性以及车辆及悬架系统的使用寿命等有较大影响。汽车在受到来自不平路面的冲击时,其悬架弹簧可以缓和这种冲击,但同时也激发出较长时间的振动,使乘坐不适。与弹性元件并联安装的减振器可很快衰减这种振动,改善汽车的行驶平顺性和操纵稳定性。

汽车悬架中广泛采用液压减振器。液压减振器按其结构可分为摇臂式和筒式;按其工作原理可分为单向作用式和双向作用式。筒式减振器由于质量轻、性能稳定、工作可靠、易于大量生产等优点,成为了汽车减振器的主流。筒式减振器又可分为双筒式、单筒式和充气筒式,其中以双筒式应用最多。充气筒式减振器在筒式减振器中充以一定压力的气体,改善了高速时的减振性能,并有利于消除减震器产生的噪声,但由于成本及使用维修问题,使其推广应用受到一定限制。本设计中,前悬架选用双向作用筒式减振器。

8.2主要性能参数的选择

8.2.1相对阻尼系数ψ

s

cm 2δ

ψ=

上图所示为减振器的阻力——速度特性。

减振器卸荷阀打开前,其中的阻力F 与减振器振动速度v 之间的关系为: 0s x F v δ= 式中,σ为减振器阻尼系数。

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参 数的选取、计算、验证等作出较详细的工作模板。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的 修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究 是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991汽车钢板弹簧技术条件 QC/T 517-1999汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984汽车悬挂系统的固有频率和阻尼比测定方法 3符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013汽车操纵稳定性术语及其定义 GB 7258-2017机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999汽车操纵稳定性指标限值与评价方法 QC/T 474-2011客车平顺性评价指标及限值 GB/T 12428-2005客车装载质量计算方法 GB 1589-2016道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置 (减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的 振动,保证汽车的正常行驶。悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种

汽车钢板弹簧悬架的参数化建模及可靠性计算

万方数据

万方数据

所需参数的复选框或单击“selectAll”选项,选择“Donesel”选项; e.输入必要的参数: f.软件按输入的参数自动更新模型。即可完成该钢板弹簧的设计建模(如图4)。 圈4铜板弹簧建梗图 3可靠性计算 3.1计算理论 各种车辆的钢板弹簧大部分为中心受载的筒支叠板弹簧(图 4),按一定的宽度将其截开重叠使用。其工作应力为: 3尸f 仃2石丽 式中,尸为载荷,6、JIl和,分别为板簧的宽度、厚度和长度,Ⅳ为板簧的钢板片数。 严格来说,应考虑叠板之间的摩擦对工作应力的影响.不过工程计算中采用这种近似设计方法是允许的,因此在车辆中的钢板弹簧设计里大多会采用这种近似方法。 根据应力一强度千涉理论,以应力极限状态表示的状态方程 为: 艄一器=尺一砘 式中,,为钢板弹簧的材料强度,基本随机参数向量胙n只‘反^17。 向量瑚均值目的和方差及协方差VamD均为已知,并可视其为服从正态分布的相互独立的随机变量。根据状态函数g㈤对向量朋勺一阶和二阶偏导数,可解出∥批)和DfVar国),然后代人可靠性指标公式,由卢邓。红,经推导整理得到可靠性指标为Ⅲ: 式中:彳=券+器%2+券×o.…2 庐器审+貉砰+将订+静×o.吣2 3.2增加计算关系 在参数设计中已设定了包括板簧基本尺寸、载荷以及材料性能等方面的各项计算必要参数,根据公式(1)的计算关系,在模型“工具”菜单下的“关系”中设置好计算可靠性指标的公式语句如下: TECHNICFoRUM A=3宰LoadE+LengthE/(2+WidmE木N)+3’LoadE+Len垂hE/(2+WidthE“2木N)}WidthS“2+9幸LoadE幸LengthE+O.015^2/ (2+WidthE+N) B=9+LengthE“2+LoadS^2/(4幸WidthE^2+N^2)+9?LoadE^2?LengthS^2/(4夺WidthE^2+N^2)+9木LoadE^24Len西hE^2宰 WidthS^2“4+WidthE“2+N^2)+9+LoadE^2幸Len垂hE^2? O.015“2“WidthE“2+N“2) C=sqn((S仃engtllE^2?N^4—2+StrengthE卑A掌N^2+A^2)/(B+s仃engthS“2+N“4)) 由参数c得到可靠性指标卢,对照正态分布表,则可查出对应的可靠度R。 4实际应用及改进 某车辆的钢板弹簧几何尺寸如表2所示。 表2板簧尺寸、藏荷及材料参数 打开钢板弹簧的建模文件,按2.4.2参数设计运行的步骤输入表2中的数据对模型进行更新,此时钢板弹簧的宽度、片数及跨距发生了变化,在窗口参数栏内,参数c显示为3.377,即可靠性指标卢=3.377,对照正态分布表查得对应的可靠度尺=O.9996,则可根据此结果进行设计处理,如生成零部件工程图、进行设计参数校核等。这与以前根据参数重新建模或修改模型、然后计算可靠性指标的工作流程相比,节省了大量时间、大大减少了繁琐的重复性工作。 针对平台的特点及设计的可逆性要求,此计算流程尚未实现优化设计,如输入可靠度便能计算出可靠性指标、优化板簧的某些尺寸等,这要涉及到复杂的微积分编程,并且还要能满足不同厚度钢板弹簧总成及其他结构形式板簧的建模与计算需求,这些内容有待在后续的设计中完善和提高。 参考文献 【1]张洪欣.汽车设计【M】.北京:机械工业出版社,1996. 【2】陈家瑞.汽车构造fM】.北京:人民交通出版社,1999. 【3】赵殿华,李兰英,朱杉等.钢板弹簧平衡悬架的设计计算程序化【J】.机械工程师,2006.07:50.53. 【4】张义民.汽车零部件可靠性设计【M】.北京:北京理工大学出版社,2000.09. 收稿日期:2008一12.15 2009.04氢辫61万方数据

后钢板弹簧悬架的结构设计

1 引言 1.1 汽车工业的发展 几千年来人们一直生活在马车时代。马拖着车厢在乡村田埂上颠簸行驶,在城市的大街小巷中踢踏的慢跑。人们的生活节奏缓慢,既沉重又舒展。18世纪,瓦特打破了这种平静,蒸汽机的发明掀起了工业革命的浪潮。随后,法国人尼克.卡歌楼特将蒸汽机装在马车上,第一辆“动力车”诞生了。1885年德国人卡尔.奔驰将汽油机装在车上,就出现了“汽车”。在19世纪末到20世纪初,蒸汽车、电动车、汽油车相互竞争,形成三足鼎立之势。汽油机不干净而且危险,于是电动汽车的销量占据上风,但是在以后的20年间,电动汽车由于速度慢、行程短等缺点,渐渐的被淘汰。而汽油机慢慢的变成了最可靠和最方便的发动机,这样汽车才成为主导的交通工具。 自1886年世界上第一辆汽车诞生以来,汽车已经历了120多年的发展来历程。随着科学技术日益发展,汽车的各项性能也日臻完善。现代汽车已经成为世界各国国民经济和社会生活中不可缺少的交通运输工具。 在汽车发展的短短一百多年的历史中,出现了三次革命。第一次革命是19世纪末发生在欧洲的汽车手工制作革命。随着蒸汽机、汽油机、柴油机等动力机械的出现,人们开始将这些机械装在马车上,就诞生了各种各样的汽车。那时的汽车都是一件一件的用手工制作,在一个作坊里或一个小车间里,就可以生产一部汽车。这种单一的生产模式使得汽车生产成本昂贵,所以汽车只是富豪们的享受品。即便在汽车制造完全机械化的今天,欧洲人还保留着这种生产模式,并生产出像“劳斯莱斯”这样的超豪华车。 汽车的第二次工业革命是汽车的大规模生产。1914年,亨利.福特发明了生产线,流水线大大地降低了汽车的安装时间和成本。福特汽车公司生产出价廉物美的T型车,这是汽车走向大众的起点。流水线的发明不仅是汽车历史上的一次革命,也给人类带来了工业历史上的一次革命。 汽车的第三次革命是20世纪70年代发生在日本的精益生产。20世纪60年代,日本实现了经济腾飞,汽车行业也随之发展。到70年代,日本一下子自成为世界上第二汽车生产大国。80年代,其产量还一度超过美国。 汽车是国民经济的支柱产业。汽车带动着很多行业的发展,如加油站、公路等。汽车发展到今天,已经不再是简单的交通运输工具,而且成为一种时尚。公路上奔驰着各种各样的汽车,

钢板弹簧课程设计46546

目录 1.汽车钢板弹簧结构选择 (4) 2.钢板弹簧结构设计计算 (5) 3.初定片数、截面尺寸 (7) 4.按作图法求各片弦长 (8) 5.挠度计算 (8) 6.钢板弹簧各片应力计算 (8) 7.加预紧力 (9) 8.钢板弹簧各片实际弦长的计算 (13) 9.在自由状态下各片的曲率半径计算 (14) 10.钢板在极限工作下的强度验算 (16) 11.卷耳和销的计算 (17) 12.参考文献 (18) 13.附表1 14.附图

汽车设计课程设计题目 设计题目:汽车钢板弹簧设计 主要技术和性能参数(第二组) 前轴轴负荷(N)空载15144 满载19344 前轴非簧载质量(kg)420 钢板弹簧作用距离L(mm)1300 两个”U”型螺栓中心距S(mm)110 静绕度f c(mm)(满载) 80-90 动绕度f a(mm) 56 钢板弹簧满载时弧高F 28 钢板弹簧卷耳固定点至路面距离C 550

汽车钢板弹簧简介 钢板弹簧是汽车悬架中应用最广泛的一种元件。它是由若干片等宽但不等长(厚度可以相等,也可不等),曲率半径不等的合金弹簧片组合而成的一根近似等强度的弹簧梁。钢板弹簧的第一片(最长的一片)称为主片,其两端弯成卷耳,内装青铜或塑料、橡胶、粉末冶金制成的村套,以便用弹簧销与固定在车架上的之家或吊耳作铰链连接。钢板弹簧主要由主片、副片、弹簧夹、螺栓、套管、螺母等组成。钢板弹簧的中部一般用U形螺栓固定在车桥上。汽车钢板弹簧的材料一般用60Si2Mn、55SiMnVB。

一、汽车钢板弹簧结构选择 1.选择断面形状 有矩形,T形,单面有抛物线边缘,单面有双槽等断面形式 为了提高疲劳强度,选用60Si2Mn材料即最常用的板簧材料为热轧弹簧扁钢。 因为矩形断面钢板弹簧的中性轴,在钢板断面的堆成位置上。工作时,一面受拉应力、另一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。故选择矩形断面形式。 2.长度圆整 圆整为“0”“5”尾数 3.叶片端部形状 选用矩形: 4.卷耳、吊耳的结构方案 ①吊耳②卷耳③包耳

悬架和油气弹簧悬架

读书笔记之汽车悬架概述 悬架定义:车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。 悬架功能:把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架或(或承载式车身)上,以保证汽车的正常行驶。 悬架组成:弹性元件、减振器和导向机构,辅设缓冲块和横向稳定器。 汽车悬架可以分两大类:非独立悬架和独立悬架 1. 非独立悬架 架结构简单,工作可靠,被广泛用于货车的前后悬架。在轿车中,非独立悬架一般仅用于后悬架。 常见的非独立悬架有四种(按照弹性元件的不同分类),即纵置钢板弹簧非独立悬架、螺旋弹簧非独立悬架、空气弹簧非独立悬架和油气弹簧非独立悬架 1.1 纵置钢板弹簧非独立悬架。 由于钢板弹簧本身可以兼起导向机构的作用,并有一定的减振作用,使得悬架结构大为简化,几乎不需要额外的导向结构,对于要求较低的车辆甚至可以不安装减振器。如图1

独立悬架的结构特点是两侧的车轮各自独立地与车架或车身弹性连接,因而具有以下优点: 1)在悬架弹性元件一定的弹性范围内,两侧车轮可以单独运动,而不互相影响,这样在不平道路上可以减少车架和车身的振动,而且有助于消除转向轮不断偏摆的不良现象。 2)减少了汽车非簧载质量。 3)采用断开式车桥,发动机总成的位置可以降低和前移,使汽车质心下降,提高了行驶稳定性。同时能给予车轮较大的跳动空间,因而可以将悬架的刚度设计得较小,使车身振动频率降低,改善行驶平顺性。 以上优点是独立悬架广泛的用于现在汽车上,特别是轿车,转向轮普遍采用了独立悬架。但是独立悬架结构复杂,制造和维修成本高。在独立悬架设计不合理的时,车轮跳动造成较大车轮外倾和轮距的变化,使轮胎磨损较快。 2.1车轮在汽车横向平面内摆动的悬架 2.1.1单横臂式独立悬架 单横臂独立悬架的特点是党悬架变形时,车轮平面将产生倾斜而改变两侧车轮与路面接触点间的距离—轮距致使轮胎相对于地面侧向滑移,破坏轮胎和地面的附着,且轮胎磨损较严重。此外这种悬架用于转向轮时,会使主销内倾和车轮外倾角发生较大的变化,对于转向操纵有一定的影响,故目前在前悬架中很少采用。但是由于结构简单、紧凑、布置方便,在车速不高的重型越野汽车上也有采用。图5所示极为单横臂式独立悬架,图6为采用单横臂式独立悬架的越野车。 2.1.2双横臂独立悬架 双横臂独立悬架的长度可以相等,也可以不相等。在两摆臂等长的悬架中,当车轮上下跳动时,车轮平面没有倾斜,但轮距却发生了较大的变化,这将增加车轮侧向滑移的可能性。在两摆臂不等长的悬架中,如果两摆臂长度适当,可以是车轮和主销的角度以及轮距的变化都不太大,如图7所示。 不太大的轮距变化在轮胎较软时可以由轮胎变形来适应,目前轿车的轮胎可以容许轮距在每个车轮上达到4~5mm 的而不致沿路面滑移。因此,不等长双横臂式独立悬架在轿车前轮上应用广泛。 有时出于布置和空间的考虑,也有使用扭转的弹簧的双横臂悬架,如图9所示。 图5 单横臂独立悬架 图6 单横臂独立悬架越野车 a b 图7 双横臂式独立悬架示意图 a )两摆臂等长的悬架 b )两摆臂不等长的悬架 图8 用于轿车前轮双横臂独立悬架 a b 双横臂式独立悬架示意图 a )两摆臂等长的悬架 b )两摆臂不等长的悬架 图9 使用扭簧的双横臂式悬架

钢板弹簧悬架系统设计规范--完整版

1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

常见汽车悬架解析

汽车常见悬架 一、汽车悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间的一起传力连接装置的总称。其功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向力以及这些反力所造成的力矩传递到车架(或承载式车身)上,以保证汽车的正常行驶。 二、悬挂系统的基本构成 汽车的悬架机构各有不同,但一般都由弹性元件、减振器、导向机构等三部分组成,分别起缓冲、减振和受力传递的作用。弹性元件即弹簧,承受垂直载荷,缓和及抑制不平路面对车体的冲击。减振器又指液力减振器,其功能是为加速衰减车身的振动,它也是悬挂系统中最精密和复杂的机械件。传力装置则是指车架的上下摆臂等叉形钢架、转向节等元件,用来传递纵向力、侧向力及力矩,并保证车轮相对于车架有确定的相对运动规律。此外,还铺设了缓冲块和横向稳定器。 三、汽车悬挂的分类 悬架按导向机构的基本形式分,有两大类,分别是独立悬挂和非独立悬挂。 1、非独立悬挂 非独立悬架其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。 非独立悬架的结构,特别是导向机构的结构,随所采用的弹性元件不同而有所差异,而且有时差别很大。采用螺旋弹簧、气体弹簧时,需要有较为复杂的导向机构;而采用钢板弹簧时,由于钢板弹簧本身可兼起导向机构的作用,并有一定的减振作用,使得悬架结构大为简化。因此,在非独立悬架中大多数采用钢板弹簧作为弹性元件。它中部用U型螺栓将钢板弹簧固定在车桥上。悬架前端为固定铰链,也叫死吊耳。它由钢板弹簧销钉将钢板弹簧前端卷耳部与钢板弹簧前支架连接在一起,前端卷耳孔中为减少摩损装有衬套。后端卷耳通过钢板弹簧吊

悬架和油气弹簧悬架

悬架和油气弹簧悬架 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

读书笔记之汽车悬架概述 悬架定义:车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。 悬架功能:把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架或(或承载式车身)上,以保证汽车的正常行驶。 悬架组成:弹性元件、减振器和导向机构,辅设缓冲块和横向稳定器。 汽车悬架可以分两大类:非独立悬架和独立悬架 1. 非独立悬架 架结构简单,工作可靠,被广泛用于货车的前后悬架。在轿车中,非独立悬架一般仅用于后悬架。 常见的非独立悬架有四种(按照弹性元件的不同分类),即纵置钢板弹簧非独立悬架、螺旋弹簧非独立悬架、空气弹簧非独立悬架和油气弹簧非独立悬架 纵置钢板弹簧非独立悬架。 由于钢板弹簧本身可以兼起导向机构的作用,并有一定的减振作用,使得悬架结构大为简化,几乎不需要额外的导向结构,对于要求较低的车辆甚至可以不安装减振器。如图1所示。 螺旋弹簧非独立悬架 a b 图1 纵置钢板弹簧非独立悬架 a)货车的后悬架 b)轿车的后悬架

螺旋弹簧非独立悬架一般只用作轿车的后悬架。其纵横向推力杆是悬架的导向机构,用来承受和传递车轴和车身之间的纵向和横向作用力和力矩,加强杆式的作用是加强横向推力杆的安装强度,并可使车身受力均匀。如图2所示。 图2 螺旋弹簧非独立悬架 空气弹簧非独立悬架 空气弹簧和螺旋弹簧一样只能传递垂直力,其纵向力和横向力及其力矩也是由纵向推力杆和横向推力杆来传递。这种悬架也需要安装减振器。

钢板弹簧悬架设计

专业课程设计说明书题目:商用汽车后悬架设计 学院机械与汽车学院 专业班级 10车辆工程一班 学生姓名 学生学号 201030081360 指导教师 提交日期 2013 年 7 月 12 日 1

一.设计任务:商用汽车后悬架设计 二.基本参数:协助同组总体设计同学完成车辆性能计算后确定 额定装载质量5000KG 最大总质量8700KG 轴荷分配 空载前:后52:48 满载前:后32:68 满载校核后前:后33::67 质心位置: 高度:空载793mm 满载1070mm 至前轴距离:空载2040mm 满载2890mm 三.设计内容 主要进行悬架设计,设计的内容包括: 1.查阅资料、调查研究、制定设计原则 2.根据给定的设计参数(发动机最大力矩,驱动轮类型与规格,汽车总质量和使用工况,前后轴荷,前后簧上质量,轴距,制动时前轴轴荷转移系数,驱动时后轴轴荷转移系数),选择悬架的布置方案及零部件方案,设计出一套完整的后悬架,设计过程中要进行必要的计算。 3.悬架结构设计和主要技术参数的确定 (1)后悬架主要性能参数的确定 (2)钢板弹簧主要参数的确定 (3)钢板弹簧刚度与强度验算 2

(4)减振器主要参数的确定 4.绘制钢板弹簧总成装配图及主要零部件的零件图 5.负责整车质心高度和轴荷的计算和校核。 *6.计算20m/s车速下,B级路面下整车平顺性(参见<汽车理论>P278 题6.5之第1问)。 四.设计要求 1.钢板弹簧总成的装配图,1号图纸一张。 装配图要求表达清楚各部件之间的装配关系,标注出总体尺寸,配合关系及其它需要标注的尺寸,在技术要求部分应写出总成的调整方法和装配要求。 2.主要零部件的零件图,3号图纸4张。 要求零件形状表达清楚、尺寸标注完整,有必要的尺寸公差和形位公差。在技术要求应标明对零件毛胚的要求,材料的热处理方法、标明处理方法及其它特殊要求。 3.编写设计说明书。 五.设计进度与时间安排 本课程设计为2周 1.明确任务,分析有关原始资料,复习有关讲课内容及熟悉参考资料0.5周。 2.设计计算0.5周 3.绘图0.5周 4.编写说明书、答辩0.5周 3

悬架和油气弹簧悬架

精心整理 读书笔记之汽车悬架概述 悬架定义:车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。 悬架功能:把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架或(或承载式车身)上,以保证汽车的正常行驶。 悬架组成:弹性元件、减振器和导向机构,辅设缓冲块和横向稳定器。 汽车悬架可以分两大类:非独立悬架和独立悬架 1.非独立悬架 架结构简单,工作可靠,被广泛用于货车的前后悬架。在轿车中,非独立悬架一般仅用于后悬架。

独立悬架的结构特点是两侧的车轮各自独立地与车架或车身弹性连接,因而具有以下优点: 1)在悬架弹性元件一定的弹性范围内,两侧车轮可以单独运动,而不互相影响,这样在不平道路上可以减少车架和车身的振动,而且有助于消除转向轮不断偏摆的不良现象。 2)减少了汽车非簧载质量。 此外这 7 10所

值得注意的是,在大多数超级跑车和几乎所有的方程式赛车上,减振器和螺旋弹簧的并没有直接安装在横臂或者立柱上,而是通过一个推拉杆和换向摇臂将悬架的跳动运动传递到减振器和弹簧,如图14所示,减振器和弹簧则更靠近车身轴线且通常隐藏于车壳内部。使用这种结构的原因应该有如下几点:1)便于布置,较细的推拉杆更方便布置,以免和传动轴和转向拉杆发生干涉,对于方程式赛车来说其较长的横臂使得小行程的减振器不足以连接横臂和车架,必须通过推拉杆来传递力和运动。2)减小空气阻力,这一点对方程式赛车特别重要,露在外面的推拉杆显然比粗壮的减振器和弹簧拥有更小的正投影面积,同时能够有效减小乱流。3)减小非簧载质量,减振器和弹簧的重量有它们两端的支座承受,只有推拉杆的一部分质量贡献给非簧载质量,同时由于不需连接减振器和弹簧,横臂结构也相对简化,进一步减少了非簧载质量。4)调整悬架参数,通过合理设计推拉杆和换向器结构,可以实现机构传动比的变化,从而实现悬架的线刚度的变化,即实现变刚度。当然,在普通民用车上,基于成本和使用空间的考虑,并不采用这种结构。 单纵 19所 级,B 主销的

汽车钢板弹簧悬架设计(doc41页).doc

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦 还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹 簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ① 通多片钢板弹簧,如图1-a 所示,这种弹簧主要用在载货汽车和大型客车上, 弹簧弹性特性如图2-a 所不,呈线性特性。 图1 图2 ② 少片变截面钢板弹簧,如图1-b 所不,为减少弹簧质量,弹簧厚度沿长度方向 制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a 。这种弹簧主要用于 轻型货车及大、中型载货汽车前悬架。 ③ 两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽 车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载 荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④ 渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车 后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特 性,如图2-c 所示。 多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要 求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹 簧的强度要求。 荷 载 V :

3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量, 得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c。选取悬架静挠度值时,希望后悬架静挠度值c2小于前悬架静挠度值ci,并且两值最好接近,一般推荐:

汽车钢板弹簧设计计算

。 1.1单个钢板弹簧的载荷 已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷: Fw1=(G1-Gu1)/2=1357.5 kg (1) 进而得到: Pw1=Fw1×9.8=13303.5 N (2) 1.2钢板弹簧的静挠度 钢板弹簧的静挠度即静载荷下钢板弹簧的变形。前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。一般汽车弹簧的静挠度值通常如表1[2]所列范围内。 本方案中选取fc1=80 mm。 1.3钢板弹簧的满载弧高 满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。当H0=0时,钢板弹簧在对称位置上工作。考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。本方案中H01初步定为18mm。 1.4钢板弹簧的断面形状 板弹簧断面通常采用矩形断面,宜于加工,成本低。但矩形断面也存在一些不足。矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。本方案中选用矩形断面。 1.5钢板弹簧主片长度的确定

汽车钢板弹簧的性能、计算和试验

汽车钢板弹簧的性能、计算和试验 东风汽车公司技术中心陈耀明 1983年3月初稿 2005年1月再稿

目录 前言(2) 一.钢板弹簧的基本功能和特性(3) 1.汽车振动系统的组成(3) 2.悬架系统的组成和各元件的功能(6) 3.钢板弹簧的弹性特性(7) 4.钢板弹簧的阻尼特性(12) 5.钢板弹簧的导向特性(14) 二.钢板弹簧的设计计算方法(17) 1.单片和少片变断面弹簧的计算方法(17) 2.多片钢板弹簧的刚度和工作应力计算(24) 3.多片弹簧各单片长度的确定(32) 4.多片弹簧的弧高计算(36) 5.钢板弹簧计算中的几个具体问题(43)三.钢板弹簧的试验(46) 1.钢板弹簧的静刚度测定(46) 2.钢板弹簧的动刚度测定(50) 3.钢板弹簧的应力测定(52) 4.钢板弹簧单片疲劳试验(53) 5.钢板弹簧总成疲劳试验(54)

前言 本文是为汽车工程学会悬架专业学组所办的“减振器短训班”撰写的讲义,目的是让汽车减振器的专业人员对钢板弹簧拥有一些基本知识,以利于本身的工作。内容分为三部分:钢板弹簧的基本功能和特性,设计计算方法,以及试验等。因为这部分内容非本次短训班的重点,所以要求尽量简单扼要,也许有许多不全面的地方,只供学习者参考。有关钢板弹簧较详细的论述,可参考本学组所编的“汽车悬架资料”。

一.钢板弹簧的基本功能和特性 1.汽车振动系统的组成 汽车在道路上行驶,由于路面存在不平度以及其它各种原因,必然引起车体产生振动。从动态系统的观点来看,汽车是一个多自由度的振动系统。其振源主要来自路面不平度的随机性质的激振,此外还有发动机、传动系统以及空气流动所引起的振动等等。 为改善汽车的平顺性,也就是为减小汽车的振动,关键的问题是研究如何对路面不平度的振源采取隔振措施,这就是设计悬架系统的根本目的。换言之,就是在一定的道路不平度输入情况下,通过悬架系统的传递特性,使车体的振动输出达到最小。 当研究对象仅限于悬架系统时,人们往往把车体当为一个刚体来看待。即使这样,汽车仍然是一个很复杂的多自由度系统,见图1。如果不涉及汽车的横向振动和角振动,可以将左右悬架合并,使汽车振动系统进一步简化,见图2。在一定条件下,也就是当质量分配系数等于1,即前后悬架的输出与输入各自的相干特性达到最大值时,就可以将前、后悬架分开,单独看成一个两自由度振动系统。这时,组成每一个振动系统的元素就是质量(簧载质量与非簧载质量),弹性元件(悬架弹簧和轮胎)和阻尼元件(悬架阻尼元件和轮胎阻尼),见图3。

汽车钢板弹簧悬架设计方案

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。 变形 载荷变形 载荷变形载荷 图1 图2 ②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。 ③两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c 所示。

多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹簧的强度要求。 3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c δ。选取悬架静挠度值时,希望后悬架静挠度值2c δ小于前悬架静挠度值1c δ,并且两值最好接近,一般推荐:

汽车油气悬架系统设计

目录 一、绪论 (5) 1.1概述 (5) 1.2油气悬架特性 (6) 1.3国内外研究现况 (7) 1.4本课题研究意义和研究内容 (9) 二、油气悬架的结构形式和工作原理 (10) 2.1系统分类 (10) 2.2单气室油气弹簧 (10) 2.3双气室油气弹簧 (12) 2.4两级压力气室油气弹簧 (12) 三、油气悬架系统建模 (13) 3.1概述 (13) 3.2单气室油气弹簧非线性模型 (13) 3.2.1单气室油气悬架物理模型的建立 (13) 3.2.2单气室油气悬架数学模型的建立 (14) 3.2.3单气室油气悬架参数的确定 (21) 3.3双气室油气弹簧非线性模型 (22) 3.3.1双气室油气悬架物理模型的建立 (23) 3.3.2双气室油气悬架数学模型的建立 (24) 3.3.3双气室油气悬架参数的确定 (26) 四、油气悬架系统特性分析 (30) 4.1概述 (30) 4.2非线性特性影响因素 (30) 4.3刚度特性 (31) 4.3.1 油气悬架刚度特性公式推导 (31) 4.4阻尼特性 (32) 4.4.1 油气悬架阻尼特性公式推导 (32) 五、一种单气室阻尼可变油气分离式弹簧的设计 (35) 5.1设计背景说明 (35) 5.2设计内容及构成 (35) 5.3附图说明 (36) 5.4具体工作过程 (41) 六、总结 (42)

参考文献 (43) 致谢 (44)

汽车油气悬架系统设计 摘要车身的原有的振动决定了汽车的舒适性和平顺性,车身的固有振动频率特性与悬架的特性有关。车架和车桥之间的传输力和力矩的连接装置叫做悬架,用来缓冲车辆行驶过程中遇到的路面颠簸带给车身或车桥的振动,同时降低由其带来的冲击。油气悬架有很好的非线性刚度特性和非线性阻尼特性,车辆采用这种悬架系统可达到汽车平稳运行,减少道路的颠簸,缓解驾驶疲劳,提高车辆的乘坐舒适性。因此,对油气悬架系统性能的设计与研究对车辆的乘坐舒适性具有重要的意义。 在单汽缸油气弹簧为基础的研究对象上,主要工作集中在以下几个方面:首先悬架系统的发展历程,实际应用,研究现况,然后叙述了悬架的分类和各自的技术特点。然后建立了粗糙的油气悬架的物理模型和数学模型,分析油气悬架系统特性的影响因素,在此基础上,设计了一种新型结构的基于整车油气悬架的试验台,它的负载量是可变的、油气是分离式的。 关键词:油气悬架非线性特性整车油气悬架结构设计

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

油气弹簧结构

汽车减震器结构原理图

( 工作原理 图?所示为单气室油气分隔式油气弹簧 。在其活 塞杆内设有一个圆柱形容腔, 该容腔由浮动活塞隔离 成气室和内油室。工作时气室内充入氮气, 内油室通 过阻尼孔与外油室相通, 并充满油液。浮动活塞的作 用在于把作为弹性介质的高压氮气和压力油分开, 以 避免油液乳化, 同时也便于充气和保养。在主活塞上 设有阻尼孔, 阻尼阀座周向均匀分布0 个孔, 对称相隔地装有& 个压缩阀和& 个伸张阀。 当载荷增加, 车架与车桥之间距离缩短时, 主活 塞2 移, 迫使工作液经压缩阀和阻尼孔进人内油室, 从而推动浮动活塞下移, 使气室容积减小, 气压增高。 气压的升高又通过油液的传递变为作用在主活塞上的 力, 当此力与外界载荷相等时, 活塞便停止运动。于 是, 车架与车桥的相对位置不再变化。当载荷减小即

推动活塞上移的作用力减小时, 浮动活塞在高压氮气的作用下向内油室一侧移动, 迫使油液经伸张阀及阻尼孔流回外油室, 并推动主活塞向下移动, 车架与车桥间距离变大, 直到气室通过油液作用在主活塞上的力与外界减小的载荷相等时, 主活塞才停止移动。汽车在行驶过程中, 油气弹簧所受到的载荷是变化的, 因此活塞便相应地在工作缸中处于不同的位置, 起到弹性元件的作用。 另外, 该油气弹又起到减振器的作用。 工作液 通过阻尼孔时, 消耗一部分能量, 以热量的形式散发出去。在压缩行程时伸张阀关闭, 在一定压差 %3 45 67 ( 作用下压缩阀开启。在伸张行程时, 压缩阀关闭, 而伸张阀在一定压差%?

, 567 ( 作用下开启, 从而保证了压缩行程时缓和冲击和伸张行程时有效衰减振动的要求 。 % ( 结构特点 上述结构的油气弹簧具有如下的特点? 气室设计在活塞杆内, 密封效果好, 结构紧凑, 体积小, 重量轻 采用浮动活塞进行油气分离, 以适应重型越野 车动行程大的特点, 克服了膜片隔离式动行程小的不足。另外, 采用了浮动活塞后, 气室容积可任意调整, 以适应不同的刚度要求 ! 阻尼孔可拆卸更换。通过更换阻尼孔, 可获得 不同的减振性能, 以满足不同的车辆要求 ?通过外油室的充油或排油可实现车高的调节或

汽车悬架弹簧钢

汽车悬架弹簧钢 1前言 悬架弹簧是汽车重要部件,它在周期性弯曲扭转等交变应力下工作,经常承受拉、压、扭、冲击、疲劳、腐蚀等多种作用,所以应具有高的弹性极限。同时为防止疲劳与断裂,悬架弹簧还应有高的疲劳强度与足够的塑性、韧性。随着能源日趋紧张,为了减轻汽车重量,对悬架弹簧钢提出了新的要求,减轻其重量的最有效办法是提高弹簧设计应力。经计算,弹簧重量与设计应力平方成反比,而抗疲劳与抗弹减性能是直接影响弹簧设计应力的主要因素。 汽车轻量化,促使汽车悬架弹簧高应力化非金属夹杂物则是悬架弹簧损坏失效的主要原因,如何降低弹簧钢中非金属夹杂物数量,改善夹杂物形态与分布,冶炼高纯弹簧钢已成为当前弹簧钢生产的一个关键问题。 1 1 1汽车用悬架弹簧的质量要求 1. 1车用悬架弹簧的种类和特点 悬架弹簧在汽车行驶过程中,承受高频往复压缩运动,起着缓冲和减震作用,其质量好坏,对车辆平稳性、安全性起着至关重要的作用。轿车、客车对悬架弹簧性能要求较高,需要达到减小噪音、提高舒适度和平稳性等要求;重型及超重型载货车需要高强度悬架弹簧。悬架弹簧的技术发展趋势总体上向轻量化、高应力、高可靠度发展,悬架弹簧设计应力要求大于1100MPa,高的可达1200MPa。 汽车行业使用的悬架弹簧分为钢板弹簧和螺旋悬架弹簧两大类。轿车用螺旋悬架弹簧,钢丝直径9~16mm,常用4个悬架弹簧,每辆车平均需要弹簧钢线材15 kg,钢种为60Si2MnA,55SiCr(SUP12) , 50CrV A等。一些微型汽车和面包车的悬架弹簧、摩托车减震弹簧等也使用螺旋悬架弹簧。悬架弹簧对弹簧钢丝的化学成分、夹杂物数量和形态分布、表面质量、脱碳层、显微组织及力学性能等要求较高。悬架弹簧要求表面脱碳层小于直径的0.5%、表面要磨光、尺寸公差要求比较严格、应无缺陷交货。采用通常热加工方式难以达到用户要求,因此,轿车悬架用弹簧逐渐由热成形改为冷成形,经拉拔、热处理后制成卷簧。悬架弹簧钢丝发展方向是降低碳含量、减少脱碳,提高塑性成形性和抗弹性衰减等性能。 车用悬架弹簧应用较多的是Si - Cr系弹簧钢。这类钢的抗回火稳定性好,松弛抗力高,疲劳寿命较理想, 但在一些微型车上, 悬架弹簧也常用60Si2MnA或50CrV A钢。扭杆弹簧结构简单,有利于车辆整体布置,在一些轿车和轻型车上应用,也有在重型军用车上应用的。 在传统Si-Mn弹簧钢的基础上通过降低C含量并添加Ni, Cr,Mo和V等合金元素,已开发出高强度和韧性的弹簧用钢。在传统的Cr-V系弹簧钢中添加Nb 可提高钢的抗延迟断裂性能,使钢的抗拉强度达到1800MPa。提高弹簧疲劳强度的有效途径是对弹簧进行喷丸和氮化处理。 1. 2车用悬架弹簧对线材的质量要求 轿车悬架弹簧用线材对钢的纯净度、尺寸精度、表面质量有严格的要求。 实践证明,线材的直径精度对减少拉丝模磨损、降低能耗、减少断丝、保证拉拔稳定进行具有重要意义。悬架弹簧用线材的直径公差控制在±0.2mm,椭圆度不大于直径公差的60%。线材表面的裂纹、折叠、划伤等缺陷严重影响钢丝的质量,降低悬架弹簧的疲劳寿命。线材表面应光滑,不得有裂纹、折叠、结疤、耳子等。局部的凸块、凹坑、麻面等缺陷尺寸不得大于0.10mm。线材力学性能

相关文档
最新文档