基于SPSS多元线性回归分析的案例

合集下载

SPSS多元回归分析实例

SPSS多元回归分析实例

t i e an dl l t 多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y 与各自变量x j (j=1,2,3,…,n)之间的多元线性回归模型:其中:b 0是回归常数;b k (k =1,2,3,…,n)是回归参数;e 是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x 1为最多连续10天诱蛾量(头);x 2为4月上、中旬百束小谷草把累计落卵量(块);x 3为4月中旬降水量(毫米),x 4为4月中旬雨日(天);预报一代粘虫幼虫发生量y (头/m2)。

分级别数值列成表2-1。

预报量y :每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x 1诱蛾量0~300头为l 级,301~600头为2级,601~1000头为3级,1000头以上为4级;x 2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x 3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x 4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1x 1x 2x 3x 4y 年 蛾量 级别 卵量 级别 降水量 级别 雨日 级别 幼虫密度级别1960102241121 4.31211011961300144030.111141196269936717.511191196318764675417.14745541965431801 1.9121111966422220101013119678063510311.82322831976115124020.612171197171831460418.444245419728033630413.433226319735722280213.224216219742641330342.243219219751981165271.84532331976461214017.515328319777693640444.7432444197825516510101112数据保存在“DATA6-5.SAV”文件中。

spss多元回归分析案例

spss多元回归分析案例

spss多元回归分析案例SPSS多元回归分析案例。

在统计学中,多元回归分析是一种用于探究多个自变量与因变量之间关系的方法。

通过多元回归分析,我们可以了解不同自变量对因变量的影响程度,以及它们之间的相互作用情况。

在本篇文档中,我将通过一个实际案例来介绍如何使用SPSS软件进行多元回归分析。

案例背景:假设我们是一家电子产品公司的市场营销团队,在推出新产品之前,我们希望了解不同因素对产品销量的影响。

我们收集了一些数据,包括产品的售价、广告投入、竞争对手的售价、季节等因素,以及产品的销量作为因变量。

数据准备:首先,我们需要将数据录入SPSS软件中。

在SPSS中,我们可以通过导入Excel文件的方式将数据导入到软件中,并进行必要的数据清洗和处理。

确保数据的准确性和完整性对于后续的多元回归分析非常重要。

模型建立:接下来,我们需要建立多元回归模型。

在SPSS中,我们可以通过依次选择“分析”-“回归”-“线性回归”来进行多元回归分析。

在“因变量”栏中输入销量,然后将所有自变量依次输入到“自变量”栏中。

在建立模型之前,我们还需要考虑是否需要进行变量转换或交互项的添加,以更好地拟合数据。

模型诊断:建立模型后,我们需要对模型进行诊断,以确保模型的准确性和有效性。

在SPSS中,我们可以通过查看残差的正态性、异方差性以及自相关性来进行模型诊断。

如果模型存在严重的偏差或违反了多元回归分析的假设,我们需要进行相应的修正或改进。

模型解释:最后,我们需要解释多元回归模型的结果。

在SPSS的输出结果中,我们可以看到各个自变量的系数、显著性水平、调整R方等统计指标。

通过这些指标,我们可以了解不同自变量对销量的影响程度,以及它们之间的相互作用情况。

同时,我们还可以进行各种假设检验,来验证模型的有效性和可靠性。

结论:通过以上多元回归分析,我们可以得出不同自变量对产品销量的影响程度,以及它们之间的相互作用情况。

这些结果对于我们制定产品的定价策略、广告投放策略以及市场营销策略都具有重要的指导意义。

4.3.4 多元线性回归的实用案例[共4页]

4.3.4  多元线性回归的实用案例[共4页]

195 他筛选方法结合使用。

因此,尽管它是一种比较高效的方法,但使用者较少。

4.3.4 多元线性回归的实用案例1.案例要求对于如图4-39所示的“大学学习状态测试.sav ”文档,请分析作业情况、上网时间、游戏时间、性别、爱好、认知风格与数学成绩之间的关系。

如果可能,请构造回归方程,并评价回归分析的效果。

图4-39 待进行线性回归分析的原始数据2.分析解决方案分析图4-39中所示的“大学学习状态测试.sav ”数据,依据案例要求以“数学”成绩为结果变量(因变量)、以“作业情况”“上网时间”“游戏时间”“性别”“爱好”“认知风格”作为因素变量(自变量),构造多元线性回归方程。

最后,根据回归结果,借助判定系数、F 值和T 值评价回归方程的质量。

根据线性回归分析对自变量的规范性要求,需要在执行线性回归分析前对字符型自变量进行数值化编码,而且在编码过程中尽可能依据某种规范把字符型变量转化为定序型数据。

3.操作流程首先,以SPSS 打开“大学学习状态测试.sav ”文档,使之处于“数据视图”状态。

然后,检查题目中要求的每个自变量,对于字符型变量“性别”“爱好”“认知风格”进行数值化编码,使之成为定序的数值型量,新变量名称为“Sex ”“S 爱好”“S 风格”。

第三,利用菜单【分析】—【回归】—【线性】命令,启动“线性回归”对话框,如图4-40所示。

第三,按照图4-40所示的界面,把变量“数学”添加到【因变量】列表框中,把变量“上网时间”“游戏时间”“作业情况”“Sex ”“S 爱好”“S 风格”添加到【自变量】列表框中。

第四,在右侧中部的“方法”组合框中,选择自变量的筛选方式为“逐步”。

最后,单击底部的【确定】按钮,启动线性回归过程。

获得如图4-41~图4-45所示的一组处理结果。

基于SPSS多元线性回归分析的案例

基于SPSS多元线性回归分析的案例

农民收入影响因素的多元回归分析自改革开放以来,虽然中国经济平均增长速度为9.5 % ,但二元经济结构给经济发展带来的问题仍然很突出。

农村人口占了中国总人口的70 %多,农业产业结构不合理,经济不发达,以及农民收入增长缓慢等问题势必成为我国经济持续稳定增长的障碍。

正确有效地解决好“三农”问题是中国经济走出困境,实现长期稳定增长的关键。

其中,农民收入增长是核心,也是解决“三农”问题的关键。

本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,寻找其根源,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。

一、回归模型的建立(1)数据的收集根据实际的调查分析,我们在影响农民收入因素中引入3个解释变量。

即:X2-财政用于农业的支出的比重,X3-乡村从业人员占农村人口的比重,X4 -农作物播种面积1991223.2510.2650.92149585.8 1992233.1910.0551.53149007.1 1993265.679.4951.86147740.7 1994335.169.252.12148240.6 1995411.298.4352.41149879.3 1996460.688.8253.23152380.6 1997477.968.354.93153969.2 1998474.0210.6955.84155705.7 1999466.88.2357.16156372.8 2000466.167.7559.33156299.9 2001469.87.7160.62155707.9 2002468.957.1762.02154635.5 2003476.247.1263.721524152004499.399.6765.64153552.6 2005521.27.2267.59155487.7(1)回归模型的构建Y i=1+2X2+3X3+4X4+u i二、回归模型的分析(1)多重共线性检验系数a(2)模型异方差的检验异方差产生的原因有:数据质量原因、模型设定原因。

SPSS多元回归分析报告实例

SPSS多元回归分析报告实例

多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间的多元线性回归模型:其中:b0是回归常数;b k(k=1,2,3,…,n)是回归参数;e是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。

分级别数值列成表2-1。

预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960 1022 4 112 1 4.3 1 2 1 10 1 1961 300 1 440 3 0.1 1 1 1 4 1 1962 699 3 67 1 7.5 1 1 1 9 1 1963 1876 4 675 4 17.1 4 7 4 55 4 1965 43 1 80 1 1.9 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 11.8 2 3 2 28 3数据保存在“DATA6-5.SAV”文件中。

1)准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析多元回归分析是一种统计方法,用于研究一个因变量与多个自变量之间的关系。

在SPSS中,可以使用该方法来构建、估计和解释多元回归模型。

下面将以一个实例来解析SPSS中的多元回归分析。

假设我们想要研究一个教育投资项目的效果,该项目包括多个自变量,例如教育资金、教育设施、学生人数等,并且我们希望预测该项目对学生学习成绩的影响。

首先,我们需要准备好数据并导入SPSS中。

数据应包含每个教育投资项目的多个观测值,以及与之相关的自变量和因变量。

例如,可以将每个项目作为一个观测值,并将教育资金、教育设施、学生人数等作为自变量,学生学习成绩作为因变量。

在SPSS中,可以通过选择“Analyze”菜单中的“Regression”选项来打开回归分析对话框。

然后,选择“Linear”选项来进行多元回归分析。

接下来,可以将自变量和因变量添加到对话框中。

在自变量列表中,选择教育资金、教育设施、学生人数等自变量,并将它们移动到“Independent(s)”框中。

在因变量框中,选择学生学习成绩。

然后,点击“OK”按钮开始进行分析。

SPSS将输出多元回归的结果。

关键的统计指标包括回归系数、显著性水平和拟合度。

回归系数表示每个自变量对因变量的影响程度,可以根据系数的大小和正负来判断影响的方向。

显著性水平表示自变量对因变量的影响是否显著,一般以p值小于0.05为标准。

拟合度指示了回归模型对数据的拟合程度,常用的指标有R方和调整后的R方。

在多元回归分析中,可以通过检查回归系数的符号和显著性水平来判断自变量对因变量的影响。

如果回归系数为正且显著,表示该自变量对因变量有正向影响;如果回归系数为负且显著,表示该自变量对因变量有负向影响。

此外,还可以使用其他方法来进一步解释和验证回归模型,例如残差分析、模型诊断等。

需要注意的是,在进行多元回归分析时,需要满足一些前提条件,例如自变量之间应该独立、与因变量之间应该是线性关系等。

spss多元回归分析案例

spss多元回归分析案例

spss多元回归分析案例SPSS多元回归分析是一种常用的统计方法,可以通过分析多个自变量对一个或多个因变量的影响程度,帮助研究者理解变量之间的关系以及预测变量之间的变化情况。

以下是一个关于人们消费意愿的多元回归分析的案例。

假设我们想研究人们的消费意愿受到收入水平、年龄和受教育水平的影响程度。

我们收集了100个参与者的数据,包括他们的收入、年龄、受教育水平以及消费意愿。

下面将介绍如何使用SPSS进行多元回归分析。

首先,在SPSS软件中打开数据文件,并选择"回归"菜单下的"线性回归"选项。

然后将因变量(消费意愿)拉入"因变量"框中,将自变量(收入、年龄、受教育水平)拉入"自变量"框中。

其次,点击"统计"按钮,在弹出的对话框中勾选"无多重共线性检验"、"离群值"和"样本相关矩阵"选项,并点击"确定"按钮。

接下来,点击"模型"按钮,在弹出的对话框中选择"全量"和"因素样本相关系数"选项,并点击"确定"按钮。

然后,点击"保存"按钮,在弹出的对话框中输入保存路径和文件名,并勾选"标准化残差"、"标准化预测值"和"离群值的DFITS"选项,并点击"确定"按钮。

最后,点击"OK"按钮开始进行多元回归分析。

在分析结果中,我们可以查看每个自变量的回归系数、标准误、t值以及显著性水平。

还可以查看整体模型的解释力、统计显著性和调整R 平方。

根据分析结果,我们可以得出结论:收入水平、年龄和受教育水平对消费意愿有显著影响。

收入水平对消费意愿的影响最大,其次是受教育水平,年龄对消费意愿的影响较小。

SPSS多元回归分析实例(最新整理)

SPSS多元回归分析实例(最新整理)

多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间的多元线性回归模型:其中:b0是回归常数;b k(k=1,2,3,…,n)是回归参数;e是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。

分级别数值列成表2-1。

预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960102241121 4.3121101 1961300144030.111141 196269936717.511191 196318764675417.1474554 1965431801 1.912111 19664222201010131 19678063510311.8232283 1976115124020.612171 197171831460418.4442454 19728033630413.4332263 19735722280213.224216219742641330342.243219219751981165271.84532331976461214017.515328319777693640444.7432444197825516510101112数据保存在“DATA6-5.SAV”文件中。

多元回归分析SPSS案例39328讲课讲稿

多元回归分析SPSS案例39328讲课讲稿

多元回归分析S P S S 案例39328多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间的多元线性回归模型:其中:b0是回归常数;b k(k=1,2,3,…,n)是回归参数;e是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。

分级别数值列成表2-1。

预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960 1022 4 112 1 4.3 1 2 1 10 1 1961 300 1 440 3 0.1 1 1 1 4 1 1962 699 3 67 1 7.5 1 1 1 9 1 1963 1876 4 675 4 17.1 4 7 4 55 4 1965 43 1 80 1 1.9 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 11.8 2 3 2 28 3 1976 115 1 240 2 0.6 1 2 1 7 1 1971 718 3 1460 4 18.4 4 4 2 45 4数据保存在“DATA6-5.SAV”文件中。

基于SPSS软件与多元线性回归分析理论的分析———分析儿童血液必需元素与血红蛋白浓度的相关关系

基于SPSS软件与多元线性回归分析理论的分析———分析儿童血液必需元素与血红蛋白浓度的相关关系

1 引言
人体必需元素分宏量元素与微量元素两种。这些元素 在人体内 保持平衡状态 , 一旦缺乏或过量, 平衡就受到破坏, 进而影响身体健康。而婴幼儿是人生中必需元素变化( 缺乏 或过剩) 最敏感的时期 , 它与疾病 的发生与发展息息相关。 随着医疗水平的不断提高, 必需元素与人体健康的关系得到
2 4. o 8 0 3 30 1 .o 230 9 .o
O.0 7o
140 .0 1 0l .3 4 104 .4


8.0 5
87 .5
5 7 3.6
6 9 0. 9
2 3 1 9 .O
2 0. o 6 0
132 .2
1 17 .9

1 0 l 1 l 2


源 一
多元线性回归分析的理论和方法 , 用统计软 件 SS 应 P S时儿童血液 中血红 蛋 白含 量和钙 元素 、 元 铁
素 、 元素含量进 行统计 分析 , 出了结论如 下: 元素对 儿童血红 蛋白浓度存在 显著性 差异 , 铜 得 钙 存在 负相 关性 ; 元素对儿童血 红蛋 白浓度存在 显著性 差异 。 铁 存在 正相 关性 ; 而铜 元素 对儿童血 红蛋 白浓度 不存
在显著性差异。 ¥3 软件 多元线性 回归 FS 方差分析
Ab ta t T td h eainb te ntecneto e go i n acu sr c os y terlt ew e otn fhmo lbn a dclim,i n a dc pu i hlrn s u o h r u rm n c i e ’ o n d bod。w s l o euemut l ie r ersina ayi.T ecn lso hwsw e e i i dsic ie n f m ie n 鹤一 lpel a ges n ls i n r o s h o cu inso h t r ts it t f r tr df r t h n d e o e snil h mi lee n d tecr i lt nb te nte . e t e c lme ta et n r a o ew e m ac a n h a e i h

多元回归分析SPSS案例

多元回归分析SPSS案例

多元回归分析SPSS案例
一、案例背景
一所大学学术部门进行了一项有关学生毕业的调查,主要是为了探讨
学生毕业的影响因素,通过这个调查,大学试图及早发现潜在的学术发展
问题,从而改善学术教育和服务质量。

调查采用SPSS软件分析,将来自
一所大学学生的有关信息作为研究目标,本研究的研究对象为大学学生。

二、研究目的
1、探索影响大学生毕业的主要因素;
2、研究各变量对大学生毕业的影响程度;
3、提出适合大学学生的毕业提升策略。

三、研究变量
本研究采用多元线性回归分析方法,研究变量有:(1)身体健康程
度(即体检结果);(2)现金流(即家庭收入);(3)家庭教育水平;(4)学习成绩;(5)家庭状况,即与家庭成员的关系;(6)个人情感
状况;(7)考试作弊。

四、研究方法
1、获取研究数据:
通过与学校协商,确定调查对象,以及采集问卷的方法(如发放问卷、网络调查等),以获取有关学生毕业的数据;
2、数据处理:
清洗数据,将数据分类进行处理,去除无关信息;
3、多元回归分析:
计算自变量与因变量之间的线性关系,分析变量间关系,建立多元回归模型;。

spss多元回归分析报告案例

spss多元回归分析报告案例

企业管理对居民消费率影响因素的探究---以湖北省为例改革开放以来,我国经济始终保持着高速增长的趋势,三十多年间综合国力得到显著增强,但我国居民消费率一直偏低,甚至一直有下降的趋势。

居民消费率的偏低必然会导致我国内需的不足,进而会影响我国经济的长期健康发展。

本模型以湖北省1995年-2010年数据为例,探究各因素对居民消费率的影响及多元关系。

(注:计算我国居民的消费率,用居民的人均消费除以人均GDP,得到居民的消费率)。

通常来说,影响居民消费率的因素是多方面的,如:居民总收入,人均GDP,人口结构状况1(儿童抚养系数,老年抚养系数),居民消费价格指数增长率等因素。

(注:数据来自《湖北省统计年鉴》)总消费(C:亿元) 总GDP(亿元)消费率(%)1995 1095.97 2109.38 51.96 1997 1438.12 2856.47 50.35 2000 1594.08 3545.39 44.96 2001 1767.38 3880.53 45.54 2002 1951.54 4212.82 46.32 2003 2188.05 4757.45 45.99 2004 2452.62 5633.24 43.54 2005 2785.42 6590.19 42.27 2006 3124.37 7617.47 41.02 2007 3709.69 9333.4 39.75 2008 4225.38 11328.92 37.30 2009 4456.31 12961.1 34.38 2010 5136.78 15806.09 32.50一、计量经济模型分析(一)、数据搜集根据以上分析,本模型在影响居民消费率因素中引入6个解释变量。

X1:居民1.人口年龄结构一种比较精准的描述是:儿童抚养系数(0-14岁人口与 15-64岁人口的比值)、老年抚养系数(65岁及以上人口与15-64岁人口的比值〉或总抚养系数(儿童和老年抚养系数之和)。

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析

1965 43 1 80 1 1.9 1 2 1 1
1
1966 422 2 20 1 0 1 0 1 3
1
1967 806 3 510 3 11.8 2 3 2 28 3
1976 115 1 240 2 0.6 1 2 1 7
1
1971 718 3 1460 4 18.4 4 4 2 45 4
1972 803 3 630 4 13.4 3 3 2 26 3
某地区病虫测报站用相关系数法选取了以下 4 个预报因子;x1 为最多连续 10 天 诱蛾量(头);x2 为 4 月上、中旬百束小谷草把累计落卵量(块);x3 为 4 月中旬降 水量(毫米),x4 为 4 月中旬雨日(天);预报一代粘虫幼虫发生量 y(头/m2)。 分级别数值列成表 2-1。
预报量 y:每平方米幼虫 0~10 头为 1 级,11~20 头为 2 级,21~40 头为 3 级, 40 头以上为 4 级。
1978 255 1 65 1 0 1 0 1 11 2
数据保存在“DATA6-5.SAV”文件中。
1)准备分析数据
在 SPSS 数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼 虫密度”变量,并输入数据。再创建蛾量、卵量、降水量、雨日和幼虫密度的分 级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在 SPSS 数据编 辑窗口中通过计算产生。编辑后的数据显示如图 2-1。
本例选中“Unstandardized”非标准化预测值。
②“Distances”距离栏选项:
Mahalanobis: 距离。 Cook’s”: Cook 距离。 Leverage values: 杠杆值。
③“Prediction Intervals”预测区间选项:

基于SPSS的实证研究数据处理方法研究——以多元线性回归为例

基于SPSS的实证研究数据处理方法研究——以多元线性回归为例

基于SPSS的实证研究数据处理方法研究——以多元线性回归为例SPSS是常用的数据处理软件,以其强大的数据分析功能与易于上手的操作流程被广泛使用于实证研究中。

其中,多元线性回归(Multiple Linear Regression, MLR)是SPSS中最为常用的一种分析方法,被广泛应用于各个领域的实证研究中。

本文将以多元线性回归为例,着重介绍SPSS中实证研究中的数据处理方法。

一、数据的收集与清理在进行多元线性回归分析前,需要首先收集并清理数据,以保证分析结果的准确性。

数据的收集可以通过实验、问卷、调查等方式进行,而数据的清洗则是缺失值处理、异常值识别与处理、数据格式转换等内容。

1.1 缺失值处理缺失值是指在数据收集时未能回答或记录的部分变量值。

在进行数据分析前,需要对缺失值进行处理,以免影响数据分析结果的准确性。

常用的缺失值处理方法有删除、填充、插值等。

其中,删除法删除缺失值所对应的变量值,或删除包含缺失值的整个记录;填充法则通过统计量进行填充,例如均值、中位数、众数等;插值法则通过公式推算缺失值所对应的变量值。

1.2 异常值识别与处理异常值是指明显偏离数据集中心的变量值,通常由于数据记录出错、测量设备失误等原因引起。

在数据分析中,异常值往往会影响数据的正常分布,导致分析结果出现偏差。

因此,需要对异常值进行识别与处理。

常用的异常值识别方法包括箱型图法、3σ法、离群点检测等,而异常值处理方法则有删除法、替换法等。

1.3 数据格式转换SPSS支持多种数据格式,包括Excel、CSV、SAS等。

在导入数据时,需要将数据转换为SPSS支持的格式。

由于不同格式的数据在导入后可能存在差异,因此需要对数据进行检查与转换,以便于数据在SPSS中的正常处理。

二、数据的探索性分析数据的探索性分析是在多元线性回归分析前的重要步骤,旨在帮助研究者更好地了解数据的分布、变异情况及相关性等内容。

常用的方法包括描述性统计、散点图、均值差异分析等。

多元线性回归spss案例

多元线性回归spss案例

多元线性回归spss案例【篇一:多元线性回归spss案例】多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表自变量xp截止,代表有p个自变量,如果有 n组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。

2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,spss---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。

通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。

数据如下图所示:点击分析回归线性进入如下图所示的界面:将销售量作为因变量拖入因变量框内,将车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在方法旁边,选择逐步,当然,你也可以选择其它的方式,如果你选择进入默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择逐步这个方法,将会得到如下图所示的结果:(将会根据预先设定的 f统计量的概率值进行筛选,最先进入回归方程的自变量应该是跟因变量关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)选择变量(e) 框内,我并没有输入数据,如果你需要对某个自变量进行条件筛选,可以将那个自变量,移入选择变量框内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击规则设定相应的筛选条件即可,如下图所示:点击统计量弹出如下所示的框,如下所示:在回归系数下面勾选估计,在右侧勾选模型拟合度和共线性诊断两个选项,再勾选个案诊断再点击离群值一般默认值为 3 ,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。

SPSS多元回归分析实例

SPSS多元回归分析实例

SPSS多元回归分析实例多元回归分析是一种多变量统计分析方法,它用于探讨自变量与因变量之间的关系。

在实际应用中,可以通过SPSS软件进行多元回归分析。

以下是一个关于房屋价格的多元回归分析实例。

假设我们想要解释一些城市房屋价格与房屋的面积、年龄和地理位置之间的关系。

首先,我们需要收集相关数据,包括房屋价格作为因变量,房屋的面积、年龄和地理位置作为自变量。

我们可以通过SPSS软件建立一个数据文件,将这些数据输入到相应的变量中。

然后,我们需要进行数据预处理,包括缺失值处理和异常值处理。

在SPSS中,可以使用"Transform"菜单中的"Recode"功能来处理缺失值和异常值。

接下来,我们可以建立一个多元回归模型,通过分析自变量与因变量之间的关系。

在SPSS中,可以使用"Analyze"菜单中的"Regression"功能来进行多元回归分析。

在多元回归分析的对话框中,我们需要选择因变量和自变量,然后点击"OK"按钮运行分析。

在本例中,我们可以选择价格作为因变量,面积、年龄和地理位置作为自变量。

SPSS将输出分析结果,包括回归系数、标准误差、显著性水平等信息。

我们可以根据这些结果来解释自变量与因变量之间的关系。

例如,回归系数表示自变量对因变量的影响程度。

正的回归系数表示自变量与因变量呈正相关关系,负的回归系数表示自变量与因变量呈负相关关系。

标准误差用于评估回归模型的准确性。

较小的标准误差表示模型的预测能力较强,较大的标准误差表示模型的预测能力较弱。

显著性水平用于判断自变量与因变量之间的关系是否显著。

通常情况下,显著性水平小于0.05时,表示自变量与因变量之间的关系是显著的。

最后,我们可以通过图表来展示多元回归分析的结果。

在SPSS中,可以使用"Graphs"菜单中的"Chart Builder"功能来绘制相关的图表,如散点图、线性回归图等。

SPSS教程-多元线性回归-案例

SPSS教程-多元线性回归-案例
多元回归案例
学生编号 1
2
3
4
5
6
7
8
9
10
性别
男男女女男男女男男女
中考分数 78 80 90 90 70 88 82 74 65 85
末考分数 84 83 89 90 78 89 87 84 78 80
缺席次数 2
1
0
0
5
2
1
1
0
1
作业分数 80 85 90 85 70 80 80 75 80 85
R方 .954
调整 R 方
标准 估
计的误 R 方更


.897 2.10547 .954
更改统计量
F 更改
Sig. F Durbindf1 df2 更改 Watson
16.723
5
4
.009 2.017
a. 预测变量: (常量), 末考成绩, 缺席次数, 性别, 作业分数, 中考成绩。 b. 因变量: 学期总分 残差检验,检验预测残差是否具有自我相关,越接近显示自变量对因变量的整体解释力。 所有自变量可以解释因变量95.4%的变异。调整后的R方为89.6%,因样本小,自变量多,宜采校正后的R 方
N 10 10 10 10 10 10
模型汇总b
学期总分 中考成绩 缺席次数 作业分数 性别
描述性统计量
均值 标准 偏差
83.4000 80.20 1.3000
81.5000 1.40
6.56929 8.548
1.49443 4.74342
.516
N 10 10 10 10 10
模型 1
R .977a
学期总分 80 82 89 95 70 87 85 82 80 84

SPSS多元线性回归分析实例操作步骤-spss做多元线性回归

SPSS多元线性回归分析实例操作步骤-spss做多元线性回归

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2.Opening excel data s ource——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear,Depende n(t因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics 默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDN T(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plo t(s标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.a. Predictors: (Constant), 城市人口密度 (人/平方公里)b. Predictors: (Constant), 城市人口密度 (人/平方公里), 城市居民人均可支配收入(元)c. Dependent Variable: 商品房平均售价(元/平方米)Variables Entered/Removed aModel 1Variables Entered 城市人口密度 (人/平方公里)Variables Removed2城市居民人均可支配收入(元)Method. Stepwise (Criteria: Probability-of-F-to-enter <= .050,Probability-of-F-to-remove >= .100).. Stepwise (Criteria: Probability-of-F-to-enter <= .050,Probability-of-F-to-remove >= .100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型的拟合情况。

SPSS—回归—多元线性回归结果分析(二)

SPSS—回归—多元线性回归结果分析(二)

SPSS—回归—多元线性回归结果分析(二)2011-10-27 14:44,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。

接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:结果分析1:由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands"建立了模型1,紧随其后的是“Wheelbase"建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等 0.1时,从“线性模型中”剔除结果分析:1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些(0.422>0.300)2:从“Anova"表中,可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和= 回归平方和+残差平方和,由于残差平方和(即指随即误差,不可解释的误差)由于“回归平方和”跟“残差平方和”几乎接近,所有,此线性回归模型只解释了总平方和的一半,3:根据后面的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引入,其显著性概率值均远小于 0.01,所以可以显著地拒绝总体回归系数为0的原假设,通过ANOVA方差分析表可以看出“销售量”与“价格”和“轴距”之间存在着线性关系,至于线性关系的强弱,需要进一步进行分析。

结果分析:1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“0.05”所以,不能够引入“线性回归模型”必须剔除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农民收入影响因素的多元回归分析
自改革开放以来,虽然中国经济平均增长速度为9.5 % ,但二元经济结构给经济发展带来的问题仍然很突出。

农村人口占了中国总人口的70 %多,农业产业结构不合理,经济不发达,以及农民收入增长缓慢等问题势必成为我国经济持续稳定增长的障碍。

正确有效地解决好“三农”问题是中国经济走出困境,实现长期稳定增长的关键。

其中,农民收入增长是核心,也是解决“三农”问题的关键。

本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,寻找其根源,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。

一、回归模型的建立
(1) 数据的收集
根据实际的调查分析,我们在影响农民收入因素中引入3个解释变量。

即: X财政用于农业的支出的比重, X-乡村从业人员占农村人口的比重, X -2-34 农作物播种面积
y X2 X3 X4
乡村从业人员78年可比财政用于农业农作物播年份占农村人口的价的支出
的比重种面积比重
1989 196.76 9.42 49.23 146553.9
1990 220.53 9.98 49.93 148362.3
1991 223.25 10.26 50.92 149585.8
1992 233.19 10.05 51.53 149007.1
1993 265.67 9.49 51.86 147740.7
1994 335.16 9.2 52.12 148240.6
1995 411.29 8.43 52.41 149879.3
1996 460.68 8.82 53.23 152380.6
1997 477.96 8.3 54.93 153969.2
1998 474.02 10.69 55.84 155705.7
1999 466.8 8.23 57.16 156372.8
2000 466.16 7.75 59.33 156299.9
2001 469.8 7.71 60.62 155707.9
2002 468.95 7.17 62.02 154635.5
2003 476.24 7.12 63.72 152415
2004 499.39 9.67 65.64 153552.6
2005 521.2 7.22 67.59 155487.7
(1) 回归模型的构建
Y=ββX+βX+βX+u i1+223344i
二、回归模型的分析
(1) 多重共线性检验
a系数
非标准化系数标准系数共线性统计量模型 B 标准误差试用版 t Sig. 容差 VIF
1 (常量) -2983.479 803.141 -3.715 .003
X2 -14.221 15.007 -.141 -.948 .361 .579 1.726
X3 5.201 3.760 .258 1.383 .190 .368 2.717
X4 .021 .006 .614 3.677 .003 .459 2.177 a. 因变量: y 表1
多重共线性是指解释变量之间存在相关关系,判断解释变量之间的多重共线性一般可看方差膨胀因子VIF和容忍度这两个指标,如果解释变量之间存在多重共线性,一般采用逐步剔除VIF最大的解释变量来消除解释变量之间多重共线性的问
题。

从表1可知,解释变量,X1,X2,X3三者的方差膨胀因子VIF分别为
1.726,
2.717和2.177,均小于10。

且三者的容忍度均大于0.1。

所以可以判断解释变量X1,X2,X3三者之间不存在多重共线性。

(2)模型异方差的检验
异方差产生的原因有:数据质量原因、模型设定原因。

由异方差引起的后果一般会导致回归系数估计结果误差较大、有关统计检验失去意义、模型的预测失效等危害,所以在建立模型的过程中必须要检验模型之间是否存在异方差。

若存在异方差解决办法——加权最小二乘法。

从上表散点图判断模型的解释变量之间是否存在异方差,但从上表可以看
到散点图之间的特征不是特别明显。

不易于做出结论,故采用|e|与X的等级相关系数进行判定。

表2
从表2可知,在95%的置信水平下,检验统计量与为标准化残差的绝对值(|e|)之间的显著性水平P值均大于0.05,则接受原假设,检验统计量与|e|之间是独立的,不存在相关关系。

说明模型不存在异方差。

(3)模型序列相关的检验
序列相关是指各随机误差项之间不独立,则称其存在自相关或序列相关性。

自相关产生的原因有:经济变量的惯性、省略解释变量的影响、错误的函数形式的影响、滞后效应、其他原因等。

如果随机误差之间存在自相关,则可能导致OLS估计值不具有最小方差性; 很可能高估R2;t-检验与F-检验结果都变得无效;等影响。

所以必须检验所构造模型是否存在自相关性。

a系数
非标准化系数标准系数
模型 B 标准误差试用版 t Sig.
1 (常量) -.355 7.59
2 -.047 .963
REST1 1.226 .251 1.252 4.889 .068
REST2 -.676 .252 -.686 -2.680 .073
a. 因变量: RES
在上表中REST1为e(t-1),REST2为e(t-2),用e(t)与e(t-1),和e(t-2)进行回归分析,得到上表。

显著性水平均P均为接受原假设,既回归方程的各部分系数均为0,既认定模型不存在序列关。

三、回归模型的确定及解释
a系数
非标准化系数标准系数共线性统计量模型 B 标准误差试用版 t Sig. 容差 VIF
1 (常量) -2983.479 803.141 -3.715 .003
X2 14.221 15.007 -.141 -.948 .361 .579 1.726
X3 5.201 3.760 .258 1.383 .190 .368 2.717
X4 .021 .006 .614 3.677 .003 .459 2.177 a. 因变量: y
由上表可以确立,线性模型的方程为。

Y=-2983.47+14.221X+5.201X+0.021X 234
从构建的模型可以知道,农民的收入水平与X财政用于农业的支出2-
的比重成正相关的关系,财政每增加一元用于农业,农民的收入增加14,。

221元。

X-乡村从业人员占农村人口的比重增加1%,农民收入增加5.201%,3
农民的收入与虽与作物的播种面积成正比比例关系,但是作用较少。

相关文档
最新文档