可压缩湍流边界层的基本方程-中国力学学会

可压缩湍流边界层的基本方程-中国力学学会
可压缩湍流边界层的基本方程-中国力学学会

Copyright ? 2014

版权所有 中国力学学会

地址: 北京市北四环西路15号 邮政编码:100190 Address: No.15 Beisihuanxi Road, Beijing 100190

第八届全国流体力学学术会议 2014年9月18~21日 甘肃兰州

文章编号: CSTAM2014-B01-0037

标题:可压缩湍流边界层平均场的多层结构对称性

作者:吴斌*

,毕卫涛*

,张又升+

,佘振苏*

单位:*

北京大学工学院力学与工程科学系,湍流与复杂系统国家重点实验室,北京 100871

+北京应用物理和计算数学研究所,北京 100094

第八届全国流体力学学术会议 2014年9月18-21日 甘肃 兰州

CSTAM2014-S01037

1)基金资助项目:国家自然科学基金(11372008, 11221062) 可压缩湍流边界层平均场的多层结构对称性1)

吴斌*,毕卫涛*,2),张又升+,佘振苏*

*(北京大学工学院力学与工程科学系,湍流与复杂系统国家重点实验室,北京 100871)

+(北京应用物理和计算数学研究所,北京 100094)

摘要 应用佘振苏等近期创建的壁湍流结构系综理论(Structural Ensemble Dynamics 或SED )研究了零压力梯度超音速平板湍流边界层平均场的多层结构特性。通过分析不同马赫数、雷诺数和壁面温度的可压缩湍流边界层(CTBL )的直接数值模拟数据,证明了在CTBL 中,速度和温度混合长存在SED 理论所预言的多层结构对称性。基于该多层结构对称性给出了速度和温度混合长的解析表达式,获得了对CTBL 平均速度和平均温度剖面的误差小于1%的理论预测。测量了速度和温度混合长的多层结构参数,分析了其随马赫数、雷诺数和壁面温度的变化。结果表明,多层结构参数能够有效刻画CTBL 的马赫数效应及壁面温度效应,具有显著的物理意义。 关键词 边界层,可压缩湍流,多层结构,对称性,平均场

引 言

可压缩湍流边界层是航空航天与能源动力工程中广泛存在的基本流动。构建可压缩湍流边界层的基础理论,对发展湍流工程计算模式、提高气动设计水平具有重要意义。然而,与不可压缩湍流边界层相比,可压缩湍流边界层有着更多的复杂性,使其基础理论的研究非常困难。比如对于最简单的所谓规范湍流边界层(零压力梯度光滑平板湍流边界层),可压缩流动在雷诺数效应之上又增加了马赫数和壁面温度等效应,几种效应(或涡、声和熵模式[1])的复杂非线性相互作用,增加了理论分析的难度。已有的理论成果主要是在不可压缩湍流边界层的理论中,以“恰当”的方式引入了气体平均物性参数变化的影响,即采用了Morkovin 假设的思想[1,2]。这些理论存在若干不足,比如通常具有唯像性和经验性的特征,定量上精确度有限、可应用的参数范围不足够明确,也难以对理论进行修正和拓展,等等。

最近,佘振苏等提出了湍流的结构系统理论(Structural Ensemble Dynamics 或SED ),为构建复杂湍流的基础理论提供了新的思路[3,4]。SED 理论认为湍流具有内在多尺度、多自由度的(第一类)复杂性和外部多状态、

多环境的(第二类)复杂性,是力学系统中典型的复杂系统,应采用复杂系统学的认识论和方法论来研究[5,6]。简言之,SED 理论构建了一元二面的湍流本体论模型和多维多层次的湍流研究方法论[7]。SED 理论认为,湍流的平均和脉动场构成了湍流的“静”“动”二面;其一元为自组织性,体现为湍流场具有的对称性。在SED 理论中,对称性被认为是湍流的基本原理,也是湍流不封闭问题中所缺失的定解原理。这种对称性由一个称为“序函数”的变量来表达。序函数是平衡态统计物理学中序参量概念在非平衡系统中的推广,是最能反映脉动场对平均场状态影响的宏观变量。在湍流中,序函数是联系脉动场(湍流未封闭项)与平均场的桥梁,尤其是反映了不同脉动结构系综的标度行为的变化[6]。因此,识别序函数、确定其对称性成为湍流研究的关键。在这方面,SED 理论提出了多维多层次的湍流研究方法论,以及湍流的序函数分析方法,为开展一系列具有工程意义的复杂湍流的研究提供了框架和解决方案。

SED 理论在规范壁湍流(不可压缩的圆管、槽道和零压力梯度平板边界层)的研究中取得了很大成功[6]。佘振苏等发现在规范壁湍流中混合长等变量具备序函数的特征。通过创新性的应用李群理论,他们构造了三类拉伸群

不变解形式,从而获得了混合长的全场多层结构形式的解析解,由此得到了平均速度剖面、表面摩阻系数等的理论预测,与直接数值模拟(DNS)和实验结果高度一致(精度达99%)。一个标志性的成果是发现了0.45的普适的卡门常数,回答了学界关于幂次律和对数律,以及关于卡门常数取值的争议。SED理论也针对规范壁湍流之外的其它复杂湍流开展了有成效的研究,包括R-B热对流,以及有粗糙度效应[8]、压力梯度效应和可压缩效应的壁湍流[9,10]等。同时,SED理论在湍流脉动场的研究、湍流模式理论研究等方面也取得了初步而重要的成果[4]。

鉴于SED理论在不可压缩的零压力梯度平板湍流边界层的研究上取得了极大成功,我们展望其会对可压缩湍流边界层的基础理论研究产生推动。该推动体现在两个层次上,其一是仍然基于Morkovin假设的框架,但由于不可压缩的湍流边界层有了精确的平均场理论,可压缩湍流边界层的理论有望得到提升。在这方面,我们已经开展了一些工作,获得了关于马赫数效应和壁面温度效应的更高精度的理论刻画[9,10]。其二是发展可压缩湍流边界层的SED理论,即辨识决定可压缩湍流边界层的各个物理维度的序函数,确认其多层结构对称性,研究多层结构参数的演化规律,并且探索背后的物理机制和原理。这个可压缩湍流边界层的SED理论有希望最终从定量上和理论深度方面对经典的Morkovin假设理论形成突破,回答既有理论未能明确的一系列关键科学问题。本研究即依据这个思路开展了初步的探索,通过对零压力梯度可压缩平板湍流边界层的DNS 数据开展序函数分析,分别研究了速度和温度混合长的多层结构对称性。

1 直接数值模拟简介

本研究基于对可压缩平板湍流边界层的DNS数据的分析。DNS采用了中科院力学所李新亮研究员等研制的CFD软件OpenCFD-SC。OpenCFD-SC是一个开源的以科学计算为目的的全N-S方程高精度有限差分求解器。利用OpenCFD-SC,我们先后在上海和天津的超算中心完成了大规模的并行计算。

计算中, N-S方程的时间推进采用了3阶TVD-RK格式;无粘对流项的求解采用了Steger-Warming分裂法和7阶JS-WENO格式;粘性项的计算采用了8阶中心差分格式。

本文计算的是空间发展的可压缩湍流边界层[11]。来流为层流边界层,经吹吸扰动后边界层发生转捩,逐步发展为充分发展的湍流边界层,之后进入出口缓冲区。壁面为无滑移等温边界条件,远场为零压力梯度无反射边界条件,出口为无反射边界条件,展向为周期性边界条件。在流向的充分发展湍流区和法向的近壁区,都对网格进行了加密。

流动控制参数、计算区域和网格参数如表1所示。

表1 DNS算例的基本参数

算例Ma Ret T w/T∞T w/T r M2.25 2.25 500-1000 1.90 1.00 M4.5T0 4.5 325-600 4.39 0.95 M4.5T1 4.5 600-860 2.50 0.54 M4.5T2 4.5 1950-2350 1.00 0.22 M6.0 6.0 275-600 6.98 0.93

算例Lx×Ly×Lz Nx×Ny×Nzδ+x×δ+yw×δ+z

M2.25 12.23×0.5×0.1754000×85×25613.23×0.9×6.15

M4.5T0 12.46×0.56×0.194500×120×300 5.25×0.43×2.74

M4.5T1 14.33×0.56×0.194500×120×3007.97×0.89×5.64

M4.5T2 10.31×0.56×0.0664600×150×30020.54×1.15×7.9

M6.0 13.57×0.6×0.205000×150×320 5.63×0.45×2.81

1)基金资助项目:国家自然科学基金(11372008, 11221062) 2 可压缩湍流边界层的基本方程

零压力梯度的可压缩平板湍流边界层的平均流向动量方程和平均能量方程可以写作[1]:

h.o.t.~""~~~~+???

? ????+-??=??+??y u v u y y u v x u u μρρρ

(1)

(2)

h.o.t. )~~~""(~~~~+??+??+-??=??+??y T k y u u v H y y H v x H u μρρρ其中上标-表示雷诺平均;上标~和”分别表示Favre 平均和相应的脉动量:ρρ/~

X X =,

X X X ~

"-=;H 为总焓:2

2

u T C H p +=;其

它量的定义遵循惯例。

从壁面(y =0)起沿壁面法向将(1)和(2)积分,有:

(3) h.o.t.)~~~~(~""0??+??+??-==??+-y

dy y

u v x u u y

u

v u ρρτ

μρ (4) h.o.t.)~~~~(~~~""0??+??+??--=-=??+??+-y

w dy y

H v x H u q q

y

T k y u u v H ρρμρ 其中τ为总应力,q 为总热流, w w y T k q ????

????-=~为壁面平均热流。由于"~""u u

T C H p +≈,将(3)代入(4),可将(4)改写为:

(5) ~

~""q u y T k v T C p -=+??+-τρ

(3)和(5)以壁面参数无量纲化后有:

(6) ~""+

+

+

++=??+-τμρy

u v u (7)

~)1(~

Pr 1""2++

++

+++-=-+??+-q B u M y T k v T q τγρτ 其中,w RT u M γττ/=为摩擦马赫数,

)/(w w p w q T u C q B τρ=为壁面传热因子。

不可压缩湍流边界层的动量方程的无量纲形式为:

(8) ''+++

+

=??+-τy

u v u

与(8)相比,可压缩湍流边界层的平均密度和平均粘性系数是温度的函数,沿壁面法向有剧烈变化,因此,动量方程(6)需要与能量方程(7)联立求解。这是可压缩湍流边界层的复杂之处。

图 1 画出了同一雷诺数下,不同马赫数的

近绝热壁可压缩湍流边界层的无量纲总应力的剖面。总应力的马赫数效应非常微弱,这个结

果与Morkovin Scaling 相符[2]。SED 理论给出了总应力的一个近似模型(亏损标度律模型):

(9) )(-1)Re (-1 1.299

1.2δτy

y τ==++

由图1可见,模型(9)与DNS 符合良好。(9)中的指数 1.2存在一定的雷诺数效应,需要进一步研究。

m e a n t o t a l s t r e s s

+

e n e r g y

f u n c t i o n b u d

g e t

+

y+

图2能量方程(5)中各项的剖面,其中总应力分解为粘

性应力和雷诺应力。图中DNS 为同一雷诺数(Ret=550),不同马赫数近绝热壁可压缩湍流边界层。

能量方程(5)的各项如图2和图3所示。图2为同一雷诺数,不同马赫数的近绝热壁的情形。在近绝热等温壁的条件下,总热流近似为

图31q +

=e n e r g y f u n c t i o n b u d g e t

+

y+

图3能量方程(5)中各项的剖面,其中总应力分解为粘性应力和雷诺应力。图中DNS 为Ma=4.5,不同壁温的

可压缩湍流边界层。

3 序函数分析

不可压缩湍流边界层的SED 理论确定了Prandtl 混合长是一个序函数,满足如下的三层结构标度律[6]:

1121

322//()(1())

(1) (1(

)) (11)(1)

n n m

sub sub

m

n n buff y y l y y y r y m r γγγσ+++

++++=?+-?+?-

其中+

++

+

??-=y u v u l m /''为Prandtl 混合长;σ为近

壁系数:+

+=b u f f s u b

y

y

/2κσ,

κ

为卡门常数;

+

sub

y 和+buff y 分别为粘性底层和缓冲层的厚度;1γ、2γ、3γ为标度指数;1n 、2n 为跃迁强度;

M y r δ/1-=为外区坐标;M δ为边界层外区尺

度(外区的拉伸对称中心);4=m 。

由(11)、(8)和SED 的总应力亏损模型可以预测不可压缩湍流边界层的平均速度剖面。该理论预测得到了美国斯坦福、法国里尔、瑞典KTH 和澳大利亚墨尔本等一系列国际知名研究机构的实验数据的支持,理论与实验的误差在2%以内[4,6]。

对于可压缩湍流边界层,Prandtl 混合长如何恰当的定义?是否仍然满足多层结构对称性?这些都是未知的问题。此外,由于气体物性参数的变化,用于封闭雷诺应力的Prandtl 混合长不足以求解平均场方程(6)和(7),还需要针对湍流热流引入相应的序函数。本节将针对这些具体问题进行初步的探讨。 3.1 速度和温度混合长

在可压缩湍流边界层中,Prandtl 混合长(这里称速度混合长)可以写作:

+++

+

+??-=

y

u v u l m /~"

"1

ρρ (12) 针对零压力梯度绝热壁的可压缩湍流边界层,我们最近还提出了马赫数不变的混合长[9]:

+

+++

+

+++

??-==y u

v u l l m MI

~1""μρμρ (13) 由于因子26.0~~T ++μρ[1],+MI l 仅是对+

m l 的微弱修正。将(12)代入(6)有:

(14) ~)~(22++++++++=??+??τμρy

u y u l m

引入温度混合长[1]:

+

+++++

+????-=y

T y u

v T l ~~""2

ρρθ (15) 温度混合长+θl 和速度混合长+

m l 之间存在关系:

t m y

u y T v u l l Pr /~/~""22

=????=+++

+++++ρθ (16) 其中t Pr 为湍流普朗特数。将(15)代入(7)有:

(17)

~)1(~Pr 1~~22

++

++

++++++++-=-+??+????q B u M y

T k y T y u l q τγρτθ

由于气体物性参数+ρ、+

μ和+k 是温度+T ~的

确定性函数,在已知速度混合长和温度混合长的情况下,(14)、(17)和(9)、(10)构成了一组封闭的平均场方程,能够提供平均速度和平均温度分布的理论预测。

3.2 混合长的多层结构对称性

我们仍以不可压缩湍流边界层中Prandtl 混合长的三层结构模型来对速度和温度混合长进行模拟。

图4给出了不同马赫数近绝热壁可压缩湍

流边界层的速度混合长与其SED三层结构模型的比较。模型参数见表2。模型参数的确定过程将另文阐述。图4显示,速度混合长的SED 三层结构模型能够在全流场与DNS数据较好地相符(误差小于4%),表明该速度混合长满足SED理论所预言的多层结构对称性。此外,模型给出了一个新的边界层厚度δM。δM是边界层的一个外区尺度,在模型中为外区拉伸对称中心的位置。在有限雷诺数下,δM明显小于传统定义的边界层厚度δ99。

图5给出了不同马赫数近绝热壁可压缩湍流边界层的温度混合长与其SED三层结构模型的比较。模型参数见表3。

图4不同马赫数近绝热壁可压缩湍流边界层的速度混合长及其多层结构模型。图中算例的Ret=550。

表2 速度混合长的SED多层结构模型参数参数M2.25 M4.5T0 M6.0

σ 1.14 1.18 1.17

Y sub+10 10 10

Y buff+51 44 43

γ1 1.5 1.5 1.5

γ20.5 0.5 0.5

γ3-1 -1 -1

n1 4 4 4

n2 4 4 4

δM/δ990.69 0.69 0.69

m 4 4 4

l

+

y+

图5不同马赫数近绝热壁可压缩湍流边界层的温度混合长及其多层结构模型。图中算例的Ret=550。

表3 温度混合长的SED多层结构模型参数

参数M2.25 M4.5T0 M6.0

σ 1.14 1.17 1.16

Y sub+10 10 10

Y buff+49 41 41

γ1 1.5 1.5 1.5

γ20.5 0.5 0.5

γ3-0.9 -0.9 -0.9

n1 4 4 4

n2 4 4 4

δM/δ990.69 0.69 0.69

m 4 4 4

图6马赫数2.25的近绝热壁可压缩湍流边界层的湍流普朗特数及其SED模型。图中算例的Ret=550。

温度混合长与速度混合长的模型参数仅有微小的区别,区别主要反映在标度指数γ3上。以往的研究表明可压缩湍流边界层的湍流普朗特数约在0.7-0.9之间,明显偏离1[10]。鉴于湍流普朗特数是速度混合长与温度混合长之比的平方(公式(16)),温度混合长与速度混合长的SED 三层结构模型也提供了湍流普朗特数的多层结构理论模型。图6给出了马赫数2.25边界层的湍流普朗特数的DNS 与SED 理论模型的比较,二者非常一致。数据分析表明,湍流普朗特数偏离1与温度混合长的标度指数γ3偏离-1有直接关系,其机理有待进一步研究。

(a)

u +

y+

(b)

e r r o r

y+

图7(a)马赫数2.25的近绝热壁可压缩湍流边界层的平均速度剖面及其SED 理论预测结果;(b) 理论与DNS

的相对误差。图中算例的Ret=550。

由速度和温度混合长的SED 三层结构模型,以及动量与能量方程(14)和(17)、总应力与总热流的亏损模型(9)和(10),可以得到可压缩湍流边界层的平均速度剖面和平均温度剖面的理论预测结果。图7是仅由速度混合长的SED 理论模型预测的平均速度剖面(气体的物性参数采用了DNS 值)与DNS 结果的比较,二者非常一致,误差在全流场都小于1%(图7b )。该结果表明可压缩湍流边界层的混合长

序函数的多层结构理论模型对平均场有极为准确的预测能力。

4 结论

本文尝试将最新发展的规范壁湍流的结构系综理论拓展到零压力梯度可压缩平板湍流边界层。初步的研究表明速度和温度混合长均存在SED 理论发现的多层结构对称性,是能够封闭平均场方程的序函数。速度和温度混合长的SED 多层结构模型能够提供平均场的精确理论预测,其多层结构参数反映了可压缩湍流边界层的流动状态的变化。

下一步的研究内容包括进一步扩展可压缩湍流边界层DNS 的参数范围(提高雷诺数和马赫数),观测序函数的多层结构模型参数随流动控制参数的演化,进而构建完整的可压缩湍流边界层的结构系综理论。

致谢:在数值计算上受到李新亮研究员的指导,在此表示感谢。同时受益于与陈曦博士的

讨论。也感谢上海和天津超算中心提供了计算资源。感谢来自国家自然科学基金的资助。

参考文献

1 Smits AJ, Dussauge JP. Turbulent shear layers in supersonic flow. New York: Springer Verlag, 2006, 119-138

2 Morkovin MV. Effects of compressibility on turbulent flows. Mechanique de la Turbulence, Gordon and Breach, 367–380

3 Zhen-Su She, Ning Hu, You Wu. Structural ensemble dynamics based closure model for wall-bounded turbulent flow. Acta Mechanica Sinica. 2009, 25(5):731–736

4 佘振苏,飞行器气动力学与光学设计中的关键湍流问题,973项目验收报告,国家科技报告服务系统,2013

5张志雄. 基于结构系综的湍流复杂系统研究. Ph.D. thesis, 北京大学, 2009

6 陈曦. 壁湍流的多层结构理论. Ph.D. thesis, 北京大学, 2012

7佘振苏. 复杂系统学新框架. 中国科学出版社, 2012 8 Zhen-Su She, You Wu, Xi Chen, Fazle Hussain. A multi-state description of roughness effects in turbulent pipe flow. New Journal of Physics, 14 093054, 2012.

9 You-Sheng Zhang, Wei-Tao Bi, Fazle Hussain, Xin-Liang Li, and Zhen-Su She, Mach-Number-Invariant Mean-Velocity Profile of Compressible Turbulent Boundary Layers, Physical Review Letters, 109, 054502, 2012

10 You-Sheng Zhang, Wei-Tao Bi, Fazle Hussain, Xin-Liang Li, and Zhen-Su She. A generalized Reynolds analogy

theory for the compressible wall-bounded turbulence, Journal of Fluid Mechanics, 2014, Vol. 739, pp. 392-420 11 Gao Hui, Fu De-Xun, Ma Yan-Wen, Li Xin-Liang. Direct numerical simulation of supersonic turbulent boundary layer flow. Chinese Physics Letters. 2005, 22(7):1709

MULTILAYER SCALING OF MEAN VELOCITY AND THERMAL FIELDS OF COMPRESSIBLE TURBULENT BOUNDARY LAYERS

WU Bin1 BI Weitao1 ZHANG Yousheng2 SHE Zhen-Su1

(1 State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering,

Peking University, Beijing 100871, China)

(2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China)

Abstract Recently, a symmetry-based structural ensemble dynamics (SED) theory was proposed by She et al. for canonical wall-bounded turbulent flows, yielding prediction of the mean velocity profile at an unprecedented accuracy (99%). Here, we extend the theory to compressible turbulent boundary layers (TBL) at supersonic and hypersonic Mach numbers. The flows are acquired by spatially-evolving direct numerical simulations (DNS). A momentum mixing length displays a four-layer structure and quantitatively obeys the dilation group invariance as for the incompressible TBL. In addition, a temperature mixing length behaves very similarly to the momentum mixing length when the wall is adiabatic, with a small difference in the scaling exponents in the buffer layer –consistent with the strong Reynolds analogy. The Lie-group based formulization of the two mixing lengths yields new predictions to the mean thermal and velocity profiles, both in good agreement with the DNS. Thus, we assert that the compressible TBLs are governed by the same symmetry principle as that in the canonical wall-bounded turbulent flows, and its mean fields can be accurately described by the SED theory.

Key words boundary layer, compressible turbulence, multilayer structure, symmetry, mean field

第2章 流体运动的基本方程

第2章 流体运动的基本方程 流体运动极其复杂,但也有其内在规律。这些规律就是自然科学中通过大量实践和实验归纳出来的质量守恒定律、动量定理、能量守恒定律、热力学定律以及物体的物性。它们在流体力学中有其独特的表达形式,组成了制约流体运动的基本方程。本章将根据上述基本定律及流体的性质推导流体运动的基本方程,并给出不同的表达形式。 2.1 连续方程 2.1.1 微分形式的连续方程 质量守恒定律表明,同一流体的质量在运动过程中保持不变。下面从质量守恒定律出发推导连续性方程。 在流体中任取由一定流体质点组成的物质体,其体积为V ,质量为M ,则 ? = V dV M ρ 根据质量守恒定律,下式在任一时刻都成立 0== ? V dV dt d dt dM ρ (2-1) 应用物质体积分的随体导数公式(1-15b ),则 0dV )]v (div t [dV )v div Dt D ( dV dt d V V V ?? ? =+??=+= ρρρρ ρ 因假定流体为连续介质,流体密度和速度均为空间和时间的连续函数,被积函数连续,且体积V 是任意选取的,故被积函数必须恒等于零,于是有 0v div Dt D =+ ρρ (2-2a ) 或 0)v (div t =+?? ρρ (2-3a ) 上式亦可以写成如下形式 0x u Dt D i i =??+ρ ρ (2-2b ) 或 0x )u (t i i =??+ ??ρρ (2-3b )

式(2-2)和式(2-3)称为微分形式的连续性方程。 在直角坐标系中,微分形式的连续性方程为 0z )u (y )u (x )u (t z y x =??+ ??+ ??+ ??ρρρρ (2-4) 微分形式的连续性方程适用于可压缩流体非恒定流,它表达了任何可实现的流体运动所必须满足的连续性条件。其物理意义是,流体在单位时间流经单位体积空间时,流出与流入的质量差与其内部质量变化的代数和为零。 由式(2-2)可对不可压缩流体给出确切定义。不可压缩流体的条件应为 0=Dt D ρ (2-5) 即密度应随质点运动保持不变。 0=??t ρ只是指密度是恒定不变的,但流体质点密度还可以 在流动中随位置发生变化。只有满足式(2-5),质点密度才能保持不变。但不能排除各个质点可以具有各自不同的密度。如海水在河口淡水下面的入侵(图2-1),含细颗粒泥沙的浑水在水库的清水下面沿库底的的运动(图2-2),都是具有不同密度的不可压缩流动。在这种流动中,因密度不同形成不同的流层,常称为分层流动。 图2-1 河口的海水入侵[1] 图2-2 水库中的浑水异重流[1] 对不可压缩均质流体,则不但0=Dt D ρ,而是在全流场和全部时间内ρ=常数,因此, 连续性方程简化为

第二章 土壤水分运动基本方程2

第二章 土壤水分运动基本方程 如前所述,达西定律是由达西(Darcy ,Henry 1856)通过饱和砂柱渗透试验得出,后由Richards (1931)将其扩伸至非饱和水流中,并规定导水率为土壤负压h 的函数,即 ()H h k q ?= (2-2-1) 式中:H ?——为水势梯度; k (h )——为导水率,是土壤负压h 的函数; q ——为水流通量或流速。 Richards 方程垂向一维方程为 ) 1)(( ) (±??-=??-=z h k z H k q z θθ 注意:H=h ±z ,垂直坐标向上为“+”;向下时为“–”。 由于k (h )受滞后影响较大,上式仅适用于单纯的吸湿或脱湿过程。若将导水率作为容积含水率函数,即以k (θ)代替人k (h ),则可避免滞后作用的影响。 一般说来达西定律对饱和与非饱和水流均可适用,即水流通量与势能梯度成正比。但在饱和土壤中,压力为正值,其总水头包括了由该点在地下水面以下深度来确定的静水压力(正值)和相对于基准面高度来确定的位置水头,总水头为压力水头和位置水头之和,水由总水头高处向低处流动。在非饱和土壤中,基质势为负值,土水势在不考虑溶质势、温度势及气压势时,只包括重力势和基质势。因此,总水头常以负压水头和位置水头之和来表示。 一维Richards 方程的几种形式: 根据() ()θθ θD h k =??(K=C ×D )得: x h k q x ??-=)(θ x D q x ??-=θ θ)( y h k q y ??-=) (θ y D q y ??-=θθ)( )1)( (±??-=z h k q z θ )]()([θθθk z D q z ±??-=

边界层复习资料

第一章大气边界层基本的概念 1、大气边界层定义,特征 2、大气边界层的垂直分层结构,通常可分为粘性副层、近地面层、混合层 3、边界层发展的日变化,陆上高压区大气边界层通常由三部分组成,对流混合层,残余层,稳定边界层 4、大气边界层按稳定度分类:稳定边界层,不稳定边界层及中性边界层 5、风与气流的流动形式:平均风速、波动、湍流 6、自然界中的流体运动存在着两种完全不同的运动状态:层流、湍流 7、莫宁-奥布霍夫(Monin-Obukhov)相似理论以及π理论是边界层湍流研究的理论基础, 8、大气湍流的能量来源于机械运动作功和浮力作功两方面。 9、名词解释:泰勒假说 第二章湍流基础 1、湍流的基本特征:随机性、非线性、扩散性、涡旋性、耗散性 按照能量学的观点,大气湍流的存在和维持有三大类型:风切变产生的湍流、对流湍流、波产生湍流 2、湍流的定量描述(重点掌握):平均量和平均法则、雷诺分解、统计量、湍流尺度 大气湍流中,雷诺平均通常有三种平均方式,分别是时间平均,空间平均,系统平均。 第三章大气边界层控制方程(要知道出发方程都是什么,推导方法,拿出来一个方程能够识别出是什么方程,各项对应的物理意义是什么,这章会有个推导题,题目见课件) 1、基本控制方程(状态方程、一个质量守恒方程(连续方程)、三个动量守恒方程(Navier-Stokes方程)、一个热力学能量方程)水汽及污染物的守恒方程形式与热量守恒形式一致 通过Boussinesq 近似得到简化方程,克罗内克符号,交变张量, 2、平均量方程出发方程:Boussinesq 近似方程组 采用雷诺平均的方法,将任意一个物理量表示成平均量和脉动量之和,代入方程组,然后再取平均————大气边界层平均量控制方程,重要:在动量、热量和水汽平均方程组均出现了湍流通量散度项,表现出湍流通量对平均场动量、热量和水汽含量增减的贡献。 P.S 定常、水平均匀,忽略下沉,取平均风速为x轴方向几种假设的含义 3、湍流脉动量方程将出发方程展开为平均量和脉动量相加的形式,与平均量方程相减,即可得到湍流脉动量控制方程。 理论上,用这些脉动量的预报方程可以求解湍流的运动,但是脉动量运动的时间尺度在30分钟以下,并且空间尺度相对精细,这种尺度的求解在实际的气象应用中持续时间太短,难以直接应用~~~~湍流脉动量方程作为寻求湍流方差预报方程、湍能方程以及协方差(通量)预报方程的中间步骤 4、湍流方差预报方程从湍流脉动量方程出发,乘以2u’,2q’,2θ’,2C’,再利用乘

运动学四个基本公式

匀变速直线运动速度与时间关系练习题 1、物体做匀加速直线运动,已知加速度为2m/s2,那么() A.在任意时间内,物体的末速度一定等于初速度的2倍 B.在任意时间内,物体的末速度一定比初速度大2m/s C.在任意一秒内,物体的末速度一定比初速度大2m/s D.第ns的初速度一定比第(n-1)s的末速度大2m/s 2、物体做匀加速直线运动,初速度v0=2m/s,加速度a=0.1m/s2,求(1)第3s末的速度? (2)5s末的速度? 3、质点作匀减速直线运动,加速度大小为3m/s2,若初速度大小为20m/s,求经4s质点的速度? 4、质点从静止开始作匀变速直线运动,若在3s内速度变为9m/s,求物体的加速度大小? 5、飞机以30m/s的速度降落在跑道上,经20s停止下来,若加速度保持不变,则加速度大小是? 6、质点作初速度为零的匀变速直线运动,加速度为3m/s2,则(1)质点第3s的初速度和末速度分别为多少? 7、汽车在平直的公路上以10m/s作匀速直线运动,发现前面有情况而刹车,获得的加速度大小为2m/s2,则: (1)汽车经3s的速度大小是多少? (2)经5s汽车的速度是多少? (3)经10s汽车的速度是多少? 8、质点从静止开始作匀加速直线运动,经5s速度达到10m/s,然后匀速度运动了20s,接着经2s匀减速运动到静止,则质点在加速阶段的加速度大小是多少?在第26s末的速度大小是多少?

9、质点在直线上作匀变速直线运动,若在A点时的速度是5m/s,经3s到达B点速度是14m/s,若再经4s到达C点,则在C点的速度是多少? 10、一物体做直线运动的速度方程为v t=2t+4. (1)说明方程中各字母或数字的物理意义. (2)请画出物体运动的v-t图象. 11、一质点从静止开始以1m/s2的加速度匀加速运动,经5s后作匀速运动,最后2s的时间使质点匀减速到零,则质点匀速运动的速度是多大?减速运动时的加速度是多大?从开始运动到静止的平均速度是多少?

第10章 湍流边界层

第10章 湍流边界层 10.1 壁面湍流特性和速度分布规律 当边界层内流体及管内流体处于层流流动状态时,流体受到壁面的限制仅仅表现在粘性切应力作用下,进行粘性旋涡的扩散;而当处于湍流流动状态时,流体受到壁面的限制则是在粘性切应力和湍流附加切应力的同时作用下,进行旋涡的扩散。 由于湍动旋涡的扩散速度远大于粘性旋涡扩散的速度,因此,在相同条件下,湍流速度边界层的厚度要比层流速度边界层厚。 但在高雷诺数的条件下,湍流速度边界层仍是贴近壁面的薄层,因此,建立湍流边界层方程的前提条件与层流时相同。 但是,由于两种切应力的作用,湍流速度边界层的结构要比层流速度边界层复杂得多。 因此,一定要先了解壁面湍流的分层结构和时均速度分布规律。 10.1.1 壁面湍流分层结构及其特性 在壁面湍流中,随着壁面距离的变化,粘性切应力和湍流附加切应力各自对流动的影响也发生变化。 以y 表示离开壁面的垂直距离,随着y 的增加,粘性切应力的影响逐渐减小,而湍流附加切应力的影响开始不断增大,而后逐渐减小。 这就形成了具有不同流动特征的区域。 壁面湍流速度边界层可以分为内层(壁面区),包括粘性底层、过度层(重叠层)和对数律层(完全湍流层);外层,包括尾迹律层和粘性顶层(间歇湍流层)。 定义 ()ρ τw x v v = =** (10.1.1) 因为*v 具有速度的量纲,故称为壁面切应力速度,它在湍流中是一个重要的特征速度。 以下对各层的划分做详细说明。 粘性底层:所在厚度约为* 5 0v y ν ≤≤,其内粘性切应力起主要作用,湍流附加切应力可以忽 略,流动接近于层流状态,因此在早期研究中称之为层流底层。 由于近期的实验研究,观察到该层内有微小旋涡及湍流猝发起源的现象,因此称为粘性底层。 过渡层:所在厚度约为* * 30 5 v y v ν ν ≤≤,其内粘性切应力和湍流附加切应力为同一数量级,流 动状态极为复杂。 由于其厚度不大,在工程计算中,有时将其并入对数律层的区域中。 对数律层:所在厚度约为()δν ν 2.01030 * 3 * ≈≤≤v y v ,其内流体受到的湍流附加切应力大于粘 性切应力,因而流动处于完全湍流状态。 由这三层组成的内层,称为三层结构模式,若将过度层归入对数律层,则称为两层结构模式。 外层中的尾迹律层和粘性顶层所在厚度分别约为δν 4.010* 3 ≤≤y v 和δδ≤≤y 4.0。 对于尾迹

流体力学常用英语词汇

流体动力学 fluid dynamics 连续介质力学 mechanics of continuous media 介质 medium 流体质点 fluid particle 无粘性流体 nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学 fluid kinematics 水静力学 hydrostatics 液体静力学 hydrostatics 支配方程 governing equation 分步法 fractional step method 伯努利定理 Bernonlli theorem 毕奥-萨伐尔定律 Biot-Savart law 欧拉方程 Euler equation 亥姆霍兹定理 Helmholtz theorem 开尔文定理 Kelvin theorem 涡片 vortex sheet 库塔-茹可夫斯基条件 Kutta-Zhoukowski condition 布拉休斯解 Blasius solution 达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number 施特鲁哈尔数 Strouhal number 随体导数 material derivative 不可压缩流体 incompressible fluid 质量守恒 conservation of mass 动量守恒 conservation of momentum 能量守恒 conservation of energy 动量方程 momentum equation 能量方程 energy equation 控制体积 control volume 液体静压 hydrostatic pressure 涡量拟能 enstrophy 压差 differential pressure 流[动] flow 流线 stream line 流面 stream surface 流管 stream tube 迹线 path, path line 流场 flow field 流态 flow regime 流动参量 flow parameter 流量 flow rate, flow discharge 涡旋vortex 涡量 vorticity 涡丝 vortex filament 涡线 vortex line 涡面 vortex surface 涡层 vortex layer 涡环 vortex ring 涡对 vortex pair 涡管 vortex tube 涡街 vortex street 卡门涡街 Karman vortex street 马蹄涡 horseshoe vortex 对流涡胞 convective cell 卷筒涡胞 roll cell 涡 eddy 涡粘性 eddy viscosity 环流 circulation 环量 circulation 速度环量 velocity circulation 偶极子 doublet, dipole 驻点stagnation point 总压[力] total pressure 总压头 total head 静压头 static head 总焓 total enthalpy 能量输运 energy transport 速度剖面 velocity profile 库埃特流 Couette flow 单相流 single phase flow 单组份流 single-component flow 均匀流uniform flow 非均匀流 nonuniform flow 二维流 two-dimensional flow 三维流 three-dimensional flow 准定常流 quasi-steady flow 非定常流 unsteady flow, non-steady flow 暂态流 transient flow 周期流 periodic flow 振荡流 oscillatory flow 分层流 stratified flow 无旋流 irrotational flow 有旋流 rotational flow 轴对称流 axisymmetric flow 不可压缩性 incompressibility 不可压缩流[动] incompressible flow 浮体floating body 定倾中心 metacenter 阻力 drag, resistance

大气湍流N-S方程

前面复习
什么是湍流? 湍流与层流有什么区别? 雷诺数Re的表达式和物理意义? 湍流有哪些理论? 流体运动的稳定性指的是什么? 处理流体运动的稳定性问题时,什么是 小扰动法和能量法?

流体力学和N-S方程
流体力学是力学的一个分支,它是研究 流体 ( 包括液体及气体 ) 这样一个连续介质 的宏观运动规律以及它与其他运动形态之 间的相互作用。通常所说的流体力学就是 指建立在连续介质假设基础上的流体力学。 连续介质假设认为真实流体所占有的空 间可近似地看做是由“流体质点”连续无 空隙地充满着的。所谓流体质点指的是微 观上充分大,宏观上充分小的分子团.

流体运动的描述
欧拉方法着眼于流场空间的固定点, 拉格朗日着眼于确定的流体质点。 两种方法可以互换。
K qi = qi (r , t )
qi = qi (ξ , t )

物理量的物质导数和当地导数
在欧拉方法的表达式中,专门引进了一 个运算符号d/dt,它表示某确定流体质点的 物理量随时间的变化率,称为该物理量的 物质导数;同时,将欧拉表述下物理量函 数对时间的偏导数,即空间固定点上物理 量的时间变化率,称为当地导数,记作э/эt。
dq ?q K = + (v ? ? ) q dt ?t

M 1m/s M 2m/s
M’ 2m/s (t=0) M’ 3m/s (t=1s)

应力张量
流体质点所受的力需要用二阶张量来描 述,σji。在通过某点并具有任意方向n的面 元上,应力矢量 T(n) 为二阶张量和该面元 的法向单位矢n唯一确定。
K Ti (n ) = σ ji n j

第8章湍流边界层中的动量传递

第八章湍流边界层中的动量传递 首先明确可用雷诺数表述层流与湍流的转折,以及该转折下的雷诺数的具体数值;其次,指出层流与湍流在微分方程的表述上的差异体现在湍流应力项,普朗特混合长度模型和Van Driest 模型均被用来解决湍流应力项;Couette 流动假设对于求解微分方程起了至关重要的作用;还讨论了有散逸和表面粗糙度的处理。 §8.1边界层流动现象的物理分析 流动:是成群的流体微团的运动。边界层内流动过程中的小扰动随机出现,由于小扰动的能量有限,因此仅仅会影响到个别流体微团的初始运动状况,但也因此而引发整体微团的流动状态。 层流:个体流体微团的流动方向,在整体上具有一致性的流动现象。个别流体微团因小扰动而引发的初始流动方向的改变,因为受到与相邻流体微团之间存在着的粘性力作用的影响,使得这种外界扰动的作用随着时间的推移而减小,最终使流动稳定。因此,层流流动的特点,很大程度上归因于流体微团之间存在着的粘性力,当层流受到外界扰动时,粘性力具有使层流恢复到初始未扰动状态的效应。 湍流:个体流体微团的流动方向,在整体上不具有一致性的流动现象。虽然小扰动影响的依然是个别流体微团,但此时微团之间的粘性力的作用,已经不足以消除小扰动造成的影响;反之,个别受扰动流体微团的不稳定流动,又将影响到周围流体微团,进而造成更大范围内的流体微团的不稳定流动。分析这种不稳定流动现象形成的因素,只能是因为流体微团的流动动能而引发,即所谓的流体的惯性力。因此,湍流流动的特点,在于流体微团自身的惯性力,它使得局部扰动扩大,造成整体流动的不稳定。 雷诺数:雷诺数就是惯性力与粘性力之比, μ ρux = = 粘性力惯性力Re 因此人们预料:层流流动的稳定性,在很大程度上和雷诺数的数值有关,稳定层流流动和低雷诺数值相联系。 流动沿程的定性结构: 由雷诺数的定义可知,边界层流动的初始前缘,必然是层流流动;以后,随着流动长度的增加,惯性力渐增,随机随处存在的小扰动而引发的个别微团的不稳定流动,也因此有逐渐扩大的可能性;当惯性力远大于粘性力后,湍流流动最终形成。在由层流最后扩展到完全湍流的过程中,必然存在一个过渡区,在这个区域内,惯性力和粘性力具有相同的数量级。 因此,流动沿程的定性结构为:首先是层流区,其次是过渡区,最后是湍流区。 临界雷诺数:因此,我们可以用雷诺数来描述流体流动的结构。于是必然存在某一临界雷诺数,该值确定了层流流动的上限或湍流流动的下限。现在通常讨论的是层流流动的上限。 临界雷诺数的一般性判据: 实验现象: ① 无压力梯度/光滑表面/简单层流:长度雷诺数=300,000—500,000时,发生过渡; ② 零压力梯度/层流:长度雷诺数<60,000时,仍保持稳定层流结构; ③ 管道中层流:水力直径雷诺数<2300时,层流流动仍然稳定。 上述临界雷诺数是在一定实验条件下获取的。希望建立与实验条件基本无关的关于临界雷诺数的一般性判据,假定过渡现象是局部的(小扰动随处存在,但只有在临界雷诺数出现的地方,才会出现过渡现象),则局部雷诺数判据具有一般性,这时我们已经忽略了平板流

大气边界层复习材料

边界层气象学复习材料 第一章绪论 1.大气边界层的定义; 第二章大气湍流 1.流体运动的两种形式:层流和湍流 2.湍流发生的两种机制:1.热力作用;2.动力作用。 3.泰勒假设;泰勒假设的基本思想:将空间序列问题转换为时间序 列问题。泰勒假设成立的基本条件:冰冻湍流理论,即在湍涡发展时间尺度大于其平移过传感器时间的特定情况下,当湍流平移过传感器时,可以把它看做是凝固的。 4.雷诺平均的核心思想; 5.定常湍流、均匀湍流和各向同性湍流的物理含义; 6.傅里叶变换的核心思想; 7.湍流能谱谱区分布及特征; 8.由大气运动方程组推导雷诺平均方程组;包辛涅斯克近似的含义; 9.通量的物理意义:通量是指单位时间单位面积的流体的某属性量 的输送。湍流通量与属性量廓线的关系。 10.湍流动能方程各项的物理意义; 11.K理论; 12.通量里查逊数,梯度理查逊数,整体理查逊数; 第三章大气边界层 1.稳定、不稳定、中性边界层通常多出现在什么天气条件;

2.位温廓线的日变化规律;给定一条典型的位温廓线,要求知道对 应什么时间段。 3.中性层结下风速廓线关系的推导; 4.中性边界层的三力平衡; 5.对流边界层形成的主要能量来源; 6.对流热泡贯穿机制和卷夹层的形成过程; 7.低空急流的形成原因:夜间湍流强度迅速减弱,湍流摩擦力迅速 减小到很低的量级(摩擦力撤除效应),最终导致科氏力引发惯性振荡。 第四章大气扩散 1.影响大气扩散的主要两个气象因子:风、大气稳定度。 2.有界扩散需要考虑地面对污染物的反射作用,相当于同时考虑“实 源”和“虚源”的贡献。 3.影响大气扩散的两种运动:1.平流(输送);2.湍流(扩散)。 4.五种常见的烟流扩散与大气稳定度之间的关系; 第五章通量观测

第9章湍流边界层中的传热

第九章 湍流边界层中的传热 在层流边界层的处理中,只要粘性耗散项可以忽略不计,则能量方程就有着与动量方程相同的数学形式。这时,能量方程的解可直接引用动量方程的解。 在湍流边界层的处理中,我们已经有了动量方程的解。仿层流边界层中能量方程的解法,我们似乎也可以走直接引用湍流动量方程的解的解决途径。 与湍流动量方程一样,湍流能量方程中也有着类似的“封闭”问题。我们可以提出一种模型,以解决湍流能量方程存在着的“封闭”问题的过程中;我们也可以直接引用湍流动量方程解决封闭问题的结论,考察湍流能量方程的类似结论与湍流动量结论之间的关系。本章中的雷诺比拟就属于后一种处理方法。 §9.1湍流边界层能量方程的求解 §9.1.1动量-能量方程的比较 在定常、恒定自由流、全部流体物性处理成常数、忽略体积力和粘性耗散项可以忽略的情况下,湍流动量方程可以表为, 0''=???? ??-????-??+??v u y u y y u v x u u ρμ 湍流能量方程可以表为, 0''=??? ? ??-????-??+??v t y t c k y y t v x t u ρ 以上表示湍流边界层中的动量方程和能量方程在数学表述上具有类似的形式。 §9.1.2 雷诺比拟 在求解湍流动量方程“封闭”问题时,引入了普朗克混合长度理论,以计算' 'v u , y u l u ??='最大 和 y u kl v ??=' 最大 2 2' '''22 ??? ? ????=?= y u l k v u v u 最大 最大 混合长度定义式如下, 2 2''??? ? ????-=y u l v u 并且有, y l κ= 在求解湍流能量方程的“封闭”问题时,我们也可以引入一种计算' 'v t 的理论。 鉴于动量方程和能量方程在数学表述上具有相似性,我们还可以探索' 'v t 与' 'v u 之间是否存在着一种简单的关系,如果能够找到两者之间所存在的关系,就可以直接引用动量方程求解的结论。 ①因y 方向上脉动速度' v 的存在而引起的有效剪切应力和有效热通量的计算: 动量:() ()v u G G V G y x ++=?

边界层理论1

边界层(Boundary Layer)是高雷诺数绕流中紧贴物面的粘性力不可忽略的流动薄层,又称流动边界层、附面层。这个概念由近代流体力学的奠基人,德国人Ludwig Prandtl(普朗特)于1904年首先提出。从那时起,边界层研究就成为流体力学中的一个重要课题和领域。在边界层内,紧贴物面的流体由于分子引力的作用,完全粘附于物面上,与物体的相对速度为零。 边界层又称附面层,它是指流体流经固体表面时,靠近表面总会形成那么一个薄层,在此薄层中紧贴表面的流体流速为零,但在垂直固体表面的方向(法向)上速度增加的很快,即具有很大的速度梯度,甚至对粘性很小的流体,也不能忽略它表现出来的粘性力。而在此边界层外,流体的速度梯度很小,甚至对粘度很大的流体而言,其粘性力的影响也可以忽略,流体的流速与绕流固体表面前的流速V0一样。这样就可把边界层外流动的流体运动视为理想流体运动,不考虑粘性力的影响。边界层内、外区域间没有明显的分界面,而把边界层边缘上的流体流速V x视为V x=0.99 V0,因此从固体表面至V x=0.99 V0处的垂直距离视为边界层的厚度δ。这样大雷诺数下绕过固体的流动便简化为研究边界层中的流动问题。 边界层内的流动可以是层流,也可以是带有层流底层的紊流,还可以是层流、紊流混合的过渡流。 图1 边界层结构 综上所述,边界层的特征可归结为: (1)与固体长度相比,边界层厚度很小; (2)边界层内沿边界层厚度方向上的速度梯度很大; (3)边界层沿流动方向逐渐增厚; (4)由于边界层很薄,故可近似地认为,边界层截面上的压力等于同一截面上边界层外边界上的压力; (5)边界层内粘性力和惯性力士同一数量级的; (6)如在整个长度上边界层内都是层流,称层流边界层;仅在起始长度上的是层流,而在其他部分为紊流的称混合边界层。 以上定义的边界层为速度边界层,另外在其他学科领域中对于边界层的应用还是十分广泛的,主要有温度边界层和浓度边界层。 1.温度边界层 流体在平壁上流过时,流体和壁面间将进行换热,引起壁面法向方向上温度分布的变化,

运动学基本公式

运动学基本公式 一、运动学一般公式 1、 平均速度公式: t x v ??= 2、 加速度定义式:t v a ??= 二、匀变速直线运动公式: 1、 速度和时间关系:at v v +=0 2、 位移和时间关系:202 1at t v x += 3、 速度-位移公式:ax v v t 2202=- 4、 平均速度公式:2 0t v v v += 5、 平均速度位移公式:t v v t v x t 20+= = 6、 中间时刻速度:2 02t t v v v v += = 7、 中间位置速度:2 2202t x v v v += 三、初速度为零的匀变速直线运动公式: (一)一般公式 8、 速度和时间关系:at v = 9、 位移和时间关系:22 1at x = 10、速度-位移公式: ax v t 22= 11、平均速度公式:2 t v v =

12、平均速度位移公式:t v t v x t 2 == 13、中间时刻速度:2 2t t v v v = = 14、中间位置速度:2 2t x v v = (二)自由落体公式: 15、速度和时间关系:gt v = 16、位移和时间关系:22 1gt h = 17、速度-位移公式:gh v t 22= 18、中间时刻速度:2 2t t v v v = = 19、中间位置速度: 2 2t h v v = 四、初速度为零的匀变速直线运动的四个重要比例式: 20、速度比:n v v v v n :.......:3:2:1:......:::321= 21、位移比:2321:.......:9:4:1:......:::n x x x x n = 22、在相同时间内通过的位移比: )12(:.......:5:3:1......::: III II I -=n x x x 23、经过相同位移所用的时间比: ) ()()(1:.......:2-3: 1-2:1:......:::321--=n n t t t t n

第三章 流体运动的基本方程

3.1写出下列各量的数学表达式: (1)单位时间内以n 为法向的面积元dA 上的流体体积流量; [解] 设流速为V ,单位时间令为“1”,则解为dA n ν? (2)t ?时间内经固定不动空间τ的表面S 净流入τ的质量; [解] 设流体密度为ρ,n 为其单位法向量,流速为ν,则解为t dA n ??- ?νρ (3)流体体积τ内的动量、动能的随体导数。 [解] 动量的随体导数:() ?τνρτd Dt D 动能的随体导数:??? ? ???τνρτd Dt D 22 3.2 求各种坐标系下的连续性方程(用微六面体): (1)柱坐标; [解] (2)球坐标; (3)一般曲线坐标。 [解] 将连续性方程推广到一般曲线坐标系下,建立微元体如下图: 在1u 轴向:单位时间内 3.3 下列各种流体运动中,哪个方向速度分量为零,然后写出连续性方程: (1)流体质点在每一平行平面上作径向运动; (2)流体质点在空间作径向运动; (3)流体质点在每一个都交于z 轴的平面上运动; (4)流体质点在同心的球面上运动; (5)流体质点在共轴的圆柱面上运动。若再加上无轴向运动,又如何? (6)流体质点在共轴且有共同顶点的锥面上运动。 3.5 在流体中取一任意形状的控制体,由此求连续性方程。 [解] 取一任意形状控制体(流场中),其体积为τ,表面积为S,密度为()t z y x ,,,ρ,左方流入流体质量dA n s νρ??-1,右方流出流体质量dA n s νρ? ?2, 净流量为dA n s νρ??-1-dA n s νρ? ?2=dA n s νρ??- 据质量守恒有:dA n d t p s νρττ???-=??,即0=?+????dA n d t p s νρττ 3.6 流体作有自由面的三维波动,底面为平面且流体等深,波动幅度小,求连续性方程。 [解] 取一控制体(如上图): x方向:左端流入 ()t dy h u ?+ξρ,右端流出()()()x t dy h u t dy h u ??+?+?+ξρξρ, 净流量()()t dxdy h u x ?+?? ξρ

边界层重要知识点归纳

边边界界层层重重要要知知识识点点归归纳纳 第第一一章章 大气边界层的定义:大气的最低部分受下垫面(地面)影响的层次,或者说大气与 下垫面相互作用的层次。大气边界层的厚度差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。 大气边界层的主要特征:(1)大气边界层的主要运动形态一般是湍流:不规则性和 脉动性(2)大气边界层的日变化:气象要素的空间分布具有明显的日变化。 【大气边界层湍流:①机械湍流:风切变,机械运动;②热力湍流:辐射特性的差异;】 大气边界层的分层:(1)粘性副层(微观层)(2)近地层(常通量层)(3)Ekman 层(上 部摩擦层) 【(1).粘性副层(微观层):分子输送过程处于支配地位,分子切应力远大于湍流切应力。(2).近地层(常通量层):大气受地表动力和热力影响强烈,气象要素随高度变化激烈,运动尺度小,科氏力可略。(3).Ekman 层(上部摩擦层):在这一层里,湍流粘性力、科氏力和气压梯度力同等重要,需要考虑风随高度的切变。】 大气边界层厚度:边界层厚度的时空变化很大,空间范围从几百米到几千米。海洋 上:由于海水上层强烈混合使海面温度日变化很小。 陆地上,边界层具有轮廓分明、周日循环发展的结构。 大气边界层结构:(1)混合层: (2)残留层:日落前半小时,湍流在混合层中 衰减形成的空气层,属中性层结。 (3)稳定边界层:夜间,与地面接触的残留层底部逐渐变为稳定边界层。其特点为在静力稳定大气中有零散的湍流,虽然夜间近地面层风速常常减弱或静风,但高空200m 左右,风却由于低空急流或夜间急流能达到超地转风。 第二章 湍流:流体运动杂乱而无规律性(运动具有脉动性),不同层次的流体质点发生激烈的混合现象,流体质点的运动轨迹杂乱无章,其对应的物理量随空间激烈变化。 雷诺数:——湍流判据,特征Re 数定义: =特征惯性力/特征粘性力;它表示了流体粘性在流动中的相对重要性: (1)Re 》1,粘性力相对小(可忽略),大Re 数流体,弱粘性流; (2)Re 《1,惯性力相对小(可忽略),小Re 数流体,强粘性流; ν /Re UL ≡

湍流模型理论(DOC)

湍流模型理论 §3.1 引言 自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术。但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。 要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1.平均N-S 方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS)。但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。 §3.2 湍流模型概述 §3.2.1 湍流模型的引入

大气边界层在高雷诺数下的模拟结果

大气边界层在高雷诺数下的模拟结果 3.1 不同亚格子模型对大气边界层数值模拟结果的影响 在不可压缩湍流中,亚格子涡粘模型采用分子粘性的形式[19],即: 123ij ij t ij kk S τνδτ-=+ (1) 在公式(1)中,t ν为亚格子涡粘系数, _ij S 是可解尺度的变形率张量。可以看出,在涡粘模型中,加上涡粘系数后,就可以使用纳维斯托克斯方程直接数值计算,其中,涡粘系数是需要对其封闭的,可以有不同的形式。 将亚格子涡粘模型(1)代入到大涡数值模拟的控制方程中,可以得到大涡数值模拟控制方程[12]: _()()3i j j i kk j i j j i u u u u u p t x x x x x τνν--- --??????+=-+++?????? , 1Re t νν=+ (2) _ 0i i u x ?=? (3) 可以看出,代入亚格子涡粘模型和涡扩散模型后,湍流控制方程的变化只是在分子扩散系数上加亚格子涡粘系数,下面给出亚格子涡粘系数的两种形式。 3.1.1 Smagorinsky 模式 在大涡模拟中将雷诺平均混合长度模式推广,得到原始的Smagorinsky 模式,混合长度模式的涡粘公式[20]为: '2 t u u l l y ν?<>∝∝? 令l =?,那么在二维空间中有: 2()2ij ij u S S y ?<>=<><>? 将上式推广到三维空间中可得到如下关系: 1 2 2(2)t ij ij l S S ν∝<><> 同样,令l =?,将平均运算改为过滤运算,并引入模型常数后,可将亚格子涡粘系数写成以下形式:

__222t S ij ij C S S ν=?<> (4) 在实际模拟计算中发现模型常数明显偏大,Smagorinsky 模式的致命缺点是耗散比较大,下面利用近壁阻尼函数,对Smagorinsky 系数进行修正,从而减少耗散[19]。 对Smagorinsky 系数S C 做如下修正: 0.18[1exp(/)]s C y A ++=-- 式中/y yu τν+=,26A +=,[1exp(/)]f y A ++=--称为近壁阻尼函数。 3.1.2 动力模式 涡粘[13]和涡扩散模式在工程计算中有普遍的应用。但因其导出过程以均匀各向同性湍流为基础,实际流动中的复杂湍流并不满足这些条件,所以通过对亚格子模型的改进,使这种模式适应局部湍流的结构,下面介绍的动力模式是经过改进的亚格子涡粘模型。 动力模式在模拟过程中使用了两次过滤,假定过滤过程是线性的,且有12?>?,由1?、2?过滤产生的亚格子应力和连续两次过滤产生的亚格子应力 可得到如下关系: 13ij kk ij D ij L L C M δ-= 因为上式为超定方程,所以不能直接计算系数D C ,但有以下几种方法来解决超定 问题[14]。第一个为变形率张量收缩法,即将上式两边同乘以可解尺度的变形率张量。但是实际计算表明,用这种方法计算的模式系数很不规则,而且计算过程中的稳定性较差;第二种为最小误差法,令这个超定方程两边的平方差最小,即: 2 103ij kk D ij D L L C M C ???--=????? 可得到: ij ij D ij ij M L C M M = (5) 在式(5)中,ij L 和流动的形态有关,ij M 和模式的形式有关。最小误差法比变形 率张量收缩法已经有很大改进,但是仍有缺陷:①模式系数D C 可能会出现负值, 导致计算结果发散;②分母可能很小,也导致计算结果发散。为了克服计算上的困难,采用平均系数法,对(5)式右端的分子和分母分别求系综平均,得到模式系数为:

第9章-湍流基础

第9章湍流基础 透平叶栅中的流动是一种性质极为复杂的流动,由于在现代透平中流动的雷诺数很高,同时透平转子对流动的强烈影响,都使得流道中的实际流动呈现湍流状态]1[。如果仍然采用层流模型进行数值研究,结果与真实值间的差距就会加大。此外,湍流其本身也是一个很复杂的问题,一方面它是流体力学领域中尚未解决的问题之一;另一方面,在求解湍流模型的过程中还会产生很多数学上的问题]2[。如此一来,叶栅流道内的三维湍流的数值计算就吸引了众多的学者和工程技术人员。 9.1 湍流的基本概念 9.1.1 湍流的概念和基本结构 自然界中的流动问题和工程实践中所处理的各种流体运动问题更多的是湍流流动问题。如水在江河中的流动水通过各种水工建筑物、水处理建筑物的流动,管道中水的流动,污染物质在河流及海洋中的扩散,大气边界层流动等均多为湍流。湍流是不同于层流的又一种流动形态。英国的雷诺于1883年,通过其著名的圆管实验深入的揭示了这两种不同的粘性流动形态]3[。虽然一百多年来人们对湍流的研究不断深入,但是由于湍流运动的极端复杂性,它的基本机理至今仍未被人们所掌握,甚至至今仍然没有一个精确的定义。 雷诺(Osborne Reynolds,1842年—1912年)把湍流定义为一种蜿蜒曲折、起伏不定的流动(sinuous motion)。泰勒(G.I.Taylor 1886年—1975年)和冯·卡门对湍流的定义是“湍流是常在流体流过固体表面或者相同流体分层流动中出现的一种不规则的流动”。欣策(J.O.Hinze )在他的著作“Turbulence”一书中则认为湍流的更为确切的定义应该是“湍流是流体运动的一种不规则的情形。在湍流中各种流动的物理量随时间和空间坐标而呈现出随机的变化,因而具有明确的统计平均值”。同时,在这本书中还把泰勒和卡门对湍流所下定义中提到的两种流动状况给予专门名称:“壁面湍流”表示流过固体壁面的湍流,“自由湍流”表示流动中没有固体壁面限制的湍流流动。]4[ 湍流的运动极不规则,极不稳定,每一点的速度随时间和空间都是随机变化的,因此其结构十分复杂。现代湍流理论认为]5[:湍流是由各种不同尺度的涡构成的,大涡的作用是从平均流动中获得能量,是湍流的生成因素,但这种大涡是不稳定的,它不断地破碎成小涡。换句话说,从低频的大涡到高频的小涡是一个能量级联过程,这个过程一直进行到湍动能的耗散。如果没有连续的外部能量的提供,湍流将逐渐衰退消失,但是湍流应力和平均流动的速度梯度之间的相互作用通过频谱提供能量来防止湍流的衰退,这个过程称作“湍流的生成过程”,且能量相对粘性耗散的产生率是一个测量流动均衡状态的量。 湍流流动是一种大雷诺数、非线性、三维非定常流动。它具有随机性、扩散性、耗散性、有旋性、记忆特性和间歇现象等特点,运动极不规则。为了方便研究湍流的基本特性,将湍流分为均匀湍流、各向同性湍流和各向异性湍流。均匀湍流和各向同性湍流是湍流中最简单而且在理论上研究最多的。所谓均匀湍流是指湍流场中任何一点同一方向的速度分量的均方值处处都是相等的,任何两点的速度相关只与该两点的相对位置有关;各向同性湍流是指湍流的湍动速度分量及其对空间导数的平均值不受坐标系在空间的方位而改变。实际的湍流,一般都是非各向同性的。这是由于尺度大的湍动运动的速度受到平均运动流场的影响。但对于尺度很小的湍动运动,湍动的特性不直接依赖于平均运动流场的性质,具有各向同性的特征。因此研究这种局部各向同性的湍流具有重要的理论和实际意义。

边界层气象学试题库

一、名词解释 (每小题 6 分,共 30 分) 1. 雷诺数 Re ≡UL/v=特征惯性力/特征粘性力。Re 数是判断两粘性流体运动是否相似的重要判据之一。 2. 总体理查逊数 3. 雷诺平均 对于任一物理量,当定义平均值后,可将湍流运动表示为 湍流运动=平均运动+脉动运动。而将任意实际物理量表示为:,则为雷诺平均。 4. 大气边界层 大气的最低部分直接受下垫面(地面)影响的层次,或者说大气与下垫面相互作用的层次。大气边界层厚度的时空差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。 大气边界层又称行星边界层,是指存在着连续性湍流的低层大气:(1)湍流是边界层大气的主要运动形态,对地表面与大气间的动量、热量、水汽及其他物质的输送起着重要作用; (2)地球表面热力强迫的日变化通过湍流混合扩散使得边界层中气象要素呈现日周期的循环。 5. 定常湍流 如果这些湍流统计参数不随时间变化,就称为平稳湍流或定常湍流;此时,足够长时间的平均即接近于总体平均。 6. 均匀湍流≡ 如果统计参数不随空间变化,称之为均匀湍流;此时,足够大的空间平均也接近于总体平均。 7. 普朗特混合长 湍流运动中,单位质量的流体微团含有某种特性量q ,如果① q 是被动的,即不影响流体的运动情况; ② q 是保守的,即在运行距离 之后,q 值守恒。在湍流运动过程中特性量q 保持不变(失去原有特性)前所走过的距离,称之为混合长。 8. 常值通量层 近地层较薄,可近似认为动量、热量和水汽垂直湍流输送通量几乎不随高度变化(风向也几乎不随高度改变),各种通量近似为常值,故称为常值通量层。常值通量层通常指的是动量常值通量层。 9. Monin-Obukhov 长度 10. 动力内边界层 上游来流为中性大气,气流从一种粗糙度表面跃变到另一种粗糙度的下垫表面,在地面的动力强制作用下,在新的下垫面上空将形成一个内边界层,即动力内边界层。 /2l

相关文档
最新文档