(完整版)动能定理和机械能守恒定律的综合应用.docx

(完整版)动能定理和机械能守恒定律的综合应用.docx
(完整版)动能定理和机械能守恒定律的综合应用.docx

第 15 讲动能定理和机械能守恒定律的综合应用4、如图所示,一固定的楔形木块,其斜面倾角θ=30°,另一边与地面垂直,顶上有一定滑轮,

、如图所示,竖直平面内放一直角杆AOB,杆的水平部分粗糙,动摩擦因数μ

=0.2 ,杆的竖直部一条细绳将物块 A 和 B 连接, A 的质量为 4m, B 的质量为 m,开始时将 B 按在地面上不动,然后

1

分光滑 . 两部分各套有质量均为 1 kg 的小球 A 和 B,A、B 球间用细绳相连 . 此时 A、B 均处于静止放开手,让 A 沿斜面下滑而 B 上升,物块 A 与斜面间无摩擦,设当 A

状态,已知: OA=3 m,OB=4 m.若 A 球在水平拉力 F 的作用下向右缓慢地移动 1 m(取 g=10 m/s2) ,

沿斜面下滑 x 距离后,细绳突然断了,求物块 B 上升的最大高度 H.

那么

(1)该过程中拉力 F 做功多少?

(2)若用 20 N 的恒力拉 A 球向右移动 1 m 时, A 的速度达

到了 2 m/s ,则此过程中产生的内能为多少?

、如图所示,跨过定滑轮的轻绳两端的物体 A 和 B 的质量分别为 M和 m,物体 A 在水平面上 .A由

A、 B,直角尺的顶点 O

2、如图所示,质量分别为 2m 和 3m 的两个小球固定在一根直角尺的两端

5

静止释放,当 B 沿竖直方向下落 h 时,测得 A 沿水平面运动的速度为 v ,这时细绳与水平面的夹角

处有光滑的固定转动轴 .AO、BO 的长分别为 2L 和 L.开始时直角尺的AO 部分处于水平位置而 B 在 O

为θ,试分析计算 B 下降 h 过程中, A 克服地面摩擦力做的功 .( 滑轮的质量和摩擦均不计 )

的正下方 .让该系统由静止开始自由转动,求:

(1)当 A 到达最低点时, A 小球的速度大小v;

(2)开始转动后 B 球可能达到的最大高度h。

3、如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在 B 点与圆弧相切,

圆弧半径为R. 一个质量为m的物体 ( 可以看做质点 ) 从直轨道上的P 点由静止释放,结果它能在两

轨道间做往返运动. 已知 P 点与圆弧的圆心O 等高,物体与轨道AB间的动摩擦因数为μ. 求:

(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;

(2)最终当物体通过圆弧轨道最低点 E 时,对圆弧轨道的压力;

、一质量为 1kg 的物体被人用手由静止向上提升1m 时,物体的速度是2m/s,下列说法中错误的6

(3)为使物体能顺利到达圆弧轨道的最高点D,释放点距 B 点的是( g 是 10m/s 2)()

距离 L′应满足什么条件?

A.提升过程中手对物体做功 12JB.提升过程中合外力对物体做功12J

- 1 -

C.提升过程中手对物体做功2J D.提升过程中物体克服重力做功10J

7、如图所示,质量为m 的物体,从h 米高处由静止滑下,至水平面上 A 点静止;若使物体由A 点沿原路径返回 C 点,则外力至少做功为()

A.mgh B.2mgh C.3mgh D.条件不足,无法计算

8、如图所示,一倾角为30°的光滑斜面底端有一与斜面垂直的固定挡板M,物块 A、 B 之间用一与斜面平行轻质弹簧连结,现用力缓慢沿斜面向下推动物块B,当弹簧具有5J 弹性势能时撤去推

力释放物块B;已知 A、B 质量分别为m A= 5kg、m B=2kg,弹簧的弹性势能表达式为E P=kx2/2,其中弹簧的劲度系数k=1000N/m,x为弹簧形变量,g=10m/s2,求:(1)当弹簧恢复原长时,物

块B 的速度大小;

(2)物块 A 刚离开挡板时,物块 B 的动能.9、如图所示,位于竖直平面内的光滑轨道,有一段斜的直轨道和与之相切的圆形轨道连接而成,

圆形轨道的半径为R。一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运

动。要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg( g 为重力加速度)。求物块初始位置相对圆形轨道底部的高度h 的取值范围。

10、如图所示,质量均为m 的小球 A、B、C,用两条长为l 的细线相连,置于高为h 的光滑水平桌面上, l> h,球刚跨过桌边。若 A 球、 B 球相继着地后均不再反跳,忽略球的大小,则 C 球离开桌边时的速度有多大?

C l B l A

h

- 2 -

重力势能和机械能守恒定律的典型例题

“重力势能和机械能守恒定律”的典型例题 【例1】如图所示,桌面距地面0.8m,一物 体质量为2kg,放在距桌面0.4m的支架上. (1)以地面为零势能位置,计算物体具有的 势能,并计算物体由支架下落到桌面过程中, 势能减少多少? (2)以桌面为零势能位置时,计算物体具有的势能,并计算物体由支架下落到桌面过程中势能减少多少? 【分析】根据物体相对零势能位置的高度,直接应用公式计算即得. 【解】(1)以地面为零势能位置,物体的高 度h1=1.2m,因而物体的重力势能: Ep1=mgh1=2×9.8×1.2J=23.52J 物体落至桌面时重力势能: E p2=mgh2=2×9.8×0.8J=15.68J 物体重力势能的减少量: △E p=E p1-Ep2=23.52J-15.68J=7.84J

而物体的重力势能: 物体落至桌面时,重力势能的减少量 【说明】通过上面的计算,可以看出,物体的重力势能的大小是相对的,其数值 与零势能位置的选择有.而重力势能的变化是绝对的,它与零势能位置的选择无关,其变化值是与重力对物体做功的多少有关.当物体从支架落到桌面时重力做功: 【例2】质量为2kg的物体自高为100m处以5m/s的速度竖直落下,不计空气 阻力,下落2s,物体动能增加多少?重力势能减少多少?以地面为重力势能零位置,此时物体的机械能为多少?(g取10m/s2) 【分析】物体下落时,只受重力作用,其加速度a=g,由运动学公式算出2s末的速度和2s内下落高度,即可由定义式算出动能和势能. 【解】物体下落至2s末时的速度为: 2s内物体增加的动能: 2s内下落的高度为:

第4章 功和能 机械能守恒定律习题

第4章 功和能 机械能守恒定律习题 4-5 如图所示,A 球的质量为m ,以速度 v 飞行,与一静止的球B 碰撞后,A 球 的速度变为1 v ,其方向与 v 方向成90°角。B 球的质量为5m ,它被碰撞后以速 度2 v 飞行,2 v 的方向与 v 间夹角为arcsin(35)θ=。求: (1)两球相碰后速度1 v 、2 v 的大小; (2)碰撞前后两小球动能的变化。 解:(1)由动量守恒定律 12A A B m v m v m v =+ 即 12 12255c o s 5s i n m v i m v j m v m v j m v i m v j θθ=-+=-++ 于是得 2125cos 5sin mv mv mv mv θθ=??=? 21215cos 4335sin 5454v v v v v v v θθ= ====??= (2)A 球动能的变化 222 221111317()2224232 kA E mv mv m v mv mv ?=-=-=- B 球动能的变化 2222111505()22432 kB B E m v m v mv ?=-=?=

碰撞过程动能的变化 2222 12111222232 k B E mv m v mv mv ?=+-=- 或如图所示,A 球的质量为m ,以速度u 飞行,与一静止的小球B 碰撞后,A 球的速度变为1v 其方向与u 方向成090,B 球的质量为5m ,它被撞后以速度2v 飞行,2v 的方向与u 成θ (5 3arcsin =θ)角。求: (1)求两小球相撞后速度12υυ、的大小; (2)求碰撞前后两小球动能的变化。 解 取A 球和B 球为一系统,其碰撞过程中无外力作用,由动量守恒定律得 水平: 25cos mu m υθ= (1) 垂直: 2105sin m m υθυ=- (2) 联解(1)、(2)式,可得两小球相撞后速度大小分别为 134 u υ= 214u υ= 碰撞前后两小球动能的变化为 22232 7214321mu mu u m E KA -=-??? ??=? 22 32504521mu u m E KB =-?? ? ????=? 4- 6在半径为R 的光滑球面的顶点处,一物体由静止开始下滑,则物体与顶点的高度差h 为多大时,开始脱离球面? 解:根据牛顿第二定律 2 2c o s c o s v m g N m R v N m g m R θθ-==- 物体脱离球面的条件是N=0,即 2 c o s 0v m g m R θ-= 由能量守恒 图

【物理】动能定理的综合应用练习及解析

【物理】动能定理的综合应用练习及解析 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量 1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平 飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道 (DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道 的半径1R m =,60DOE ∠=o ,37.EOF ∠=o 小物块运动到F 点后,冲上足够长的斜面 FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o , cos370.8=o ,取2 10/.g m s =不计空气阻力.求: (1)弹簧最初具有的弹性势能; (2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小; (3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小. 【答案】()11 ?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】 (1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o = 设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2 = 代入数据联立解得:p E 1.25J =; ()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有: () 22E D 11mgR 1cos60mv mv 22 -= -o 设在E 点,圆轨道对小物块的支持力为N ,则有:2 E v N mg R -= 代入数据解得:E v 25m /s =,N 30N = 由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ; ()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:

机械能守恒定律及其应用

机械能守恒定律及其应用·典型例题精析 链,则当铁链刚挂直时速度多大? [思路点拨] 以铁链和地球组成的系统为对象,铁链仅受两个力:重力G和光滑水平桌面的支持力N,在铁链运动过程中,N与运动速度v垂直,N 不做功,只有重力G做功,因此系统机械能守恒.铁链释放前只有重力势能,但由于平放在桌面上与悬吊着两部分位置不同,计算重力势能时要分段计算.选铁链挂直时的下端点为重力势能的零标准,应用机械能守恒定律即可求解. [解题过程] 初始状态:平放在桌面上的部分铁链具有的重力势能

mv2,又有重力势能 根据机械能守恒定律有E1=E2.所以E p1+E p2=E k2+E p2,故 [小结] (1)应用机械能守恒定律解题的基本步骤由本题可见一斑.①根据题意,选取研究对象.②明确研究对象在运动过程中受力情况,并弄清各力做功情况,分析是否满足机械能守恒条件.③恰当地选取重力势能的零势能参考平面,确定研究对象在过程的始、末状态机械能转化情况.④应用机械能守恒定律列方程、求解. (2)本题也可从线性变力求平均力做功的角度,应用动能定理求解,也可应用F-h图线(示功图)揭示的功能关系求解,请同学们尽可发挥练习.

[例题2] 如图8-54所示,长l的细绳一端系质量m的小球,另一端固定于O点,细绳所能承受拉力的最大值是7mg.现将小球拉至水平并由静止释放,又知图中O′点有一小钉,为使小球可绕O′点做竖直面内的圆周运动.试求OO′的长度d与θ角的关系(设绳与小钉O′相互作用中无能量损失). [思路点拨] 本题所涉及问题层面较多.除涉及机械能守恒定律之外,还涉及圆周运动向心力公式.另外还应特别注意两个临界条件:①要保证小球能绕O′完成圆周运动,圆周半径就不得太长,即OO′不得太短;②还必须保证细绳不会被拉断,故圆周半径又不能太短,也就是OO′不能太长.本题的研究中应以两个特殊点即最高点D和最低点C入手,依上述两临界条件,按机械能守恒和圆运动向心力公式列方程求解. [解题过程] 设小球能绕O′点完成圆周运动,如图8-54所示.其最高点为D,最低点为C.对于D点,依向心力公式有 (1)

动能定理的综合应用(含答案)

动能定理的综合应用 1.如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出(g取10m/s2).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;(2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。 2.如图所示,质量为m=5kg的摆球从图中A位置由静止开始摆下,当小球摆 至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。已知摆线长为L=1.6m,OA与OB的夹角为60o,C为悬点O正下方地面上一点,OC间的距离 h=4.8m,若不计空气阻力及一切能量损耗,g=10m/s2, 求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离; (3)小球的落地时的速度大小 A

3、(14分)如图所示,一个人用一根长1m ,只能承受46N 拉力的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知圆心O 离地面h =6m 。转动中小球运动到最低点时绳子突然断了,求 (1)绳子断时小球运动的角速度多大? (2)绳断后,小球落地点与抛出点间的水平距离。(取g =10m/s 2 ) 4.在光滑的水平面桌上有质量为m=0.2kg 的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。轻弹簧原来处于静止状态,具有弹性势能E P =10.6J ,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为为R=0.625m 的竖直放置的光滑半圆形轨道。取g=10m/s 2 则: (1)试通过计算判断小球能否滑到B 点? (2)若小球能通过B 点,求此时它对轨道的压力为多大。

机械能守恒定律

机械能守恒定律 一、教法建议 抛砖引玉 我们建议:本单元的数学采用下述的三个步骤顺序进行 第一步:通过演示实验使学生认识到机械能的转化与守恒是客观存在的。 演示的项目可以选用下列一些内容: ①将小球竖直上抛——让学生观察动能转化为重力势能的过程;当小球达到最高点后自由落下——让学生观察重力势能转化为动能的过程。 ②用细绳拴小球构成“单摆”,使单摆往复摆动——让学生观察摆球在竖直面内沿圆弧线摆动过程中重力势能与动能之间的交替转化。 ③旋动“麦克斯韦滚摆”——使学生观察“滚摆”的重力热能与动能之间的交替转化。在此过程中既有因滚摆重心上下变化的移动动能的变化,也有滚摆绕轴的转动动能的变化,可以开阔学生的眼界,提高学生的兴趣,但不必对其中的转动动能作定量讲述。(注:在很多中学的物理实验室中都有“麦克斯韦滚摆”这种数学仪器。如果没有,借一成品进行仿制也不很困难。) ④拨动“弹簧振子”——使学生观察弹性势能与动能之间的相互转化。不必对弹性势能作定量的讲述。 作这些演示实验的目的是为了使学生认识到:“机械能守恒定律”是在科学实验的基础上总结出来的,是客观存在的,并不是单纯依靠数理推导得出的。 第二步:在“功能原理”的基础上,推导出“机械能守恒定律”的数学表达形式,并说明此定律成立的条件。 在本章第二单元中,我们导出“功能原理“最简单的数学表达形式: W F =ΔE 在此基础上,我们就可以导出下面的“机械能守恒定律”的最简单的数学表达形式: 当W F =0时——定律的条件 则ΔE=0——定律的结论 这种表达形式虽然简单,但是不便于应用,因此我们可以再写出本章第二单元中导出的“功能原理”的展开形式: ?? ? ??+-??? ??+=-02022121mgh mv mgh mv fs Fs i i 将W F =Fs-fs 代入上式可得: ?? ? ??+-??? ??+=02022121mgh mv mgh mv W i i F 在此基础上,我们就可以导出“机械能守恒定律”的展开形式: 当W F =0时——定律的条件 则 02022 121mgh mv mgh mv t i +=+ (注:关于W F =0的物理意义,我们将在后面“指点迷津”中作专题说明。) 第三步:通过例题和习题,使学生更深入具体地理解定律的物理意义,并能正确灵活地用于解答有关的物理问题。 我们将在后面的“学海导航”中讲述少量的例题,并在“智能显示”中提供大量的习题。请同学们不要先看答案,而应独立思考,求解以后再进行核对,并从中总结出思维方法来。 指点迷津 1.W F =0的物理意义是什么?在W F 中包括什么?不包括什么? 首先说明:这个论题有些超过了课本中讲述的内容,但是对于物理基础较好的学生是很有益处的,可以提高他们的理解能力;对于物理基础较差的学生也可作尝试性阅读,若感觉困难,可以不学。 在本章第二单元的推导过程和专题论述中,同学们已经知道:“功能原理”中的W F 是不包含重力做功W G 的。因此W F =0的意义就有下列两种说法(注意:说法虽不同,但本质相同):

【物理】物理动能定理的综合应用练习题及答案

【物理】物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释 放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求: (1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小. 【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】 (1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理 mgR -W f = 12mv 2 W f =1.5J (2)由牛顿第二定律可知: 2 N v F mg m R -= 解得: 4.5N F N = (3)小球离开圆弧后做平抛运动根据动能定理可知: 22111 m m 22 mgh v v =- 解得: 152m/s v = 2.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹

簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求: (1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小; (3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。 【解析】 【分析】 【详解】 (1)小球离开台面到达A 点的过程做平抛运动,故有 02 3m/s tan y v gh v θ = = = 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为 2 01 4.5J 2 p E mv = =; (2)小球在A 处的速度为 5m/s cos A v v θ = = 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得 221111sin cos 22 C A mgL mgL mv mv θμθ-= - 解得 ()212sin cos 10m/s C A v v gL θμθ=+-=; (3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径; 那么对小球能通过最高点时,在最高点应用牛顿第二定律可得 2 1v mg m R ≤; 对小球从C 到最高点应用机械能守恒可得 221115 2222 C mv mgR mv mgR =+≥ 解得

(完整版)动能定理和机械能守恒定律的综合应用.docx

第 15 讲动能定理和机械能守恒定律的综合应用4、如图所示,一固定的楔形木块,其斜面倾角θ=30°,另一边与地面垂直,顶上有一定滑轮, 、如图所示,竖直平面内放一直角杆AOB,杆的水平部分粗糙,动摩擦因数μ =0.2 ,杆的竖直部一条细绳将物块 A 和 B 连接, A 的质量为 4m, B 的质量为 m,开始时将 B 按在地面上不动,然后 1 分光滑 . 两部分各套有质量均为 1 kg 的小球 A 和 B,A、B 球间用细绳相连 . 此时 A、B 均处于静止放开手,让 A 沿斜面下滑而 B 上升,物块 A 与斜面间无摩擦,设当 A 状态,已知: OA=3 m,OB=4 m.若 A 球在水平拉力 F 的作用下向右缓慢地移动 1 m(取 g=10 m/s2) , 沿斜面下滑 x 距离后,细绳突然断了,求物块 B 上升的最大高度 H. 那么 (1)该过程中拉力 F 做功多少? (2)若用 20 N 的恒力拉 A 球向右移动 1 m 时, A 的速度达 到了 2 m/s ,则此过程中产生的内能为多少? 、如图所示,跨过定滑轮的轻绳两端的物体 A 和 B 的质量分别为 M和 m,物体 A 在水平面上 .A由 A、 B,直角尺的顶点 O 2、如图所示,质量分别为 2m 和 3m 的两个小球固定在一根直角尺的两端 5 静止释放,当 B 沿竖直方向下落 h 时,测得 A 沿水平面运动的速度为 v ,这时细绳与水平面的夹角 处有光滑的固定转动轴 .AO、BO 的长分别为 2L 和 L.开始时直角尺的AO 部分处于水平位置而 B 在 O 为θ,试分析计算 B 下降 h 过程中, A 克服地面摩擦力做的功 .( 滑轮的质量和摩擦均不计 ) 的正下方 .让该系统由静止开始自由转动,求: (1)当 A 到达最低点时, A 小球的速度大小v; (2)开始转动后 B 球可能达到的最大高度h。 3、如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在 B 点与圆弧相切, 圆弧半径为R. 一个质量为m的物体 ( 可以看做质点 ) 从直轨道上的P 点由静止释放,结果它能在两 轨道间做往返运动. 已知 P 点与圆弧的圆心O 等高,物体与轨道AB间的动摩擦因数为μ. 求: (1)物体做往返运动的整个过程中在AB轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点 E 时,对圆弧轨道的压力; 、一质量为 1kg 的物体被人用手由静止向上提升1m 时,物体的速度是2m/s,下列说法中错误的6 (3)为使物体能顺利到达圆弧轨道的最高点D,释放点距 B 点的是( g 是 10m/s 2)() 距离 L′应满足什么条件? A.提升过程中手对物体做功 12JB.提升过程中合外力对物体做功12J - 1 -

机械能守恒定律及其应用

机械能守恒定律及其应用 一、重力做功与重力势能 1.重力做功的特点 (1)重力做功与路径无关,只与始、末位置的高度差有关. (2)重力做功不引起物体机械能的变化. 2.重力做功与重力势能变化的关系 (1)定性关系:重力对物体做正功,重力势能就减小;重力对物体做负功,重力势能就增大. (2)定量关系:重力对物体做的功等于物体重力势能的减小量.即W G =-(E p2-E p1)=E p1-E p2=-ΔE p . (3)重力势能的变化量是绝对的,与参考面的选取无关. 3.弹性势能 (1)概念:物体由于发生弹性形变而具有的能. (2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大. (3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式表示:W =-ΔE p . 二、机械能守恒定律及其应用 1.机械能:动能和势能统称为机械能,其中势能包括弹性势能和重力势能. 2.机械能守恒定律 (1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变. (2)表达式:mgh 1+12m v 12=mgh 2+1 2m v 22. 3.守恒条件:只有重力或弹簧的弹力做功. ■判一判 记一记 (1)克服重力做功,物体的重力势能一定增加.( ) (2)发生弹性形变的物体都具有弹性势能.( ) (3)弹簧弹力做正功时,弹性势能增加.( ) (4)物体速度增大时,其机械能可能在减小.( ) (5)物体所受合外力为零时,机械能一定守恒.( ) (6)物体受到摩擦力作用时,机械能一定要变化.( ) (7)物体只发生动能和重力势能的相互转化时,物体的机械能一定守恒.( ) (8)做曲线运动的物体机械能可能守恒.( ) 例I :对机械能守恒的理解及判断 1.对机械能守恒条件的理解 (1)只受重力作用,例如做平抛运动的物体机械能守恒. (2)除重力外,物体还受其他力,但其他力不做功或做功代数和为零. (3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能变化量的负值,那么系统的机械能守恒,注意并非物体的机械能守恒,如与弹簧相连的小球下摆的过程机械能减少. 2.机械能是否守恒的三种判断方法 (1)利用机械能的定义判断:若物体动能、势能之和不变,机械能守恒.

动能定理的综合应用

动能定理的综合应用 1. 如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道 的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑 块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出2 (g取10m/s)?求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。 2?如图所示,质量为m= 5kg的摆球从图中A位置由静止开始摆下,当小球摆至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。已知摆线长为L = 1.6m , OA与0B的夹角为60o, C为悬点O正下方地面上一点,OC间的距离 h = 4.8m,若不计空气阻力及一切能量损耗,g= 10m/s2, 求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离; (3)小球的落地时的速度大小

3、(14分)如图所示,一个人用一根长1m只能承受46N拉力的绳子,拴着一个 质量为1kg的小球,在竖直平面内作圆周运动,已知圆心O离地面h = 6m。转动 中小球运动到最低点时绳子突然断了,求 (1)绳子断时小球运动的角速度多大? (2)绳断后,小球落地点与抛出点间的水 平距离。(取g = 10m/s2) J / 4. 在光滑的水平面桌上有质量为m=0.2kg的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。轻弹簧 原来处于静止状态,具有弹性势能E P=10.6J,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为 为R=0.625m的竖直放置的光滑半圆形轨道。取g=10m/s2则: (1) 试通过计算判断小球能否滑到B点? (2) 若小球能通过B点,求此时它对轨道的压力为多大。

高中物理专题:机械能守恒定律的应用

专题13 机械能守恒定律及其应用 1.机械能: 机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和. 2.机械能守恒定律 (1)内容:在只有重力或弹力做功时,物体(系统)动能与重力势能可以相互转化,而总的机械能保 持不变. (2)表达式:E12或1122 3.机械能守恒定律的条件和机械能守恒定律的常用数学表达式: (1)守恒条件: ①一个物体:只有重力做功或弹力做功(看是否包含弹簧,包含弹簧,守恒;不包含则不守恒) ②物体系统:弹力和重力一起做功,只有重力势能和弹性势能的相互转化,没有其他形式的能量产生 ③如果有外力作用,但是外力不做功或做功为零,没有其他形式的能量产生,物体或系统机械能守恒。(2)常用数学表达式: ①守恒观点:1122 必须选择参考平面 ②转化观点:Δ=-Δ,(Δ增=Δ减或Δ减=Δ增).运用的关键在于弄清重力势能的增加(或减少)量, 可不选取参考面而直接计算初、末状态的势能差 ③转移观点:Δ=-Δ(Δ增=Δ减或Δ减=Δ增),“转移观点”, 4.应用机械能守恒定律解题的基本步骤 (1).根据题意,选取研究对象(物体或相互作用的物体系). (2).分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件. (3).若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末 状态的机械能值. (4).根据机械能守恒定律列方程,并代人数值求解. 【问题一】物体或物体系统机械能守恒是否定律的条件的应用 1.一个物体:只有重力做功或只有弹力做功,只管整个过程始末状态,不管中间过程;有弹簧时要包含弹簧才守恒。 2.物体系统:系统只有动能和势能的转化,无其他形式能量的产生。 3.注意:无论是从做功来看还是从能量的转化来看都只有动能和势能的相互转化,无其他形式的能量产生。 4.如果其他除重力、弹力外的其他力做功,机械能不守恒 【例题1】如图5-4-1所示,一轻质弹簧固定于O点,另一端系一重物,将重物从与悬挂点等高的地方无初速 度释放,让其自由摆下,不及空气阻力,重物在摆向最低点的位置的过程中() 图5-4-1 A.重物重力势能减小 B.重物重力势能与动能之和增大 C.重物的机械能不变 D. 重物的机械能减少

2021届高三物理一轮复习力学功和能机械能守恒定律功能关系专题练习

2021届高三物理一轮复习力学功和能机械能守恒定律功能关系专题练习一、填空题 1.在雅典奥运会上,我国举重运动员取得了骄人的战绩.在运动员举起杠铃过程中,是___________能转化为杠铃的___________能. 2.如图所示,某兴趣小组希望通过实验求得连续碰撞中的机械能损失,做法如下:在光滑水平面上,依次有质量为m,2m,3m……10m的10个小球,排列成一直线,彼此间有一定的距离,开始时后面的九个小球是静止的,第一个小球以初速度v0向着第二个小球碰去,结果它们先后全部粘合到一起向前运动.求全过程中系统损失的机械能为__________, 3.一小物体以100J的初动能滑上斜面,当动能减少80J时,机械能减少32J,则当物体滑回原出发点时动能为__________ J 4.在某一高度用细绳提着一质量m=0.2kg的物体,由静止开始沿竖直方向运动过程中物体的机械能与位移关系的E,x图象如图所示,图中两段图线都是直线.取g=10m/s2,物体在0,6m过程中,速度一直_______(增加、不变、减小);物体在x=4m时的速度大小为________, 5.重为20N的物体从某一高度自由落下,在下落过程中所受的空气阻力为2N,则物体在下落1m的过程中,物体的重力势能减少了________,克服阻力做功________,物体动能增加了_________, 6.如图所示,一个质量为m的小球用细线悬挂于O点,用手拿着一根光滑的轻质细杆靠着线的左侧水平向右以速度v匀速移动了距离L,运动中始终保持悬线竖直,这个过程中小球的速度为是_________,手对轻杆做的功为是_________. 7.一只排球在A点被竖直抛出,此时动能为20 J,上升到最大高度后,又回到A点,动能变为12 J,假设排球在整个运动过程中受到的阻力大小恒定,A点为零势能点,则在整个运动过程中,排球的动能变为10 J 时,其重力势能的可能值为________,_________, 8.如图所示,水平传送带的运行速率为v,将质量为m的物体轻放到传送带的一端,物体随传送带运动到另一端。若传送带足够长,则整个传送过程中,物体动能的增量为_________,由于摩擦产生的内能为 _________,

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

机械能守恒定律一

机械能守恒定律一 1. 下列所述的实例中(均不计空气阻力),机械能守恒的是() A.水平路面上汽车刹车的过程 B.投出的实心球在空中运动的过程 C.人乘电梯加速上升的过程 D.木箱沿粗糙斜面匀速下滑的过程 2. 将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,图象如图所示.以下判断正确的是() A.前内货物处于失重状态 B.最后内货物处于失重状态 C.货物的总位移为 D.前内与最后内货物的平均速度相同 3. 下列关于功和能的说法正确的是() A.作用力做正功,反作用力一定做负功 B.物体在合外力作用下做变速运动,动能一定发生变化 C.若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒 D.竖直向上运动的物体重力势能一定增加,动能一定减少 4. 一个人站在阳台上,以相同的速率分别把三个球竖直向下、竖直向上、水平抛出,不计空气阻力,则三球落地时的速率() A.上抛球最大 B.下抛球最大 C.平抛球最大 D.一样大 5. 一个质量为的滑块以初速度沿光滑斜面向上滑行,重力加速度为,以斜面底端为参考平面,当滑块从斜面底端滑到高为的地方时,滑块的机械能为() A. B. C. D. 6. 把、两小球在离地面同一高度处以相同大小的初速度分别沿水平方向和竖直方向抛出,不计空气阻力,如图所示,则下列说法正确的是() A.两小球落地时速度相同 B.两小球落地时,重力的瞬时功率相同 C.从开始运动至落地,重力对两小球做的功相同 D.从开始运动至落地,重力对两小球做功的平均功率相同 7. 下列叙述中正确的是() A.物体所受的合外力为零时,物体的机械能守恒 B.物体只受重力、弹力作用,物体的机械能守恒 C.在物体系内,只有重力、弹力做功,物体系机械能守恒 D.对一个物体系,它所受外力中,只有弹力做功,物体系机械 能守恒 8. 图示为儿童蹦极的照片,儿童绑上安全带,在两根弹性绳的 牵引下上下运动。在儿童从最高点下降到最低点的过程中() A.重力对儿童做负功 B.合力对儿童做正功 C.儿童的机械能守恒 D.绳的弹性势能增大 9. 下列遵守机械能守恒定律的运动是() A.平抛物体的运动 B.雨滴匀速下落 C.物体沿斜面匀速下滑 D.竖直平面内匀速运动的物体 10. 如图所示,斜坡式自动扶梯将质量为的小华从地面送 到高的二楼,取,在此过程中小华的() A.重力做功为,重力势能增加了 B.重力做功为,重力势能增加了 C.重力做功为,重力势能减小了 D.重力做功为,重力势能减小了 11. 在下列所述实例中,若不计空气阻力,机械能守恒的是() A.抛出的铅球在空中运动的过程 B.木箱沿粗糙斜面匀速下滑的过程 C.汽车在关闭发动机后自由滑行的过程 D.电梯加速上升的过程 12. 如图所示,踢毽子是一项深受大众喜爱的健身运动项目。 在某次踢毽子的过程中,毽子离开脚后,恰好沿竖直方向向上 运动,毽子在运动过程中受到的空气阻力不可忽略。毽子在上 升的过程中,下列说法正确的是()

专题四 动能定理的综合应用

专题四动能定理的综合应用 【知识必备】 (本专题对应学生用书第14-18页) 1. 恒力的功 W=Fxcos θ. (1) 可以理解为 W=F(xcos θ),即力F和力的方向上发生的位移xcos θ之积.或者W=(Fcos θ)x,即位移x和位移方向上的力Fcos θ之积. (2) 变力的功可以有多种方法求解:图象法、转化法、微元法、动能定理法、功能原理法等. 2. 瞬时功率P=Fvcos θ. (1) 平均功率P=W P t , =F v cos θ. (2) 机车启动的两种方式:以恒定功率启动、以恒力启动. 3. 势能与势能的改变 (1) 势能包括:重力势能E p =mgh,弹性势能E p = 1 2kx2,电势能E p =qφ等. (2) 势能的改变是通过力做功实现的.重力势能是通过重力做功实现的,弹性势能是通过弹力做功实现的,电势能是通过电场力做功实现的,且都满足W=-ΔE p . 4. 动能定理 合外力做的功等于动能的变化,即W=ΔE k .

【能力呈现】 能力呈现 【考情分析】 动能定理是高考的重点,经常与直线运动、曲线运动等综合起来进行考查.涉及的主要内容有:(1) 机车启动问题;(2) 变力做功;(3) 与电场、复合场的综合问题.基础考查以选择题题型出现,动能定理与直线运动、曲线运动相结合时以计算题题型出现,难度中等偏难. 【备考策略】 复习时应理清运动中功与能的转化与量度的关系,结合受力分析、运动过程分析,熟练地应用动能定理解决问题.深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方程解决多运动过程的问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题. 1. (2015·扬泰南三模)足球比赛中踢点球时,足球距球门10.97m ,球正对球门踢出后恰好沿水平方向从横梁的下沿擦进球门.已知足球质量为400g ,不计空气阻力,则该球员在此次踢球过程中对足球做的功约为( )

第4章功和能机械能守恒定律习题说课材料

第 4 章功和能机械能守恒定律习题

第4章功和能机械能守恒定律习题 4-5如图所示, A 球的质量为m,以速度v飞行,与一静止的球B碰撞后,A球的速度变为V1,其方向与v方向成90°角。B球的质量为5m,它被碰撞后以速度V.2飞行,V2的方向与v间夹角为arcsin(3.;5)。求: (i)两球相碰后速度V i、V2的大小; (2)碰撞前后两小球动能的变化 v v 1 v? ------------------- v 5cos 5“ sin2 4 v 3 3 v-i 5v2 sin 5 v 4 5 4 2A球动能的变化 解: 于是得 mv 5mv? cos mq 5mv2si n (1)由动量守恒定律 5mv2cos 5mv2sin

B 球动能的变化 2 1 1 2 5 2 E kB m B v ; 0 5m(—v)2 mv 2 2 2 4 32 碰撞过程动能的变化 或如图所示,A 球的质量为m ,以速度u 飞行,与一静止的小球 度变为W 其方向与u 方向成900,B 球的质量为5m ,它被撞后以速度 V 2飞行,v 2的方向 3 arcs in )角。求: 5 (1)求两小球相撞后速度 「 2的大小; 碰撞前后两小球动能的变化为 1 3u 2 1 2 7 2 E KA m — mu mu KA 2 4 2 32 2 L 1厂 u 5 2 E KB 5m — 0 -- mu 2 4 32 4- 6在半径为R 的光滑球面的顶点处,一物体由静止开始下滑,则物体与顶点 的高度差h 为多大时,开始脱离球面? 解:根据牛顿第二定律 1m(3v)2 2 4 2 mv 2 2 mv 32 1 2 2 1 2 二 mv -m B v 2 mv 2 2 2 2 2 mv 32 B 碰撞后,A 球的速 水平: mu 5m 2 cos (1) 垂直: 0 5m 2sin m j (2) 联解(1) 、(2 )式,可得两小球相撞后速度大小分 别为 3u 1 4 1 2 4u A c r V] k (2)求碰撞前后两小球动能的变化。 解取A 球和B 球为一系统,其碰撞过程中无外力作用,由动量守恒定律得 图

物理动能定理的综合应用题20套(带答案)及解析

物理动能定理的综合应用题20套(带答案)及解析 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求: (1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。 【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】 (1)物块A 从出发至N 点过程,机械能守恒,有 22011 222 mv mg R mv =?+ 得 20445m /s v v gR =-= (2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有 2 N v mg F m R += 得物块A 受到的弹力为 2 N 150N v F m mg R =-= 由牛顿第三定律可得,物块对轨道的作用力为 N N 150N F F '== 作用力方向竖直向上 (3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有 2 0102 mgx mv μ-=- 得

12.5m x = 2.如图光滑水平导轨AB 的左端有一压缩的弹簧,弹簧左端固定,右端前放一个质量为m =1kg 的物块(可视为质点),物块与弹簧不粘连,B 点与水平传送带的左端刚好平齐接触,传送带的长度BC 的长为L =6m ,沿逆时针方向以恒定速度v =2m/s 匀速转动.CD 为光滑的水平轨道,C 点与传送带的右端刚好平齐接触,DE 是竖直放置的半径为R =0.4m 的光滑半圆轨道,DE 与CD 相切于D 点.已知物块与传送带间的动摩擦因数μ=0.2,取g =10m/s 2. (1)若释放弹簧,物块离开弹簧,滑上传送带刚好能到达C 点,求弹簧储存的弹性势能 p E ; (2)若释放弹簧,物块离开弹簧,滑上传送带能够通过C 点,并经过圆弧轨道DE ,从其最高点E 飞出,最终落在CD 上距D 点的距离为x =1.2m 处(CD 长大于1.2m ),求物块通过E 点时受到的压力大小; (3)满足(2)条件时,求物块通过传送带的过程中产生的热能. 【答案】(1)p 12J E =(2)N =12.5N (3)Q =16J 【解析】 【详解】 (1)由动量定理知:2102 mgL mv μ-=- 由能量守恒定律知:2 p 12E mv = 解得:p 12J E = (2)由平抛运动知:竖直方向:2122 y R gt == 水平方向:E x v t = 在E 点,由牛顿第二定律知:2 E v N mg m R += 解得:N =12.5N (3)从D 到E ,由动能定理知:2211 222 D E mg R mv mv -?= -

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

相关文档
最新文档