音频信号光纤通信.

音频信号光纤通信.
音频信号光纤通信.

音频信号光纤传输实验

实验目的

1.了解音频信号光纤传输的方法、结构及选配各主要部件的原则。

2.熟悉半导体电光/光电器件的基本性能及其主要特性的测试方法。

3.学习分析音频信号集成运放电路的基本方法。

4.训练音频信号光纤传输系统的调试技术。

实验仪器

YOF-A音频信号光纤传输技术实验仪、光功率计、多波段收音机、音箱

实验原理

一、系统的组成

图1示出了一音频信号光纤传输系统的结构原理图,它由半导体发光二极管LED及其调制、驱动电路组成的光信号发送部分、传输光纤部分和由硅光电池、前置电路和功放电路组成的光信号接收三个部分组成。

图1 光纤传输系统原理图

塑料光纤很柔软,而且可以弯曲,加工很方便。在光信息处理技术、光学计量、短距离数据传输等方面已获得较好的应用。本系统中,我们采用的传输光纤是进口低损耗多模塑料光纤,它的纤维直径是lmm,芯径为990μm,包层厚度为5μm。半导体发光二极管是采用发光亮度很高的可见红色光发光二极管作为光源,光电转换采用高灵敏的硅光电池作为转换元件,整个传输过程一目了然。

为了避免或减少谐波失真,要求整个传输系统的频带宽度要能复盖被传信号的频谱范围,对于语音信号,其频谱在300--3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。

二、半导体发光二极管(LED)的结构及工作原理

光纤通讯系统中对光源器件在发光波长、电光功率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光器(LD)。光纤传输系统中常用的半导体发光二极管是一个如图2所示的N-p-P三层结构的半导体器件,中间层通常是由直接带隙的GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由AlGaAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异质结,在图2中,有源层与左侧的N层之间形成的是P-N异质结,而与右侧P层之间形成的是p-P异质结,敌这种结构又称N-p-P双异质结构,简称DH结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层内与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

(1)

其中h是普朗克常数,是光波的频率,E

1是有源层内导电电子的能量,E

2

是导电电子与空穴复合后处于价键束缚状态时的能量。两者的差值Eg与DH结构中各层材料及其组份的选取等多种因素有关,制做LED时只要这些材料的选取和组份的控制适当,就可使得LED的发光中心波长与传输光纤的低损耗波长一致。所以为了减少损耗,LED发光波长应与传输光纤的低损耗波长一致,在实际通讯系统中,LED发出的光介于可见光的边远区域。

图2 半导体发光二极管的结构及工作原理

光纤通讯系统中使用的半导体发光二极管的光功率为光导纤维的尾纤输出功率,出纤光功率与LED驱动电流的关系称LED的电光特性,为了避免和减少非线性失真,使用时应先给LED一个适当的偏置电流I,其修正等于这一特性曲线线性部分中点对应的电流值,而调制信号的峰一峰值应位于电光特性的直线范围内。对于非线性失真要求不高的情况,也可把偏置电流选为LED最大允许工作电

流的一半,这样可使LED获得无截止畸变幅度最大的调制,这有利于信号的远距离传输。

三、光导纤维的结构及传光原理

衡量光导纤维性能好坏有两条重要指标:一是看它的传输信息的距离有多远;二是看它携带的信息量有多大,前者决定于光纤的损耗特性,后者决定于光纤的脉冲响应或基带频率特性。

经过人们对光纤材料的提纯,目前己使光纤的损耗容易做到20dB/Km

以下。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长,光纤通信最早是用短波长0.85um,近来发展至用1.3~1.55um 范围的波长,因为在这一波长范围内光纤不仅损耗低,而且“色散”也小。

光纤的脉冲响应或它的基带频率特性又主要决定于光纤的模式性质。光纤按其模式性质通常可以分成两大类:(1)单模光纤; (2)多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大,对于单模光纤,纤芯直径只有5—10μm,包层直径为125μm。在一定条件下,只允许一种电磁场形态的光波在纤芯内传播,多模光纤的纤芯直径为20~2000μm,包层厚度为3~5μm,允许多种电磁场形态的光波传播。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常数,但纤芯折射率n,略大于包层折射率n:。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯一包层界面处减到某一值后,在包层的范围内折射率保持这一值不变,根据光射线在非均匀介质中的传播理论分析可知:经光源耦合到渐变型光纤中的某些射线,在纤芯内是沿周期性地弯向光纤轴线的曲线传播。

本实验采用阶跃型多模塑料光纤作为信道,它具有芯折射率高,皮折射率低,芯和皮的交界面很清楚的特点。下面应用几何光学理论进一步说明这种光纤的传光原理。阶跃型多模光纤的结构如图3所示,它由纤芯和包层两部分组成,芯子

的半径为a,折射率为n

1:包层的外径为B,折射率为n

2

,且n

1

>n

2

图3 阶跃型多模光纤的结构示意图

当一光束投射到光纤端时,进入光纤内部的光射线若在光纤入射端面处的入射面包含光纤轴线的,称为子午射线,这类射线在光纤内部的行径,是一条与

光纤轴线相交、呈“Z”字形前进的平面折线:若耦合到光纤内部的光射线在光纤入射端面处的入射面不包含光纤轴线,称为偏射线,偏射线在光纤内部不与光纤轴线相交;其行径是一条空间折线,以下我们只对子午射线的传播性进行分析。

图4 子午传导射线和漏射线

参看图4,假设光纤端面与其轴线垂直。如前所述,当一光线射到光纤入射端面时的入射面包含了光纤的轴线,则这条射线在光纤内就会按子午射线的方式传播。根据Snell定律及图4所示的几何关系有:

(1)

(2)

其中n

是光纤入射端面左侧介质的折射率。通常,光纤端面处于空气介

质中,故n

2

=1。

由(2)式可知:如果所论光线在光纤端面处的入射角。较小,则它折射到光纤内部后投射到芯子——包层界面处的入射角。有可能大于由芯子和包层

材料的折射率n

1和n

2

按下式决定的临界角:

(3)

在此情形下光射线在芯子——包层界面处发生全内反射。该射线所携带的光能就被局限在纤芯内部而不外溢,满足这一条件的射线称为传导射线。

随着图4中入射角θ1的增加,α角就会逐渐减小,直到时,子

午射线携带的光能均可被局限在纤芯内。在此之后,若继续增加θ1,则α角就会变得小于。这时子午射线在芯子——包层界面的每次反射均有部分能量溢

出纤芯外,于是光导纤维再也不能把光能有效地约束在纤芯内部,这类射线称为漏射线。

设与对应的θ

1为θ

1max

,由上所述,凡是以θ

1max

为张角的锥体内

入射的子午射线,投射到光纤端面上时,均能被光纤有效地接收而且约束在纤芯内。

根据(2)式有:

因其中n

表示光纤入端面空气一侧的折射率,其值为1,故:

通常把上式定义为光纤的理论数值孔径(Numerical Apeture)用英文字符NA 表示。

(4)

它是一个表征光纤对子午线捕获参数,其值只与纤芯和包层的折射率n

1和n

2

关,与光纤的半径r无关。在(4)式中

(5)

称为纤芯——包层之间的相对折射率差,△愈大,光纤的理论数值孔径NA愈大,表明光纤对于午射线捕获的能力愈强,亦即由光源发出的光功率更易于耦合到光纤的纤芯内,这对于作传光用的光纤来说是有利的,但对于通讯用的光纤,数值孔径愈大,模式色散也增加,这不利于传输容量的提高。

四、LED的驱动及调制电路

音频信号光纤传输系统发送端LED的驱动和调制电路如图5示,以BGl为主组成的电路是LED的驱动电路,调节这一电路中的W2可使LED的偏置电流在

0-60mA的范围内变化。被传音频信号经由数字解调电路或ICl组成的音频放大电路放大后再经电容器C耦合到BGl的基极,对LED的工作电流进行调制,从而使LED发送出光强随音频信号变化的光信号,并经光导纤维把这一信号传至接收端。

图5 LED的驱动和调制电路

根据运放电路理论图5中音频放大电路的闭环增益为:

(6)

其中Z

2、Z

1

分别为放大器反馈阻抗和反相输入端的接地阻抗,只要C

3

选得足

够小,C

2选得足够大,则在要求带宽的中频范围内,C

3

的阻抗很大,它所在支路

可视为开路,而C

2

的阻抗很小,它可视为短路,在此情况下,放大电路的闭环

增益。C

3的大小决定着高频端的截止频率f

2

,而C

2

的值决定着

低频端的截止频率f

1。故该电路中的R

2

、R

3

,R

4

和C

2

,C

3

是决定音频放大电路增

益和带宽的几个重要参数。

五、光信号接收器

图6是光信号接收器的电路原理图,其中SPD是峰值响应波长与发送端LED 光源发光中心波长很接近的硅光电池,SPD的任务是把经传输光纤出射端输出的光信号的光功率转变为与之成正比的光电流I。然后经ICl组成的I-V转换电路,

再把光电流转换成电压V。输出,V

0与I

之间具有以下比例关系:

(7)

以IC2(LA4112)为主构成的是一个音频功放电路,该电路的电阻元件(包括反馈

电阻在内)均集成在芯片内部,只要调节外接的电位器W

2

,可改变功放电路的电

压增益,从而可以改变功放电路的输出功率,功放电路中电容C

Nf

的大小决定着该电路的下限截上频率。

实验内容

一、光信号的调制与发送实验

1.1 LED--传输光纤组件电光特性的测定

半导体发光二极管是一种电光转换器件,它的电气特性与普通的半导体二极管一样,具有单向导电性。在电光转换驱动电路中处于正向工作状态即它的正极接驱动电路的高电位端,负极接低电位端。工作时,驱动电路必须限制在小于其

最大允许电流I

max 的范围内(对本系统采用的LED,I

max

=60mA),为此在驱动电路

中必须设置适当的限流电阻,否则会使LED损坏。光纤通讯技术中所用的LED

及光电转换器件均是价格昂贵的光电器件,使用过程中应注意安全。

本实验系统LED输出的光功率与传输光纤是直接耦合的,LED的正负极通过光纤绕线盘上的电流插口与发送器的调制驱动电路连接。测量LED——光纤组件的电光特性时,首先用两端为两芯插头的连接线,一头插入传输光纤绕线盘上的电流插孔,另一头插入发送部分的“LED插孔”,然后把光探测器的窗口插入传输光纤的远端,另外两只插头接光功率计面板上的光探测器插孔,光功率计应在无光时调零。以上准备工作就绪后,开启发送器的电源开关便可进行测试。

测试电路如图7示,测试时,调节发送器前面板上的“偏流调节”旋钮,使LED的驱动电流I

D

<60mA的任一适当值,并观察光功率计的示值。在保持LED驱动电流不变的情况下,适当调整传输光纤远端与光功率计探测器的耦合状态,使光功率计指示最大后保持这一最佳耦合状态不变。然后调节“偏流调节”旋钮,

使发送器前面板上的毫安表的示值(即LED的驱动电流I

D

)在0--60mA范围内变

化,从零开始,每隔5或1OmA读取一次光功率计的示值P

0,直到I

D

=60mA为止。

根据以上测量数据,以P

0为纵坐标,I

D

为横坐标,便可在(P

,I

D

)坐标系中画出

包括传输光纤与LED的连接损耗及传输光纤的传输损耗在内的LED——光纤组件的电光特性曲线。

图7 LED 传输光纤组件电光特性的测定

实测数据为:

图8 LED 光纤组件的电光特性曲线

在额定的工作区I D 从10~60mA 基本上是线性的,非线性偏差△P/P<8%。

1.2 LED 偏置电流与无截止畸变最大调制幅度关系的测定

与其它光源比较,半导体发光二极管的优点就在于只需调制它的驱动电流就可简单地实现光讯号的调制。进行光讯号调制时,首先根据LED 的光电特性曲线选择一个适当的偏制电流(一般选为其电光特性较好线段中点对应的驱动电流),然后把1KHz 的正弦讯号经两芯插头引至发送部分的“信号输入”插孔,并用示波器观测图5中标明的晶体三极管发射极电阻Rc 两端的电压波形,即“发射信号测量点”的波形。由于V 0=R e I D ,所以V 0的波形反映了LED 驱动电流I D (在LED 电光特性的线形范围内也即代表了传输光纤中传输的光功率)随时间的变化波形,如观察到的这一波形具有严重的削波失真,适当减少调制信号幅度,或调节发送器前面板上控制输入信号幅度的W1旋钮,可使光讯号的波形为一正弦波。 如果LED 的光电特性曲线在驱动电流从零至其允许的最大电流范围内线性度较好,因而大幅度调制引起的光讯号非线性失真很小,此时调制幅度主要受削波失真的限制,在此情况下,为了获得最大幅度的光讯号(因在接收器灵敏度一定时,光讯号幅度愈大,光讯号传输的距离就愈远),LED 偏置电流可以选为其最大允许驱动电流的一半。

在LED不同偏置电流情况下,调节调制信号幅度通过示波器可以观测到无削波失真的光讯号最大幅度随LED偏置电流变化的情况。

1.3光信号发送器调制放大电路幅频特性的测定

为了减小传输过程中因系统带宽有限引起的谐波失真,要求传输系统幅频特性的带宽能覆盖被传信号的频谱范围,对于语音信号,其频谱在300-3400Hz范围内,对于音乐信号,是在20-20KHz范围内。在光纤传输系统中,作为信道的光导纤维,其带宽远大于音频范围带宽,故在音频信号光纤传输系统中,系统的带宽主要取决于电子放大电路。

参看图5,测量发送器音频放大电路幅频特性:

先将1KHz交流信号通过信号输入插孔并调节信号大小,使调制输入信号峰一峰值为某一适当值,比如20mV(通过示波器观测发送部分“输入信号测量点”的波形即可确定)。然后在保持调制输入信号幅度不变的情况下,在

10Hz-20KHz范围内,改变调制信号的频率,用示波器观测发送部分标明的调制放大器输出端“射极输出测量点”电压波形的峰一峰值,并列表记下不同频率

V in 和V

的测量结果。测量时频率变化的间隔程度,由实验人员根据实际情况合

理确定,在上、下截止频率附近,频率间隔应适当密集一些。

根据以上测试条件下的V

in 值和各测试频率f所对应的V

值,便可在坐标纸

上绘出发送器调制放大电路的幅频特性曲线(频率轴以logf进行分度)、确定出带宽及增益,并与理论计算结果比较。

图9 发送部分音频放大电路幅频特性曲线

二、光信号的接收实验

1,硅光电池光电特性及响应度的测定

半导体硅光电池光电特性的测定,测定电路如图10所示。

图10 硅光电二极管光电特性的测定

1) 保持发送部分的所有联接状态不变,把光探测器的插头从光功率计上抽出并转插到接收部分的SPD输入插孔内,把数字万用表(200mV档)接至接收部分的信号转换测量点和地的两个对应插孔内。

2) 开启发送器和接收器的电源开关,旋动发送器前面板的“偏流调节”旋钮,使LED的驱动电流为30mA,然后在保持发送端LED的驱动电流ID不变的情况下,调整传输光纤远端与被测硅光电池的耦合至最佳状态(即数字万用表指示电压最大的状态)。并在以后的测试过程中注意保持这一最佳耦合状态不变。

3)调节发送端LED的驱动电流,从零开始,每增加5mA或10mA读取一次接收端I—V变换电路输出电压,根据已测得的LED——光纤组件的光电特性曲线和I —V变换电路的反馈电阻R

f

=30KΩ值便可由这些测量数据算出被测硅光电池的光电特性曲线,由这一特性曲线,就可按下公式算出被测硅光电池的响应度:

其中△P

0表示两个测量点对应的入照光功率的差值,△I

是对应的光电流

的差值,由于硅光电池的光电特性具有很好的线性度,故一般选取零光功率输入和最大光功率输入情况下对应的两个测量点进行计算。

响应度表征了硅光电池的光电转换效率,它是一个在光电转换电路的设计工作中需要知道的重要参数。

被测偏置电流与测量电压值列表:

根据已知的反馈电阻Rf=30KΩ值和LED-光纤组件的电光特性曲线可列下表:

图11 硅光电二极管光电特性的测定

硅光电池的响应度

≤180时,有较稳定的响应度。

数据显示A,在P

2.光信号的检测

在保持前项实验时LED尾纤与接收器光电检测元件的最佳耦合状态不变和把发送端LED的偏置电流设置为50mA的情况下,调节发送端音频信号源的频率和幅度,用示波器观测接收端I--V变换电路输出电压的波形变化情况,并记录卜某一确定频率下(比如1KHz)这一波形无截止畸变的最大峰一峰值,根据I--V变换电路中Rf值与光电二极管的响应度R值计算与此情况对应的光信号光功率变化的幅值,并与由LED一传输光纤组件的电光特性曲线确定的最大调制幅度情况下光功率变化幅值比较。

3.光电信号的放大

调至最在前面各项实验联接的基础上,把接收端功放电路的电位器W

Nt

小。然后在保持发送端输入信号幅度不变(其值以LED的光信号不出现截止失真和功放电路输出不出现饱和失真为宜)的情况下,改变发送端信号源频率,用示波器观测和记录接收端功放电路输出电压随信号频率的变化,列表记录测量结果。

增大功放电路中电位器W

的阻值,重复上述实验内容的观测,并把结

Nt

,阻值最小时的情形比较、分析比较结果。

果与W

Nt

三、系统的组成及光讯号的传输试验

1.调整系统各部件至正常工作

1)将光探测器的插头插到接收部分的SPD输入插孔内。

2)按选定的LED的偏置电流,对光讯号进行正弦调制,并用示波器观察发送端LED驱动电路中Re的电压波形,适应调节调制信号幅度,使这波形无削波失真。

3)用示波器观察接收端功放电路的输出波形,为此,应把示波器的输入电缆接至接收部分功放电路输出端的红、黑插孔内。若所观察到的波形与发送的调制信号波形一致,表明整个传输系统工作正常。

改变调制信号幅度和频率,通过示波器观察传输效果。

2.语言信号的传输

用音源(收音机输出或话筒)代替信号发生器并把其输出插入发送器前面板上的“信号输入”插孔,把本实验仪配置的4Ω音箱接入接收部分面板上标有“喇叭输出”的插孔内,并把“喇叭接通开关”打开,即可进行话音传输实验,并试验整个音频信号光纤传输系统的音响效果。试验时,根据实际情况可适当调节发送部分的LED偏置电流、调制放大器电路反馈电阻及接收功放电路的W

Nt

系统参数,考察传输系统的听觉效果并用示波器监测系统的输入和输出信号的波形变化。

注意事项

1.联接好线路后,接通电源开关,若发送器数字电流表有显示、光纤盘尾纤有

红光输出、接收板面发光二极管亮,说明系统的电源部分正常工作。

2.本实验系统的半导体发光二极管处于驱动电路晶体三极管的集电极回路中,

在实验过程中,应避免它的引脚与实验系统和测试仪器的地线相碰,否则会造成LED的永久性损坏。

3.实验过程中进行光导纤维与光功率计或硅光电池入照窗口的耦合联接时,应注意光纤端面的保护,并按光纤的自然弯曲状态进行操作,不得加力弯折。

语音信号分析与处理2011

数字信号处理实验二:语音信号分析与处理 学号 姓名 注:1)此次实验作为《数字信号处理》课程实验成绩的重要依据,请同学们认真、独立完成,不得抄袭。 2)请在授课教师规定的时间内完成; 3)完成作业后,请以word 格式保存,文件名为:学号+姓名 4)请通读全文,依据第2及第3 两部分内容,认真填写第4部分所需的实验数据,并给出程序内容。 1. 实验目的 (1) 学会MATLAB 的使用,掌握MATLAB 的程序设计方法 (2) 掌握在windows 环境下语音信号采集的方法 (3) 掌握MATLAB 设计FIR 和IIR 滤波器的方法及应用 (4) 学会用MATLAB 对语音信号的分析与处理方法 2. 实验内容 录制一段自己的语音信号,对录制的语音信号进行采样,画出采样后语音信号的时域波形和频谱图,确定语音信号的频带范围;使用MATLAB 产生白噪声信号模拟语音信号在处理过程中的加性噪声并与语音信号进行叠加,画出受污染语音信号的时域波形和频谱图;采用双线性法设计出IIR 滤波器和窗函数法设计出FIR 滤波器,画出滤波器的频响特性图;用自己设计的这两种滤波器分别对受污染的语音信号进行滤波,画出滤波后语音信号的时域波形和频谱图;对滤波前后的语音信号进行时域波形和频谱图的对比,分析信号的变化;回放语音信号,感觉与原始语音的不同。 3. 实验步骤 1)语音信号的采集与回放 利用windows 下的录音机或其他软件录制一段自己的语音(规定:语音内容为自己的名字,以wav 格式保存,如wql.wav ),时间控制在2秒之内,利用MATLAB 提供的函数wavread 对语音信号进行采样,提供sound 函数对语音信号进行回放。 [y,fs,nbits]=wavread(file), 采样值放在向量y 中,fs 表示采样频率nbits 表示采样位数。Wavread 的更多用法请使用help 命令自行查询。 2)语音信号的频谱分析 利用fft 函数对信号进行频谱分析 3)受白噪声干扰的语音信号的产生与频谱分析 ①白噪声的产生: N1=sqrt (方差值)×randn(语音数据长度,2)(其中2表示2列,是由于双声道的原因) 然后根据语音信号的频谱范围让白噪声信号通过一个带通滤波器得到一个带限的白噪声信号 N2; 带通滤波器的冲激响应为: h B (n )= ))((sin ))((sin 1122απ ωπωαπωπω---n c n c c c c c

语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

音频信号分析与处理

实验三音频信号的分析与处理1 一、实验目的 1.掌握音频信号的采集以及运用Matlab软件实现音频回放的方 法; 2.掌握运用Matlab实现对音频信号的时域、频谱分析方法; 3.掌握运用Matlab设计RC滤波系统的方法; 4.掌握运用Matlab实现对加干扰后的音频信号的进行滤波处理 的方法; 5.锻炼学生运用所学知识独立分析问题解决问题的能力,培养学 生创新能力。 二、实验性质 设计性实验 三、实验任务 1.音频信号的采集 音频信号的采集可以通过Windows自带的录音机也可以用专用的录制软件录制一段音频信号(尽量保证无噪音、干扰小),也可以直接复制一段音频信号,但必须保证音频信号保存为.wav的文件。 2.音频信号的时域、频域分析 运用Matlab软件实现对音频信号的打开操作、时域分析和频域分析,并画出相应的图形(要求图形有标题),并打印在实验报告中(注意:把打印好的图形剪裁下来,粘贴到实验报告纸上)。 3.引入干扰信号 在原有的音频信号上,叠加一个频率为100KHz的正弦波干扰信号(幅度自定,可根据音频信号的情况而定)。 4.滤波系统的设计 运用Matlab实现RC滤波系统,要求加入干扰的音频信号经过RC滤波系统后,能够滤除100KHz的干扰信号,同时保留原有的音频信号,要求绘制出RC滤波系统的冲激响应波形,并分析其频谱。

% 音频信号分析与处理 %% 打开和读取音频文件 clear all; % 清除工作区缓存 [y, Fs] = audioread('jyly.wav'); % 读取音频文件 VoiceWav = y(300000 : 400000, 1); % 截取音频中的一段波形 clear y; % 清除缓存 hAudio = audioplayer(VoiceWav, Fs); % 将音频文件载入audioplayer SampleRate = get(hAudio, 'SampleRate'); % 获取音频文件的采样率KHz T = 1/SampleRate; % 计算每个点的时间,即采样周期SampLen = size(VoiceWav,1); % 单声道采样长度 %% 绘制时域分析图 hFig1 = figure('Units', 'normalized', 'Position', [0 0.05 0.49 0.85]); t = T: T: (SampLen* T); subplot(2, 1, 1); % 绘制音频波形 plot(t, VoiceWav); % 绘制波形 title('音频时域波形图'); axis([0, 2.3, -0.5, 0.5]); xlabel('时间(s)'); ylabel('幅值(V)'); % 显示标题 %% 傅里叶变换 subplot(2, 1, 2); % 绘制波形 myfft(VoiceWav, SampleRate, 'plot'); % 傅里叶变换 title('单声道频谱振幅'); % 显示标题 xlabel('Frequency (Hz)'); ylabel('|Y(f)|'); play(hAudio); % 播放添加噪声前的声音 pause(3); %% 引入100KHz的噪声干扰 t = (0: SampLen-1)* T; noise = sin(2 * pi * 10000 * t); % 噪声频率100Khz,幅值-1V到+1V hFig2 = figure('Units', 'normalized', 'Position', [0.5 0.05 0.5 0.85]); subplot(2, 1, 1); % 绘制波形 plot(t(1: 1000), noise(1: 1000)); title('100KHz噪声信号'); % 显示标题 noiseVoice = VoiceWav+ noise'; % 将噪声加到声音里面 hAudio = audioplayer(noiseVoice, Fs); % 将音频文件载入audioplayer subplot(2, 1, 2); % 绘制波形 [fftNoiseVoice, f] = myfft(noiseVoice, SampleRate, 'plot'); title('音乐和噪声频谱'); % 显示标题 play(hAudio); % 播放添加噪声后的声音 pause(3);

音频信号分析仪(A题一等奖)

题目名称:音频信号分析仪(A题) 华南理工大学电子与信息学院参赛队员:陈旭张洋林士明 摘要:本音频信号分析仪由32位MCU为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。该系统能够精确测量的音频信号频率范围为20Hz-10KHz,其幅度范围为5mVpp-5Vpp,分辨力分为20Hz和100Hz两档。测量功率精确度高达1%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。 关键词:FFT MCU频谱功率 Abstract:The audio signal analyzer is based on a32-bit MCU controller,through the AD converter for audio signal sampling,the continuous signal discrete,and then through the FFT fast Fourier transform computing,in the time domain and frequency domain of the various audio frequency signal weight and power,and other indicators for analysis and processing,and then through the high-resolution LCD display signals in the spectrum.The system can accurately measure the audio signal frequency range of20Hz-10KHz,the range of5-5Vpp mVpp,resolution of20Hz and100Hz correspondent.Power measurement accuracy up to1%,and be able to accurately measuring the periodic signal cycle is the ideal audio signal analyzer solution. Keyword:FFT MCU Spectrum Power

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是:

数字信号处理 语音信号分析与处理及其MATLAB实现..

摘要 (2) 1 设计目的与要求 (3) 2 设计步骤 (4) 3 设计原理及内容 (5) 3.1 理论依据 (5) 3.2 信号采集 (6) 3.3 构造受干扰信号并对其FFT频谱分析 (8) 3.4 数字滤波器设计 (9) 3.5 信号处理 (10) 总结 (12) 致谢 (13) 参考文献 (14)

用MATLAB对语音信号进行分析与处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。 数字滤波器是数字信号处理的基础,用来对信号进行过滤、检测和参数估计等处理。IIR数字滤波器最大的优点是给定一组指标时,它的阶数要比相同组的FIR滤波器的低的多。信号处理中和频谱分析最为密切的理论基础是傅立叶变换(FT)。离散傅立叶变换(DFT)和数字滤波是数字信号处理的最基本内容。 关键词:MATLAB;语音信号;加入噪声;滤波器;滤波

1. 设计目的与要求 (1)待处理的语音信号是一个在20Hz~20kHz频段的低频信号 (2)要求MATLAB对语音信号进行分析和处理,采集语音信号后,在MATLAB平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器进行滤除噪声,恢复原信号。

2. 设计步骤 (1)选择一个语音信号或者自己录制一段语音文件作为分析对象; (2)对语音信号进行采样,并对语音信号进行FFT频谱分析,画出信号的时域波形图和频谱图; (3)利用MATLAB自带的随机函数产生噪声加入到语音信号中,对语音信号进行回放,对其进行FFT频谱分析; (4)设计合适滤波器,对带有噪声的语音信号进行滤波,画出滤波前后的时域波形图和频谱图,比较加噪前后的语音信号,分析发生的变化; (5)对语音信号进行回放,感觉声音变化。

脉冲波形的产生与变换

脉冲波形的产生与变换 脉冲信号是数字电路中最常用的工作信号。脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。这一类电路包括单稳态触发器和施密特触发器。这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。下面先来介绍由集成门构成的脉冲信号产生和整形电路。 9.1 多谐振荡器 自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。多谐振荡器通常由门电路和基本的RC电路组成。多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。 9.1.1门电路组成的多谐振荡器 多谐振荡器常由TTL门电路和CMOS门电路组成。由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。 (1)由TTL门电路组成的多谐振荡器 由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。 ①简单环形多谐振荡器

(a) (b) 图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。图9-1(a)为由三个非门构成的多谐振荡器。若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。图9-1(b)为各点波形图。 简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。 ② RC环形多谐振荡器 如图9-2所示,RC环形多谐振荡器由3个非门(G1、G2、G3)、两个电阻(R、RS)和一个电容C组成。电阻RS是非门G3的限流保护电阻,一般为100Ω左右;R、C为定时器件,R 的值要小于非门的关门电阻,一般在700Ω以下,否则,电路无常工作。此时,由于RC的值较大,从u2到u4的传输时间大大增加, 基本上由RC的参数决定,门延迟时间tpd可以忽略不计。 图9-2 RC环形多谐振荡器 a.工作原理 设电源刚接通时,电路输出端uo为高电平,由于此时电容器C尚未充电,其两端电压为零,则u2、u4为低电平。电路处于第1暂稳态。随着u3高电平通过电阻R对电容C充电,u4电

语音信号处理系统设计

课题六语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是:

基于STM32的音频信号分析设计与实现

龙源期刊网 https://www.360docs.net/doc/0917521938.html, 基于STM32的音频信号分析设计与实现 作者:梁方舟李金泉黄训磊王玉花 来源:《现代电子技术》2014年第01期 摘要:基于ARM Cortex?M3内核的32位处理器STM32F103和快速傅里叶变换(FFT)算法实现了音频信号频谱的分析。整个系统由前级信号调理、A/D采样电路、CPU运算电路和LCD显示电路等组成。实验表明,系统能够检测20 Hz~10 kHz范围内的频率成份并显示 音频信号频谱,该方案成本低,具有一定的应用价值。 关键词:音频信号; FFT; STM32;基?4时间抽取 中图分类号: TN911.7?34 文献标识码: A 文章编号: 1004?373X(2014)01?0019?03 音频信号分析应用于音频制作、信号分析等领域,如音频设备的研发与生产、低频信号的综合分析等。本设计利用频谱分析原理来分析被测音频信号的频率、频谱,传统的频谱分析方法有扫频法、数字滤波法。采用STM32实现快速傅里叶变换(FFT)设计方案,通过FFT把被测的音频信号由时域信号转换为频域信号,将其分解成分立的频率分量。 1 系统设计 音频信号通过前级信号处理电路放大和滤波及模数转换,经STM32进行FFT运算后获得信号的频谱,单片机控制A/D转换器实时采集信号,频谱在液晶屏扫描显示。单片机采用ST 公司的低功耗STM32F103ZET6 32位单片机,其内部含有3个12位16通道A/D转换模块和2个12位D/A转换模块。系统框图如图1所示。 1.1 信号调理与采集 设计思想:为满足输入信号较大的动态范围,必须在信号进行A/D转换前进行合理的处理,使其在A/D量化范围内达到量化精度最高,该方法相当于AD位数的增加。本设计要求输入信号幅度范围(峰?峰值)为0.01 mV~10 V,即100 dB的输入信号动态范围。设定ADC 芯片的最小输入信号峰?峰值为500 mV,再设定ADC的输入动态范围为20lg(10 V/500 mV),即26 dB,故需要5路放大电路,每一路放大倍数固定,分别为62 400,8 000,400,20,1倍。由于设计小信号放大的增益较大,放大器的选择尤为关键,根据影响放大器输出的主要参数:运放的增益带宽积、噪声电压密度、噪声电流密度、失调电流和失调电压等,选择TI公司生产的运放OPA637,该运放增益带宽积约800 MHz,输入换算电压噪声密度为[4.5 nVHz,]输入偏置电流2 pA,输入失调电压130 μV。具体电路如图2所示。 图1 系统框图

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

录音合成技术教案-音频信号处理

第四章:音频信号处理-1 信号在时间范畴内的处理 第13 –16 学时

内容 ?混响的概念 ?决定混响的因素?混响时间的选择?时空 ?声源、麦克与环境?术语概念?反射的顺序?条件 ?参数

混响的概念 ◆乐器停止发音后,声音并不马上消失,而是伴有余音的,即分贝 数渐渐下降,这种现象称为混响。 ◆声学上把声音衰减60dB的时间称为混响时间。 ◆混响是由于声音在室内反射造成的,室外是没有混响的。 ◆反映音乐厅质量的主要因素是混响。

决定混响的因素 ◆房间的体积:通常体积越大,混响时间越长; ◆房间内壁的材质:如果内壁是粗糙柔软的吸声材质,那么混响时间会短 些,如果内壁是坚硬光滑的反射材质,那么混响时间会长些,房间的内壁指的是墙壁、天花板、地板,以及音乐厅内一切影响声音传播的障碍物,特别是坐椅,增加有软垫的坐椅数量会缩短混响时间; ◆声音的频率:由于高频声音的反射和衍射能力比低频声音差,所以高频 声音的混响时间比低频声音短。

混响时间的选择 ◆混响时间太短会使声音变得干涩,太长则会使音乐失去清晰的线条,两 者都不利于音乐的欣赏。实践表明,适合乐队演奏的音乐厅,混响时间应在1.5到2秒之间。 ◆最佳的混响时间并不是唯一的,它取决于听众的爱好、音乐的类型、乐 队的规模等诸多因素。 ◆例如:重视音响效果的听众希望混响时间长些(交响乐) ,重视音乐细节 (旋律、节奏等)的欣赏者希望混响时间短些(歌剧)。

时空主题词:干音、湿音、时间、空间、直达、反射、混响、延时 ?我们熟悉的时间与空间 ?室内 ?室外 ?混响 ?反射 ?时间与空间的概念 ?早期反射与后期混响 ?延时与延迟 ?空间尺寸

第八章 脉冲波形的产生和变换试题及答案

第八章脉冲波形的产生和变换 一、填空题 1.(10-1中)矩形脉冲的获取方法通常有两种:一种是________________;另一种是________________________。 2.(10-1易)占空比是_________与_______的比值。 3.(10-4中)555定时器的最后数码为555的是(,)产品,为7555的是(,)产品。 4.(10-3中)施密特触发器具有现象;单稳触发器只有个稳定状态。 5.(易,中)常见的脉冲产生电路有,常见的脉冲整形电路有、。 6.(中)为了实现高的频率稳定度,常采用振荡器;单稳态触发器受到外触发时进入。 7.(10-3易)在数字系统中,单稳态触发器一般用于______、 ______、______等。 8.(10-3中)施密特触发器除了可作矩形脉冲整形电路外,还可以作为________、_________。 9.(10-2易)多谐振荡器在工作过程中不存在稳定状态,故又称为________。 10.(10-2中)由门电路组成的多谐振荡器有多种电路形式,但它们均具有如下共同特点: 首先,电路中含有________,如门电路、电压比较器、BJT 等。这些器件主要用来产生________;其次,具有________, 将输出电压器恰当的反馈给开关器件使之改变输出状态;另外,还有,利用RC电路的充、放电特性可实现_______,以获得所需要的振荡频率。在许多实用电路中,反馈网络兼有_____作用。 11.(10-3易)单稳态触发器的工作原理是:没有触发信号时,电路处于一种_______。外加触发信号,电路由_____翻转到_____。电容充电时,电路由______自动返回至______。 二、选择题 1.(10-2中)下面是脉冲整形电路的是()。 A.多谐振荡器触发器 C.施密特触发器触发器 2.(10-2中)多谐振荡器可产生()。

基于MATLAB的语音信号分析与处理系统的设计

数字信号处理大作业 基于MATLAB的语音信号分析与处理系统的设计 班级:物联网1401 学号: 姓名:zk 目录 一、设计目的 (2)

二、设计内容及要求 (2) 2.1设计内容 (2) 2.2设计要求 (3) 三、详细设计过程 (3) 3.1语音信号的采集 (3) 3.2 原始语音信号的时域频域分析 (3) 3.3原始语音信号加噪 (5) 3.4设计滤波器 (6) 3.5 MATLAB语音信号处理界面设计 (8) 3.6 利用C语言得出声音带宽 (11) 四、调试结果 (11) 五、结论 (12) 参考文献 (13) 一、设计目的 综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用 MATLAB和C语言作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 二、设计内容及要求 2.1设计内容 ①录制一段自己的语音信号(我是物联网1401班的张坤),并对录制的信号进行采样。

②画出采样后语音信号的时域波形和频谱图。 ③给定滤波器的性能指标,采用窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应。 ④利用设计的滤波器对采集的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化,回放语音信号。 ⑤用 MATLAB 设计一信号处理系统界面。 ⑥利用C语言对录制语音信号进行FFT变换(取其中的1024进行),计算出自己声带的带宽。 2.2设计要求 ①学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法。 ②掌握在 Windows 环境下语音信号采集的方法。 ③掌握数字信号处理的基本概念、基本理论和基本方法。 ④掌握 MATLAB 设计 FIR 和 IIR 数字滤波器的方法。 ⑤学会用 MATLAB 对信号进行分析和处理。 ⑥学会用C语言进行FFT程序的编写和算法效果的仿真。 三、详细设计过程 3.1语音信号的采集 利用PC 机上的声卡和Windows 操作系统实现语音信号的的采集。打开“开始”菜单,选择“程序\附件\娱乐\录音机”项,打开Windows中自带的录音机程序,点击录音机程序界面中的录音按钮,开始声音录制。录完后点击放音按钮,可以实现所录音的重现。以文件名“zhangkun”保存入D:\ 中。文件存储器的后缀默认为.wav ,这是Windows 操作系统规定的声音文件存的标准。 3.2 原始语音信号的时域频域分析 利用MATLAB中的“audioread”命令来读入(采集)语音信号,将它赋值给某一向量。再对其进行采样,记住采样频率和采样点数。根据help文档,下面介绍audioread函数三种调用格式。

含噪声的语音信号分析与处理设计

课程设计任务书 学生姓名:苗强强专业班级:电信1204 指导教师:阙大顺沈维聪工作单位:信息工程学院 题目: 程控宽带放大器的设计 初始条件: 程控宽带放大器是电子电路中常用模块,在智能仪器设备及嵌入式系统中有广 泛的应用。因此对于电子信息专业的技术人员来说,熟练掌握该项技术很有必要。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体 要求) (1)输入阻抗>1KΩ,单端输入,单端输出,放大器负载电阻为600Ω; (2)3dB通频带10kHz~6MHz,在20kHz~5MHz频带内增益起伏<1dB。 (3)增益调节范围10 dB~40 dB,(通过键盘操作调节)。 (4)发挥部分:当输入频率或输出负载发生变化时,通过微处理器自动调节,保持 放大器增益不变。 (5)电路通过仿真即可。 时间安排: 1. 任务书下达,查阅资料 1天 2. 制图规范、设计说明书讲解 2天 3. 设计计算说明书的书写 5天 4. 绘制图纸 1天 5. 答辩 1天 指导教师签名:年月日 系主任(或责任教师)签名:年月日

滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB IIR滤波器 FIR滤波器

音频信号分析

音频信号分析-- 关于带宽、动态范围和正常操作电平 音频信号主要指的是语言和音乐。在这篇文章中我将研究一些工作中常常涉及到的问题,例如各种信号在带宽、动态范围和电平上的要求。我们将讨论语言和音乐信号的峰值电平,以及处理信号峰值和电平变化的标准方法。 频谱 图( 15-1 )的数据向我们显示出在音乐厅中,人们面对面交谈时的正常感觉。这些东西包括:语言和音乐的带宽和动态的范围。参加测试者为听力正常的年轻人。音乐的频率的传播范围是很有限的,特别是高频部分。未扩声的语言只能存在于很小的范围之中。 如果我们以倍频程为单位来分析语言信号,见图 15-2 ,这是一位普通成年男人的语言频谱。频谱显示在 250hz 处为能量的最大值。 250hz 两边都呈下滑趋势。 1khz 以上的倍频呈每倍频 6dB 开始衰减。

图15-3 显示了古典音乐与摇滚音乐信号的长期能量谱。大家有没有注意到,古典音乐与语言的频谱在中频和高频两个范围是相似的。 请比较图15-2与图15-3 。 Figure 15-3: Long-term octave-wide power spectra for classical and rock music. 倍频程与可懂度 见图15-4 ,在普通的语言能量谱中,完全独立的倍频部分十分有助于语言的可懂度。语言的可懂度并不意味着声音的听起来真实。众所周知,我们用电话的时候,我们的语言频率范围被限制在300hz-3000hz 之间。

看图,在1khz 到4khz 之间的频段对可懂度是最有影响力。这就是为什么在非常嘈杂的环境中,扩声系统一般在这个频段显得不足。最为理想的是,我们主动的去再生或增强语言信号,以同时获得真实度与可懂度。在合理的安静的环境中这是很有可能的。 可懂度与环境噪声水平之间的关系 在理想的情况下,本底噪音电平低于语言信号电平(平均值)25dB ,以得到真实的语言扩声。如果噪音电平只低于语言信号15dB ,大多数听众对于信息的理解并不感到困难。不过,此时已有少数人开始抱怨噪音。如果信噪比继续降低,对于所有的听众来说,字词之间的可懂度就没有了。激励器可以增加语言信号的响度,然而,处理的量是有限的。 什么时候的语言音量太吵耳?正常面对面交谈的声压级在60dB-65dB 之间。然而为大多数语言扩声时声压级被定在70-75dB 。当语言扩声超过85-90dB, 可懂度的增加就很少了。并且大多数听众开始抱怨音量太大了。如果音量继续增加,很多听众确确实实感到难以忍受,“音量太大了!!!”。图15-5 显示显示了声压级与可懂度之间的关系。

基于FPGA的音频处理系统设计(毕业设计开题报告)

基于FPGA的音频处理系统设计 1 课题来源: 随着数字记录技术和大规模集成电路技术的迅速发展,消费类电子产品正以日新月异的新姿展现在当代人的面前,音响类娱乐产品的多样化、小型化与数字化及品种的琳琅满目丰富了音响产品市场,满足了多层次消费者的不同需要。在这些科技产品的快速发展过程中,数字音频技术在其中扮演着重要的角色。 现在音频处理技术的任务越来越复杂,对信号处理的效果要求不断提高,音频处理技术的算法也越来越复杂,要求在几十ms甚至几ms的时间内完成音频信号大量的数据采集、处理、存储、传输,这就对音频处理系统处理器的运算速度提出了更高的要求。 2 研究的目的和意义: 随着消费电子的快速发展,数字音频技术的应用显得越来越重要,对数字音频技术的研究符合市场与科技需求。数字音频处理技术涉及生活的方方面面,包括滤波器技术、数字信号处理、人工智能、模式识别、编码学、等多个学科的知识,是信息化技术类学科当中发展极为迅速的一个方向之一。音频信号处理技术包含的内容非常多,主要有信号存储、语音合成、语音识别、音频压缩、语音理解、音频编码、语音识别、语音增强等多个分支,总而言之,音频信号处理技术包括音频信号的数字化处理、数字化实现、数字化变换、数字化存储、数字化传播、及音频的变换、语音的处理、语音的识别等自然科学多个领域的综合运用。 传统的数字滤波器采用乘法和累加结构,需要进行多次的乘法和加法运算。由于乘法器庞大的结构,占用了系统芯片上的大部分面积,消耗了大部分功率,使得音频处理系统在体积和处理速度上存在着不足,所以传统的数字滤波器不能很好的满足家用和便携式音频处理器对体积小、功耗小信号处理速度高的要求。而近些年来使用范围越来越广泛,技术越来越成熟的FPGA器件对于解决对于解决音频信号的高标准、高要求有着其独特的优势。基于FPGA器件的音频信号处理的实现方案,在于对声音信号的收集、处理及应用,工作的重点是在噪声环境中如何

数字信号处理综合分析报告--数字音频信号的分析与处理

数字信号处理综合报告--数字音频信号的分析与处理

————————————————————————————————作者:————————————————————————————————日期:

数字信号处理实验 题目数字音频信号的分析与处理 班级 姓名 学号 日期 2013.06.10-2013.06.24

一、实验目的 1.复习巩固数字信号处理的基本理论; 2.利用所学知识研究并设计工程应用方案。 二、实验原理 数字信号处理技术在音频信号处理中的应用日益增多,其灵活方便的优点得到体现。分频器即为其中一种音频工程中常用的设备。 人耳能听到的声音频率范围为20Hz~20000Hz,但由于技术所限,扬声器难以做到在此频率范围内都有很好的特性,因此一般采用两个以上的扬声器来组成一个系统,不同的扬声器播放不同频带的声音,将声音分成不同频带的设备就是分频器。下图是一个二分频的示例。 图8.1 二分频示意图 高通滤波器和低通滤波器可以是FIR或IIR类型,其中FIR易做到线性相位,但阶数太高, 不仅需要耗费较多资源,且会带来较长的延时;IIR阶数低,但易出现相位失真及稳定性问题。 对分频器的特性,考虑最多的还是两个滤波器合成的幅度特性,希望其是平坦的,如图8.2所示: 图8.2 分频器幅度特性 分频 低频放 高频放 声 音 High Low-

由于IIR 的延时短,因此目前工程中大量应用的还是Butterworth 、Bessel 、Linkwitz-Riley 三种IIR 滤波器。其幅频特性如图8.3所示: 图8.3 三种常用IIR 分频器的幅度特性 巴特沃斯、切比雪夫、椭圆等类型的数字滤波器系数可通过调用MATLAB 函数很方便的计算得到,但Bessel 、Linkwitz-Riley 数字滤波器均无现成的Matlab 函数。 并联系统的系统函数为 级联系统的系统函数为 宁可瑞滤波器(Linkwitz-Riley ),由两个巴特沃斯滤波器级联而成。 N 阶巴特沃夫滤波器等效宁可瑞滤波器的设计 l h h l l h ()()()()()()()()()()()()()()()B=conv(B ,A )+conv(B ,A )A=conv(A ,A ) l h l h l h l h h l l h B z B z H z H z H z A z A z B z A z B z A z B z A z A z A z =+=++==????121212l 212()()()()()()()()() B=conv(B ,B )A=conv(A ,A ) B z B z B z H z H z H z A z A z A z ===?????

matlab音频信号处理技术

实验一Matlab的音频信号处理技术 一.目的要求 掌握Matlab处理.wav的基本原理和方法。 二.实验内容 【实验题1】音量标准化 (说明:如果有几段音频的电平有大有小,这样的音频保存后,播放时就有的声音大、有的声音小,音量标准化就是把电平大小不同的音频文件,量化到一个既不失真、又有一定标准(100%)的、统一的音量电平,这样就不会出现声音有大有小的情况了。)现以微软自带的“Alarm09.wav”音频信号为例: 1.将Alarm09.wav复制到Matlab当前目录中(或者改变当前目录); 2.再通过音量标准化处理后保存为Alarm09new.wav文件。 实现程序如下: clear; close all; clc [Y, FS, NBITS]=wavread('Alarm09.wav');%将WAV文件转换成变量 FS,NBITS %显示采样频率和量化比特数 Ym=max(max(max(Y)),max(abs(min(Y))));%找出双声道极值 X=Y/Ym;%归一化处理 wavwrite(X,FS,NBITS, 'Alarm09new.wav');%将变量转换成WAV文件 【思考题】 1. 试听标准化处理后的声音,其有何变化? 标准化处理后音量变得稍大。 2. 简单描述“%找出双声道极值”中每一个max和min的意义。 找出wav文件转换为变量后的有最大绝对值的数值,用以归一化处理。

【实验题2】声道分离合并与组合 (说明:立体声或双声道音频信号有左右两个声道利用Matlab实现双声道分离两路声道合并和两个单声道组合成一个双声道等效果这些操作实际利用了Matlab的矩阵抽取、相加和重组运算) 现以“荷塘月色.wav”音频信号为例: clear; close all; clc [X, FS, NBITS]=wavread('荷塘月色.wav'); %将WAV文件转换成变量 X1=X(:,1);%抽取第1声道 X2=X(:,2);%抽取第2声道 wavwrite(X1,FS,NBITS, '荷塘月色1.wav'); wavwrite(X2,FS,NBITS, '荷塘月色2.wav'); X12=X1+X2;%两路单声道合并 X12m=max(max(max(X12)),max(abs(min(X12))));%找出极值 Y12=X12/X12m;%归一化 wavwrite(Y12,FS,NBITS, '荷塘月色12.wav'); X3=[X1,X2];%两路单声道变量组合 wavwrite(X3,FS,NBITS, '荷塘月色3.wav'); 【思考题】 1.比较各种处理后的文件大小。 荷塘月色1和2以及归一化后的12文件较小,只有原来的一半,荷塘月色3和原来一样大。 2.试听处理后的文件,简述有何不同? 效果不明显。本以为可以听到男声和女声的单独声道,但是没有听出区别。

相关文档
最新文档