微服务架构的部署

微服务架构的部署
微服务架构的部署

微服务架构的部署

本文从以下几个方面简要说明微服务架构项目的实践经验:架构选型、开发测试环境下的相关工具支持、人员分工及开发部署流程、相关设计及注意事项。最后,将根据实践经验讨论提高微服架构下的开发和运维效率的切实需求,进一步理清本项目所实现的容器服务管理平台的完善性需求。

本项目是一个企业级的容器服务管理平台,该平台的功能是基于容器实现的应用运行环境管理,以及应用开发阶段的持续集成和持续发布。简单的理解该平台的核心功能之一就是管理复杂应用的开发和运维环境,提高微服务架构下的开发和运维效率。项目的开发背景如下:

首先,该系统具有典型分布式应用系统特征:

该平台所运行的服务器配置不高,例如华为RH1288这类低配置服务器,允许硬件失败;

系统平台要求可根据实际用户数的规模进行伸缩部署,保证硬件资源的合理利用;

由于系统平台之上需要运行若干企业应用的开发和运行环境,可靠性是非常重要的,不允许单点失效。

其次,本系统功能复杂,从架构的角度需要将系统分成多个层次和若干个子系统。不同的层次、子系统根据具体情况需要采用不同的开发语言,由不同的开发小组完成。

第三,项目组成员由几个城市的异地团队协同开发,统一的开发环境和协同工具是必不可少的。

针对上述项目背景的考虑,本项目选择基于微服务架构进行项目开发。

开发、测试、部署使用到的工具集

“工欲善其事、必先利其器”,借助适合的流程和相关工具集,才能提高微服务架构下的应用开发效率。本项目利用DevOPs流程并选用一套相关工具集实现应用开发管理,提高开发、测试、部署的效率。

代码库:本项目使用分布式代码库Gitlab,它的功能不限于代码仓库,还包括reviews(代码审查), issue tracking(问题跟踪)、wiki等功能,是代码管理和异地团队沟通、协作工具的首选。

Docker镜像仓库、Docker:本项目用容器贯穿整个软件开发流程,以容器作为应用发布的载体,应用的开发环境和测试发版环境都运行在Docker容器中。对于复杂的开发和运维环境管理Docker具有先天的优势,目前国内外的互联网公司有大多数都已经将Docker应用到了他们的开发或者生产环境中了。

K8s:本项目采用Kubernates作为容器调度管理的基础环境,开发环境、测试环境的Docker 容器都由K8s负责调度管理。

Jenkins:快速的部署发布离不开老牌持续集成明星Jenkins,本项目通过Jenkins任务构建代码、将应用打包成Docker镜像,最终发布到K8s环境中将容器运行起来。

Shell脚本:编写Shell脚本将项目打分支、发布应用等开发阶段的配置管理工作自动化,降低运维门槛、提高配置管理和运维的效率。

WIKI:Gitlib上的WIKI功能相对简陋,因此项目组选择dokuwiki作为异地团队协作和沟通的工具,团队成员可以将设计文档、知识分享文档、公告信息等信息可以更新到wiki上,便与协同开发。

禅道:为了便于开发计划、开发任务和bug关联起来,本项目使用禅道进行开发任务和bug 管理。

人员分工及开发流程

微服务架构应用的开发、部署的复杂度都是远大于单体式应用的,靠运维人员手工的配置管理显然是难于应付了。DevOps主张以自动化任务处理方式实现软件交付及基础设施更新,可以说是微服务架构应用开发和运维的必要条件,本项目采用DevOps的理念的开发流程进行开发。实现部署和运维的自动化需要工具,同时DevOps强调软件开发者与其他IT员工及管理层间的协作与沟通,因此明确的人员分工和开发流程是与工具同样重要的因素。通俗的说,就是有了工具,大家要知道怎么使用工具,并且愿意使用工具才能真正达到提高研发效率的目的。

项目组的主要工作成员无非也是做开发、测试和系统管理三类工作,这里只说明与传统的企业应用开发过程中三类人员所做的工作略有不同的工作内容。

开发人员:

a) 开发者做开发设计,需要将涉及到接口部分设计更新到wiki上,供调用者评审和调用。

b) 开发者除了编写程序逻辑外,还需要注意编写单元测试用例,因为分布式应用联调相对复杂,先做在编写单服务时做好了测试再联调能够提高开发效率。

c) 由于本项目是采用Docker容器作为发布载体的,开发者可能需要修改DockerFile模板里的部分参数,便于部署阶段能将编译后的代码打包到镜像中。相对于传统的开发方式,这是对开发者额外的要求。让所有开发者懂Dockerfile似乎要求也有点高,其实每个子项目中的DockerFile及脚本一般是在搭建项目框架时,主要系统配置管理员编写的好的模板,若开发人员不懂相关技术,也可以跟配置管理员沟通需求,由配置管理员修改相关文件。

测试人员:测试人员的工作没有什么特别,只是需要注意除了每个Sprint阶段的测试外,还需要配合开发人员持续集成的测试;

系统配置管理人员:一般DevOps的开发方式是依赖于云基础平台以及自动化发布工具的,因此相对于传统开发方式,对系统配置管理者的技术要求会比较低。但是,我们的项目开发目的就是构建一个能支撑DevOps流程的平台,其开发本身还不具备相应的平台基础。因此,我们项目最初的系统配置管理工作是由架构师来做的,主要需要做如下这些事:

a) 部署运行项目组开发需要用到公共的服务组件、例如zookeeper注册中心、Docker Registry镜像仓库、数据库等;

b) 为子项目编写在git上打分支的脚本,便于测试发版的时候打分支;

c) 编写各类型应用发布部署成镜像的Dockerfile;

d) 制作或者在网上找到现成的开发所需环境的Docker镜像,并且Push到项目开发使用的私有镜像库中;

e) 编写Shell脚本实现将子项目打包成Docker镜像,并且Push到镜像仓库中。

f) 在Jenkins上配置自动编译或者部署任务,实现持续集成和部署。

本文将对项目的开发、部署联调以及测试发版流程和规范做简要说明,并提供项目各个阶段使用到的部分自动化脚本工具示例。

图 1 项目持续集成和部署流程

代码分支管理:

如图所示,在git上创建的每一个项目都需要至少建立develop和master两个分支。开发人员只有权限把代码提交到develop分支上,平时的持续集成和联调都从develop分支上获取代

码。每个Sprint阶段测试发版时,配置管理员从develop分支上创建一个用于测试的release

分支。当测试修改bug时,开发人员只把修改后的代码提交到对应的测试Release分支上。当测

试版本稳定后,由配置管理员将代码合并到Master分支中。

自动部署和发布:

项目借助于Shell脚本、Dockerfile、K8s配置文件和Jenkins任务实现了自动化的持续集成和部署。配置管理员在项目目录下编写的脚本文件结构如图2所示。

a) 创建分支的shell脚本,示例见附件1;

#!/bin/bash

if [ -z "$1" ]; then

cat <

Usage:

branch-release.sh

EOF

exit 1

fi

DEPLOY_VERSION=$1

RP_FILES=(subproject1/kube-rc.yaml subproject1/pom.xml subproject1/Makefile)

if [ -z $(git branch -a | grep -e /${DEPLOY_VERSION}$) ]; then

git branch ${DEPLOY_VERSION}

git checkout ${DEPLOY_VERSION}

else

git checkout ${DEPLOY_VERSION}

git pull

fi

#替换k8s配置文件中环境指向,从开发切换到测试

#替换掉pom.xml文件中的SNAPSHOT为release版本号

#替换掉makefile中发布的镜像Tag的latest为release版本号

for f in ${RP_FILES[@]}; do

sed -i -e "s#https://www.360docs.net/doc/094567979.html,#https://www.360docs.net/doc/094567979.html,#g" \

-e "s#0.0.1-SNAPSHOT#${DEPLOY_VERSION}-SNAPSHOT#g" \

-e "s#latest#${DEPLOY_VERSION}#g" $f

done

git commit -a -m "Create Branch ${DEPLOY_VERSION}"

git push origin ${DEPLOY_VERSION}

b) Dockerfile示例文件,将Java dubbo服务发布为镜像为例,示例见附件2:

FROM https://www.360docs.net/doc/094567979.html,/java:openjdk-7-jre

MAINTAINER zhangsan

ENV spring.profiles.active="production"

ENV JAVA_OPTS="-Xmx1024m"

RUN mkdir -p /app

COPY target/subproject1.war /app/

COPY ./startup.sh /app/

RUN chmod +x /app/startup.sh

WORKDIR /app

CMD ["./startup.sh"]

EXPOSE 8080

c) Makefile文件:包括编译项目、将项目打包成Docker镜像、将镜像Push到镜像仓库、

在K8s上创建ReplicationController、在K8s上创建service的命令脚本:

IMAGE_PREFIX = https://www.360docs.net/doc/094567979.html,/project1/

COMPONENT = subproject1

ifndef BUILD_TAG

BUILD_TAG = latest

endif

IMAGE = $(IMAGE_PREFIX)$(COMPONENT):$(BUILD_TAG)

ifndef KUBE_OPS

KUBE_OPS = --server=https://https://www.360docs.net/doc/094567979.html, --namespace=project1

endif

clean:

mvn clean

compile: clean

mvn -U -DskipTests=true -Dmaven.javadoc.skip=true package

#将当前程序打包成Docker镜像

build:

docker build -t $(IMAGE) .

#将当前镜像Push到镜像仓库

push:

docker push $(IMAGE)

run:

docker run --rm -it -e spring.profiles.active=application -p 8080:8080 $(IMAGE)

#部署RelicationController

deploy:

kubectl create -f kube-rc.yaml $(KUBE_OPS)

redeploy:

kubectl replace -f kube-rc.yaml $(KUBE_OPS)

undeploy:

kubectl delete -f kube-rc.yaml $(KUBE_OPS)

#创建service

deploy-svc:

kubectl create -f kube-svc.yaml $(KUBE_OPS)

undeploy-svc:

kubectl delete -f kube-svc.yaml $(KUBE_OPS)

d) K8s部署配置文件,创建ReplicationController、创建service示例见附件4:

#创建ReplicationController

apiVersion: v1

kind: ReplicationController

metadata:

name: subproject1

spec:

replicas: 1

selector:

name: subproject1

template:

metadata:

labels:

name: subproject1

spec:

containers:

- name: subproject1

image: https://www.360docs.net/doc/094567979.html,/project1/subproject1:latest

imagePullPolicy: Always

env:

- name: DUBBO_REGISTRY_ADDRESS

value: "kube://zookeeper:2181"

- name: DUBBO_REGISTRY_REGISTER

value: "true"

ports:

- containerPort: 8888

#创建Service

apiVersion: v1

kind: Service

metadata:

name: subproject1

labels:

component: subproject1

spec:

ports:

- port: 8888

nodePort: 16888

selector:

name: svc-subproject1

type: NodePor

e) 配置管理员在Jenkins上配置自动或手动触发的任务,在jenkins任务中配置shell脚

本,可实现应用的一键部署,示例见附件5。

#!/bin/bash -e

IMAGE=https://www.360docs.net/doc/094567979.html,/project1/sub-project1:$IMAGE_VERSION

make compile

if [ $build = "true" ]; then

echo "docker build -t $IMAGE"

docker build -t $IMAGE .

echo "docker push $IMAGE"

docker push $IMAGE

fi

if [ $undeploy = "true" ]; then

make undeploy

fi

if [ $deploy = "true" ]; then

make deploy

fi

if [ $deploysvc = "true" ]; then

make deploy-svc

fi

具体的过程说如下:

i. 从Git上拉取代码,编译、发布项目;

ii. 将编译好的程序包,打包成Docker镜像;

iii. 将打包好的Docker镜像Push到镜像仓库;

iv. Jenkins执行Shell脚本命令,从镜像仓库拉取镜像在K8s环境中创建pod和RC,将应用程序及其运行环境所在的容器在K8s平台上运行起来。

测试与发版:

从图中可以看到,项目的开发环境和测试环境是相互隔离的两套环境。

a) 部署在开发环境的应用代码,来自develop分支,对应的Docker镜像Tag用latest,

供开发人员调试、以及测试人员随时协助做集成测试;

b) 部署在测是环境的应用代码,来自每到一个Sprint阶段发版测试时配置管理员从

develop分支中打出的测试发版分支,分支名对应的版本号不同,相应的Docker镜像的tag也

会随是版本号改变。测试环境中部署的应用主要用于测试验证。

部署联调:

项目分为四层:前端UI、WEB层有若干个web应用、Service层包括若干个分布式服务、基础底层。这里简要说明一下各层之间的调试方式:

a) 前端和Web层联调:前端开发人员本地启动一个Nginx,配置nginx.conf文件将

localhost代理指向web server的地址,即可在本地调试与动态Web端的交互。

b) WEB层与服务层联调、服务层之间联调、服务层与基础层联调,分为两种方式:

本地调试:部署一个专用的zookeeper注册中心,开发者可以把本机地址注册到注册中心,供相关人员临时调用服务调试。

集成环境调试:提交代码触发Jenkins任务,将服务打包成容器镜像,部署到K8s上在完整的系统运行环境中联合调试。具体的集成环境编排依赖于k8s完成。

微服务的分层和服务交互设计

关于微服架构的利弊以及设计原则有很多著名的文章有介绍,例如MarinFowler的博文《Microservices:a definition of this new architectural term》和来自DZone community 社区的《Microservices in Practice: From Architecture to Deployment》在InfoQ等技术网站都有中文翻译,本文就不对概念和设计原则做过多赘述。本小节主要是说明关于项目的逻辑分层结构和服务交互方面的设计。

本项目遵守以下微服务架构的主要基本原则,但是也会根据具体项目情况有所保留。

i. 单一责任原则(Single Responsibility Principle,SRP)

ii. 保证微服务设计能支持服务的敏捷/独立地开发和部署。

图 2分层结构及通信机制

架构分层设计

如图2所示,项目的架构是分为四层:静态UI层、动态WEB层、业务服务层、基础业务层。

i. 静态UI层,直接面向用户的操作展示界面,包括静态UI设计和JS交互代码,主要采用Angulars框架;

ii.动态WEB层是各业务服务的“门面”,根据前端设计的需要调用、组装业务服务层的API,相对来说,这一层变动的频率较高,例如系统需要进行流程优化或者前端UE改造,相应的都要变更这一层。动态WEB层采用Java Spring或者python Django框架实现;

iii.业务服务层,根据业务需求按照功能对基础服务层进行扩展和包装,采用Dubbo分布式服务框架实现,具体版本是当当扩展过的Dubbox,支持REST API,并且对Spring的支持升级到了3.x;

iv. 基础服务层比较稳定,提供一些基础功能,采用Go语言/Ruby/Java/Python等多种语言实现的。

基于SpringCloud 微服务系统设计方案

微服务系统设计方案 1.微服务本质 微服务架构从本质上说其实就是分布式架构,与其说是一种新架构,不如说是一种微服务架构风格。 简单来说,微服务架构风格是要开发一种由多个小服务组成的应用。每个服务运行于独立的进程,并且采用轻量级交互。多数情况下是一个HTTP的资源API。这些服务具备独立业务能力并可以通过自动化部署方式独立部署。这种风格使最小化集中管理,从而可以使用多种不同的编程语言和数据存储技术。 对于微服务架构系统,由于其服务粒度小,模块化清晰,因此首先要做的是对系统整体进行功能、服务规划,优先考虑如何在交付过程中,从工程实践出发,组织好代码结构、配置、测试、部署、运维、监控的整个过程,从而有效体现微服务的独立性与可部署性。 本文将从微服务系统的设计阶段、开发阶段、测试阶段、部署阶段进行综合阐述。 理解微服务架构和理念是核心。 2.系统环境

3.微服务架构的挑战 可靠性: 由于采用远程调用的方式,任何一个节点、网络出现问题,都将使得服务调用失败, 随着微服务数量的增多,潜在故障点也将增多。 也就是没有充分的保障机制,则单点故障会大量增加。 运维要求高: 系统监控、高可用性、自动化技术 分布式复杂性: 网络延迟、系统容错、分布式事务 部署依赖性强: 服务依赖、多版本问题 性能(服务间通讯成本高): 无状态性、进程间调用、跨网络调用 数据一致性: 分布式事务管理需要跨越多个节点来保证数据的瞬时一致性,因此比起传统的单体架构的事务,成本要高得多。另外,在分布式系统中,通常会考虑通过数据的最终一致性来解决数据瞬时一致带来的系统不可用。 重复开发: 微服务理念崇尚每个微服务作为一个产品看待,有自己的团队开发,甚至可以有自己完全不同的技术、框架,那么与其他微服务团队的技术共享就产生了矛盾,重复开发的工作即产生了。

微服务架构的部署

微服务架构的部署 本文从以下几个方面简要说明微服务架构项目的实践经验:架构选型、开发测试环境下的相关工具支持、人员分工及开发部署流程、相关设计及注意事项。最后,将根据实践经验讨论提高微服架构下的开发和运维效率的切实需求,进一步理清本项目所实现的容器服务管理平台的完善性需求。 本项目是一个企业级的容器服务管理平台,该平台的功能是基于容器实现的应用运行环境管理,以及应用开发阶段的持续集成和持续发布。简单的理解该平台的核心功能之一就是管理复杂应用的开发和运维环境,提高微服务架构下的开发和运维效率。项目的开发背景如下: 首先,该系统具有典型分布式应用系统特征: 该平台所运行的服务器配置不高,例如华为RH1288这类低配置服务器,允许硬件失败; 系统平台要求可根据实际用户数的规模进行伸缩部署,保证硬件资源的合理利用; 由于系统平台之上需要运行若干企业应用的开发和运行环境,可靠性是非常重要的,不允许单点失效。 其次,本系统功能复杂,从架构的角度需要将系统分成多个层次和若干个子系统。不同的层次、子系统根据具体情况需要采用不同的开发语言,由不同的开发小组完成。 第三,项目组成员由几个城市的异地团队协同开发,统一的开发环境和协同工具是必不可少的。 针对上述项目背景的考虑,本项目选择基于微服务架构进行项目开发。 开发、测试、部署使用到的工具集 “工欲善其事、必先利其器”,借助适合的流程和相关工具集,才能提高微服务架构下的应用开发效率。本项目利用DevOPs流程并选用一套相关工具集实现应用开发管理,提高开发、测试、部署的效率。 代码库:本项目使用分布式代码库Gitlab,它的功能不限于代码仓库,还包括reviews(代码审查), issue tracking(问题跟踪)、wiki等功能,是代码管理和异地团队沟通、协作工具的首选。 Docker镜像仓库、Docker:本项目用容器贯穿整个软件开发流程,以容器作为应用发布的载体,应用的开发环境和测试发版环境都运行在Docker容器中。对于复杂的开发和运维环境管理Docker具有先天的优势,目前国内外的互联网公司有大多数都已经将Docker应用到了他们的开发或者生产环境中了。

微服务框架的设计与实现

微服务框架的设计与实现① 张晶1, 黄小锋2, 李春阳3 1(北京中电普华信息技术有限公司, 北京100192) 2(中国电建集团国际工程有限公司, 北京100048) 3(国网信息通信产业集团有限公司, 北京100031) 摘 要: 相对于传统单块架构, 微服务框架具有技术选型灵活, 独立部署, 按需独立扩展等优点, 更适合当前互联网时代需求. 但微服务架构的使用引入了新的问题, 如服务注册发现、服务容错等. 对微服务框架引入的问题进行分析, 并给出了微服务框架的一种实现方案, 在框架层面解决服务注册发现、服务容错等共性问题, 使业务系统开发人员专注于业务逻辑实现, 简化系统开发的难度, 提高开发效率. 关键词: 微服务框架; 服务注册; 服务发现; 服务容错 Design and Implementation of Microservice Architecture ZHANG Jing1, HUANG Xiao-Feng2, LI Chun-Yang3 1(Beijing China Power Information Technology Co. Ltd., Beijing 100192, China) 2(PowerChina International Group Limited, Beijing 100048, China) 3(State Grid Information & Telecommunication Industry Group Co. Ltd., Beijing 100031, China) Abstract: Compared with traditional single block architecture, microservice architecture has many advantages, such as flexible technology selection, independent deployment, and independent scalability more suitability for the current needs of the internet age, etc. But microservice architecture also introduces new problems such as service registration, service discovery, service fault tolerance. On the basis of the analysis for problems mentioned above, this paper proposes one implementation of microservice framework, which can solve service registration, service discovery, service fault tolerance and other common problems. Based on this, developers only need to focus on the development of business functions, so that it can simplify the difficulty of system development and improve development effectiveness. Key words: microservice architecture; service registration; service discover; fault tolerance 传统信息化系统的典型架构是单块架构(Monolithic Architecture), 即将应用程序的所有功能都打包成一个应用, 每个应用是最小的交付和部署单元, 应用部署后运行在同一进程中. 单块架构应用具有IDE友好、易于测试和部署等优势, 但是, 随着互联网的迅速发展, 单块架构临着越来越多的挑战, 主要表现在维护成本高、持续交付周期长、可伸缩性差等方面[1]. 微服务架构(Microservices)的出现以及在国内外的成功应用, 成为系统架构的一种新选择. 很多大型宝等都已经从传统单块架构迁移到微服务架构[2]. 微服务架构提倡将单块架构的应用划分成一组小的服务, 互联网公司如Twitter、Netflix、Amazon 、eBay、淘服务之间互相协调、互相配合, 为用户提供最终价值. 1 微服务架构 微服务架构是一种架构模式, 采用一组服务的方式来构建一个应用, 服务独立部署在不同的进程中, 不同服务通过一些轻量级交互机制来通信, 例如RPC、HTTP等, 服务可独立扩展伸缩, 每个服务定义了明确的边界, 不同的服务甚至可以采用不同的编程语言来实现, 由独立的团队来维护[3]. 相对于传统的单体应用架构, 微服务架构具有单个服务易于开发、理解和维护; 复杂度可控; 技术选 ①收稿时间:2016-09-18;收到修改稿时间:2016-11-03 [doi: 10.15888/https://www.360docs.net/doc/094567979.html,ki.csa.005796]

基于微服务架构的基础设施设计

基于微服务架构的基础设施设计 摘要:本文首先分析传统的单体架构进而解释微服务架构以及分布式环境下四层架构,详细分析了迁移需解决的关键问题如服务间通信机制、数据最终一致性等;然后分析了分布式系统核心问题和DevOps基本原则,以此为设计依据提出微服务架构基础设施总体设计,并且对其关键组件如服务注册与发现、持续交付平台、服务网关的实施提出具体方案;最后针对微服务架构基础设施在运维管理中的应用场景进行了探讨,说明了微服务架构设计思想优于单体架构设计思想。 关键词:软件工程;微服务;服务注册与发现;持续交付 中图分类号:TP311.5 文献标识码:A DOI: 10.3969/j.issn.1003 6970.2016.05.023 本文著录格式:蒋勇.基于微服务架构的基础设施设计卟软件,2016,37(5):93-97 0.引言 理论上任何业务系统如果长期存在的话,随着此系统业务变更、功能增加必然会不断演变,在一个更大的分布式环境中,这种改变尤其明显,那么就需要架构分析设计时更多的考虑系统所处的生态环境建设,这样才能使得整个系统不

断进化。随着虚拟化技术的发展以及docker容器实践逐渐完善,微服务架构的设计思想逐渐浮出水面,形成分布式环境下新的最重要的设计思想。文献对分布式环境下资源及应用平台进行了研究,但对于应用自身依赖的基础设施建设没有讨论。本文将详细探讨如何基于微服务架构进行基础设施建设的设计与分析。 1.从分布式单体架构到微服务架构迁移 1.1分布式单体架构 分布式单体架构指的是在分布式环境下直接部署运行 一个整体开发的应用,由整体应用来提供系统所需的服务,它在技术上通常采用分层实现,大致分为表现层、应用层、数据层,它有天然的优势:它是模块独立无关的,各层之间是技术分离的;它有统一的技术栈和开发标准;它通常在一个进程中运行,模块相互之间协同消耗极小。 但是,在分布式环境下,随着系统功能的增加,系统越来越复杂,单体架构存在一些必然的缺陷:首先,由于整个系统是一个完整整体,必须重复部署多个才能提高系统性能,而往往系统瓶颈仅仅由于其中某一个或几个功能过载产生,这就极大浪费了运行环境资源;其次,由于系统功能的变更和演变,某一个功能的变化可能影响其它功能的正常结果,也带来重新部署和运维管理的复杂性,持续集成变得极为困难;最后,由于整个系统采用统一的技术栈和开发标准,必

微服务和大数据支撑架构一体化

微服务和大数据支撑架构一体化

微服务、大数据、AI、移动、物联网、云计算是软件的革命,微服务支持devops 敏捷开发,有利于开发效率提升和产品升级、运维,使用spring cloud开发微服务,部署在云平台上,对产品运行的数据通过大数据进行数据处理,通过分析分析业务数据和用户行为,达成产品运营,优化业务,节约成本,提高质量和效益,这是一个系统化的的解决思路,对产品一体化提供有力的支撑。 1.微服务介绍 微服务是目前最先进的架构设计思想,在许多国内外大互联网公司得到成功的应用,其核心是化繁为简、化整为零,把应用分解为小的服务模块进行独立开发。微服务的这一特点使其便于部署到容器,对整个开发、测试、运维都发生了革命性影响,有力地支持了devops开发,提高效率,便于维护升级和故障处理,带来了一系列优势。那么,微服务有哪些奥秘呢?下面从技术原理上进行剖析。 化整为零的思路不是开发一个巨大的单体式的应用,而是将应用分解为小的、互相连接的微服务。一个微服务一般完成某个特定的功能,比如下单管理、客户管理等等。每一个微服务都是微型六角形应用,都有自己的业务逻辑和适配器。一些微服务还会发布API给其它微服务和应用客户端使用。其它微服务完成一个WebUI,运行时,每一个实例可能是一个云VM或者是Docker容器。 Spring Cloud是微服务开发的优秀框架,在spring Boot的基础上进行开发,Spring Cloud 为开发者提供了在分布式系统(如配置管理、服务发现、断路器、智能路由、微代理、控制总线、一次性Token、全局锁、决策竞选、分布式会话和集群状态)操作的开发工具。使用Spring Cloud 开发者可以快速实现上述这些模式。

微服务架构介绍

微服务架构介绍

微服务是个说的挺长时间的概念,也是比较成熟的技术体系。像Spring Cloud,甚至提供了微服务所需要的全套框架,包括注册中心(Eureka)、配置中心(Config)、断路器(Hytrix)、API 网关(Zuul) 等组件。微服务体系庞杂,每个组件都能独自成章。 微服务与更早就起来的SOA 是什么关系? 个人觉得如果从概念上来说,微服务和SOA 都是一回事,强调把整个系统,按照多个服务的方式去组合及通信,而不是揉合在一起,但它们的内涵有很大的区别。 SOA 诞生在早期企业级的应用,其业务复杂、技术体系多样,SOA 强调的是各个服务之间,尤其是异构系统、遗留系统之间,建立起一套统一的协议和通信(SOAP),以及寻址服务(UDDI),它的侧重点在集成和兼容;与SOA 同期的另一种概念ESB(企业总线),强调通过一根总线服务,把所有服务串联起来,由ESB 总线来屏蔽各种不同业务系统自身业务/ 语言/ 协议的特殊性,各服务以一种统一的方式,与总线相连,从而降低接入成本。 这两种概念,我感觉在国内没有太发展起来。一是国内的软件起步相对较晚,系统的整体复杂度——多厂商、多语言/ 技术栈、历史遗留系统的问题,还不算突出。而对于公司内部的产品系,又没有必要使用SOA、UDDI 来做复杂的集成。随着互联网的兴起和用户量的迅速爆发,企业自身的产品的微服务化的需求,快速发展起来,而与此同时SOA 这种以XML 为基础的SOAP 协议、以寻址为主要作用的UDDI,不能使用互联网产品的发展——SOAP 的XML 协议内容太多,造成性能明显下降;HTTP 协议的效率不如RPC;UDDI 只有寻址,缺少服务治理等功能。 在此种大背景下,以服务切分+ 服务注册+ 服务治理+ 限流降级+RPC+ 监控等为主要内涵的微服务,就快速发展起来的。国内的阿里巴巴走在前列,以Dubbo 为代表在国内互联网企业中得到广泛应用;后来Spring 官方发布Spring Cloud,揉合了一系列自研或其他企业捐赠的开源项目,发布微服务领域的Spring Cloud 产品。各自都有各自的优势和劣势,而

微服务架构技术规范第一版v终审稿)

微服务架构技术规范第 一版V 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

微服务架构技术规范(试行稿) 1总则 目前研发中心的后台开发中,基于Java/Spring MVC/Spring Boot框架开发,每个部门引入的支撑组件却各异,缺乏统一性,甚至每个部门都维护着一堆非业务组件,影响开发人员对快速变化业务支持的专注性。这套方案的具有较好的可扩展性、可维护性、及良好的代码风格,可以为公司各类型的应用开发提供统一、通用、而强大的基础架构,完全能支持公司所有后台服务沉淀和演化出一个稳健企业中台。 2适用范围 本规范适用于创维数字本部及各分子公司,在使用微服务技术架构进行系统开发时,需遵循此技术规范 3微服务概述 3.1微服务定义 什么是微服务 1.微服务 - 也称为微服务架构 - 是一种架构风格,它将应用程序构建为一组服务 2.高度可维护和可测试 3.松散耦合 4.可独立部署 5.围绕业务能力进行组织。

6.微服务架构支持大型复杂应用程序的持续交付/部署。它还使组织能够发展其技术堆栈。 ChrisRichardson 世界着名软件大师 3.2使用微服务 传统的单体服务,或者模块化不彻底的项目可能存在以下弊端:1.团队职责不清晰 2.构建和部署耗时长 3.全量部署耗时长、影响范围广 4.单体只能按整体横向扩展,无法分模块垂直扩展 5.受技术栈限制,团队成员使用同一框架和语言 6.升级和变革技术框架变得困难 随着软件行业的发展和演变,服务器软件进入了微服务化阶段。对服务的可维护性、可扩展性、可用性这些维度更加让从业人员关注。而微服务化正是解决这些观注的良好的解决方案。所以微服务化正是软件发展演化的结果。在新的目项目应该微服务化解决方案。微服务化的程度可以具体项目具体场景决定。 4开发规范 4.1基本理念

论微服务架构及其应用

论微服务架构及其应用 摘要 2016年7月,我所在的公司为全国各级人民检察院开发了行贿犯罪档案互联网查询系统的产品,我担任系统架构师职务,主要负责软件架构和安全体系设计的工作,该项目是基于互联网,为单位、企业和个人等公众群体提供7*24小时的查询申请服务,同时兼顾行贿犯罪预防宣传。本文结合作者的实践,以行贿犯罪档案互联网查询系统为例,论述微服务架构及其应用。首先概述我参与管理和开发,并采用微服务架构开发的工作,然后具体描述微服务架构的特点,最后结合项目描述软件的架构,说明该系统是如何采用微服务架构模式的,并说明采用微服务架构模式后,在软件开发过程中遇到的实际问题和解决方案。经过项目组近一年的努力,本产品已顺利开发完成,目前,已在浙江、云南等多省上线使用,取得客户和公司领导的一致好评。 正文 近年来,随着互联网行业的迅猛发展,公司或组织业务的不断扩张,需求的快速变化以及用户量的不断增加,传统的单块(Monolithic)软件架构面临着越来越多的挑战,已逐渐无法适应互联网时代对软件的要求。在这一背景下,微服务架构模式(Microservice Architecture Pattern)逐渐流行。它强调将单一业务功能开发成微服务的形式,每个微服务运行在一个进程中;采用HTTP等通信协议和轻量级API实现微服务之间的协作与通信。这些微服务可以使用不同的开发语言以及不同数据存储技术,能够通过自动化部署工具独立发布,并保持最低限制的集中式管理。 2015年7月,我所在的公司为全国各级人民检察院开发了行贿犯罪档案互联网查询系统的产品,我担任系统架构师职务,主要负责软件架构和安全体系设计的工作。本文结合作者的实践,论述微服务架构及其应用。首先概述我参与管理和开发,并采用微服务架构开发的工作,然后具体描述微服务架构的特点,最后结合项目描述软件的架构,说明该架构是如何采用微服务架构模式的,并说明采用微服务架构模式后,在软件开发过程中遇到的实际问题和解决方案。

微服务架构技术要求规范-第一版V2.2

微服务架构技术规(试行稿) 1总则 目前研发中心的后台开发中,基于Java/Spring MVC/Spring Boot框架开发,每个部门引入的支撑组件却各异,缺乏统一性,甚至每个部门都维护着一堆非业务组件,影响开发人员对快速变化业务支持的专注性。 这套方案的具有较好的可扩展性、可维护性、及良好的代码风格,可以为公司各类型的应用开发提供统一、通用、而强大的基础架构,完全能支持公司所有后台服务沉淀和演化出一个稳健企业中台。 2适用围 本规适用于创维数字本部及各分子公司,在使用微服务技术架构进行系统开发时,需遵循此技术规 3微服务概述 3.1微服务定义 什么是微服务? 1.微服务- 也称为微服务架构- 是一种架构风格,它将应用程序构建为一组服务 2.高度可维护和可测试 3.松散耦合 4.可独立部署 5.围绕业务能力进行组织。 6.微服务架构支持大型复杂应用程序的持续交付/部署。它还使组织能够

发展其技术堆栈。 Chris Richardson 世界著名软件大师 3.2使用微服务 传统的单体服务,或者模块化不彻底的项目可能存在以下弊端:1.团队职责不清晰 2.构建和部署耗时长 3.全量部署耗时长、影响围广 4.单体只能按整体横向扩展,无法分模块垂直扩展 5.受技术栈限制,团队成员使用同一框架和语言 6.升级和变革技术框架变得困难 随着软件行业的发展和演变,服务器软件进入了微服务化阶段。对服务的可维护性、可扩展性、可用性这些维度更加让从业人员关注。而微服务化正是解决这些观注的良好的解决方案。所以微服务化正是软件发展演化的结果。在新的目项目应该微服务化解决方案。微服务化的程度可以具体项目具体场景决定。 4开发规 4.1基本理念 4.1.1无状态服务(Stateless) 无状态就是一次操作,不能保存数据。

支付场景的微服务架构介绍

支付场景的微服务架构介绍

目录 一、SOA与微服务 (3) 二、老支付架构遇到的挑战 (7) 三、基于微服务怎么做的改造 (9) 四、未来规划 (21)

一、SOA与微服务 在我看来,微服务虽是国外传进来的技术,却和咱们中国的一些理论是挂钩的。所以在正式进入主题之前,先给大家简单介绍一下麦田理论。 1.关于麦田理论 古代周朝时期,老百姓种地实际是没有任何规划的,也没有任何区域的限制,一般来说在地里一会种水稻,一会种小麦,一会种蔬菜地交叉来种,可收成之后发现庄稼受阳光程度非常低,营养非常不均

衡,后期维护成本非常高。直到战国时期,有一位农业专家把地划分为多个区域,每一个区域种一种庄稼,地跟地隔开,形成最初的微服务理念。 过去我们看到的很多文章都只是讲到SOA和微服务之间的比较,我今天在这个基础上加了一个DDD。下面就DDD、SOA以及微服务的演进过程先做个引子。 2.DDD、SOA与微服务

SOA架构 SOA是上一个时代的产物,大概是在2010年之前出现的,最早提出时是提供给传统行业计算领域的解决方案,当时Oracle、IBM也提了很多方案,包括出现的很多流程引擎。

它的思想是将紧耦合的系统,划分为面向业务的粗粒度、松耦合、无状态的服务。在这之后,微服务的提出者基于SOA做了一个改进,就把它变成单一职责、独立部署、细小的微服务,是一个相反的概念。 微服务与DDD 今天我们一说到微服务就会想到DDD,有不少朋友认为DDD就是为微服务而生的。其实不是这样的,我在接触DDD时它最早是用来做UML设计、领域建模的。 DDD讲究充血模型,而J2EE模型以传统的分层架构和Spring架构捆绑在一起形成了以贫血模型为主的架构模式,贫血模型的优点是容易入门、分层清晰,而充血模型要求设计者前期对业务理解较深,不然后期项目会产生混乱。 另外就是DDD思想比较宽泛,导致形成百家争鸣的姿态,没有形成一套固定的方法论。开发者不容易理解,所以后面关注DDD的人变少了,而微服务的提出巧妙地借鉴了DDD里面的限界上下文、子域、领域事件等关键词,在微服务得到越来越多业界认可的情况下,也给DDD带来了重新的焕发。

微服务架构的部署

微服务架构的部署本文从以下几个方面简要说明微服务架构项目的实践经验:架构选型、开发测试环境下的相关工具支持、人员分工及开发部署流程、相关设计及注意事项。最后,将根据实践经验讨论提高微服架构下的开发和运维效率的切实需求,进一步理清本项目所实现的容器服务管理平台的完善性需求。 本项目是一个企业级的容器服务管理平台,该平台的功能是基于容器实现的应用运行环境管理,以及应用开发阶段的持续集成和持续发布。简单的理解该平台的核心功能之一就是管理复杂应用的开发和运维环境,提高微服务架构下的开发和运维效率。项目的开发背景如下: 首先,该系统具有典型分布式应用系统特征: 该平台所运行的服务器配置不高,例如华为RH1288这类低配置服务器,允许硬件失败; 系统平台要求可根据实际用户数的规模进行伸缩部署,保证硬件资源的合理利用; 由于系统平台之上需要运行若干企业应用的开发和运行环境,可靠性是非常重要的,不允许单点失效。 其次,本系统功能复杂,从架构的角度需要将系统分成多个层次和若干个子系统。不同的层次、子系统根据具体情况需要采用不同的开发语言,由不同的开发小组完成。 第三,项目组成员由几个城市的异地团队协同开发,统一的开发环境和协同工具是必不可少的。 针对上述项目背景的考虑,本项目选择基于微服务架构进行项目开发。 开发、测试、部署使用到的工具集 “工欲善其事、必先利其器”,借助适合的流程和相关工具集,才能提高微服务架构下的应用开发效率。本项目利用DevOPs流程并选用一套相关工具集实现应用开发管理,提高开发、测试、部署的效率。 代码库:本项目使用分布式代码库Gitlab,它的功能不限于代码仓库,还包括reviews(代码审查), issue tracking(问题跟踪)、wiki等功能,是代码管理和异地团队沟通、协作工具的首选。 Docker镜像仓库、Docker:本项目用容器贯穿整个软件开发流程,以容器作为应用发布的载体,应用的开发环境和测试发版环境都运行在Docker容器中。对于复杂的开发和运维环境管理Docker具有先天的优势,目前国内外的互联网公司有大多数都已经将Docker应用到了他们的开发或者生产环境中了。 K8s:本项目采用Kubernates作为容器调度管理的基础环境,开发环境、测试环境的Docker容器都由K8s负责调度管理。 Jenkins:快速的部署发布离不开老牌持续集成明星Jenkins,本项目通过Jenkins任务构建代码、将应用打包成Docker镜像,最终发布到K8s环境中将容器运行起来。 Shell脚本:编写Shell脚本将项目打分支、发布应用等开发阶段的配置管理工作自动化,降低运维门槛、提高配置管理和运维的效率。

基于微服务体系的服务框架的设计

2019年第6期信息通信2019 (总第198期)INFORMATION&COMMUNICATIONS(Sum.No198) 基于微服务体系的服务框架的设计 周素青 (福建信息职业技术学院,福建福州350003) 摘要:与传统的单体架构相比,微服务架构有着基于独立服务、按需收缩、易于开发和维护等优点。文章针对传统单体架构和微服务架构的优劣对比的基础上,提出了如何从零开始构建微服务以及如何将现有的单体应用改遥成微服务的实施方案,通过该方案实现快速有效的模型迁移O 关键词:伸缩立方体;微服务;API Gateway;服务发现 中图分类号:TP39文献标识码:A文章编号:1673?1131(2019)06-0069-04 Title IWIWIWIWIWIWIWIWIWTmeTmeTmeTme Zhou Suqing (Fujian Polytechnic oflnfimnation Technology,fuzhou350003,China) Abstract:Compared with traditional monolithic architecture,micro-service architecture has many advantages,such as indepen-dent service,shrinkage on demand,easy development and maintenance.Based on the comparison of t he advantages and disad-vantages of t raditional monolithic architecture and micro-service architecture,this paper proposes how to build micro-services from scratch and how to transform existing monolithic applications into micro-sravices,through which to achieve rapid and ef-fective model migration. Key words:Scale Cube;micro-service^PI Gateway;Service discovery 1微服务的介绍 1.1微服务的定义 微服务(Microservices)概念的版本很多,这里选取维基百科上的定义作为本文的标准:微服务是一种软体架构风格,它 是以专注于单一责任与功能的小型功能区块为基础,利用模 组化的方式组合出复杂的大型应用程式,各功能区块使用与语言无关的API集相互通讯叫 1.2Scale Cube 说到微服务不能不提到Martin L.Abbott所提出的的三维 图]伸缩立方体(ScaleCube) X轴伸缩是指通过部署多个相同的应用来实现事务的快速扩展。以餐厅厨房为例说明X轴扩展:厨师为了做出一道美食,需要经历选择食材、处理食材、调配酱料、烹饪食材、成品装盘五个步骤。餐厅为了更高效的服务顾客,请来了多名厨师来的完成这些过程,厨师之间制作美食的过程是相互独立的。显而易见,虽然餐厅服务顾客的效率变高了,但是餐厅的成本也大大提高了,同时厨师完成这些过程的复杂度并没有改变,而且为了让厨师提供无差别服务,就需要在厨师之间 “同步数据”,这就需要保持数据的一致性。所以X轴伸缩的不足在于每份都克隆需要访问所有数据,这就需要更多内存实现缓存,运维的成本过高叫 Z轴伸缩,也称为分片,指根据用户的属性对服务进行拆 分。它与X轴伸缩有些许类似,不同之处在于Z轴伸缩只对应用和数据进行分片,每个应用负责对应属性的数据子集。还 是餐厅厨师的例子,厨师制作美味还是需要上面五个步骤,但 是不需要每个厨师都要会做川菜、粤菜、湘菜,根据客户喜好 合理的分配不同菜系的厨师的数量。Z轴伸缩常用在大型数据类集或者差别服务,它不仅提高了缓存的利用率,还提升了 事务的可伸缩性,实现了不同客户群体的故障隔离。这样在 一定程度上提升了餐厅的效率并且减少了餐厅的成本,但是 还是没有减少单个厨师的工作复杂程度,并且对于顾客点单 到分配到具体厨师的过程也提高了复杂度,所以Z轴伸缩不仅没能降低开发和应用复杂度,反而在路由策略上还提高了系统的复杂度,并且涉及到数据重新分区的时候,又将会是一个令人头疼的事情。 与X轴和Z轴的“复制”的做法不同,Y轴伸缩按功能将应用分解成一组具有一定松散耦合度的协作服务,每个服务 实现单个或多个相关的功能。Y轴伸缩基于不同的业务来分解工作职责。比如餐厅老板意识到降低厨师的工作流程的复 杂度才是提高效率、降低成本最有效的手段,于是请来配菜师 傅员责选择食材、调配酱料,砧板师傅员责处理食材,这样厨师就只需要烹饪食材和成品装盘两个步骤了。这样就降低了厨师的工作复杂度,同时对于餐厅也可以减少一定量的厨师,增加的只是薪资远低于厨师的配菜师傅和砧板师傅,餐厅的成本也就降低了,大家都能更专业更有效的完成自己的工作。 三个维度特点各不相同,各自独立,但每个维度都可以按 各自的需要扩展。X轴扩展能够解决系统的事务员载压力,但是如果系统的复杂度或面对的吞吐量不断增加,或者需要差 异化服务时,X轴扩展就无法满足需求了。此时可以分别通过 69

微服务架构,单体架构,面向服务的架构的区别

“微服务架构提供了一系列技术优势,有助于提高软件项目的开发速度和产品质量, 同时也有助于提高整体业务灵活性” - MARK EMEIS,软件技术高级总监,CA技术 自从该术语成立以来,微服务一直在软件开发中获得成功。微服务(又称微服务架构)是面向服务的体系结构(SOA)的变体,用于开发大型应用程序,其中服务按照业务域分为多个块。它提供了复杂应用程序的持续交付/部署,使应用程序更易于理解,开发,测试,并且对架构侵蚀更具弹性。微服务架构提供了一种以新颖方式编织现有系统的新方法,以便快速提供软件解决方案。由于其提供模块化,可扩展性,可用性的能力,成为软件行业最热门的话题之一;许多企业软件开发公司都热衷于采用它。 但是,微服务究竟是什么?它能改善组织的文化,技能和需求吗? 为了深入理解微服务,让我们首先理解相反方法单片架构的要点。 关于单体软件的一切 维基百科说:“单片应用程序描述了一个单层软件应用程序,其中用户界面和数据访 问代码从单一平台组合成一个程序。” ![ 单片软件使用三层架构,即 表示层 - 它是应用程序的最顶层,描述了用户界面。主要功能是将任务和结果转换为用户可以理解的内容。用户界面代码使用HTML,JavaScript和CSS等客户端技术编写。 业务层 - 该层做出逻辑决策并执行计算。它处理两层之间的数据,并使用像Spring这样的技术。 数据访问层 - 这里存储信息并从数据库中检索信息。信息将传递到业务层,最终传递给用户。它使用像Hibernate这样的ORM工具来处理信息。 这里,Web应用程序客户端发送请求;层执行业务逻辑,数据库存储应用程序特定数据,UI将特定数据显示给用户。但是,由于它们共享相同的代码库,因此可能会出现一些问题。

微服务架构设计方案

微服务架构设计方案

引言:“微服务”是当前软件架构领域非常热门的词汇,能找到很多关于微服务的定义、准则,以及如何从微服务中获益的文章,在企业的实践中去应用“微服务”的资源却很少。本篇文章中,会介绍微服务架构(Microservices Architecture)的基础概念,以及如何在实践中具体应用。 1.单体架构(Monolithic Architecture ) 企业级的应用一般都会面临各种各样的业务需求,而常见的方式是把大量功能堆积到同一个单体架构中去。比如:常见的ERP、CRM等系统都以单体架构的方式运行,同时由于提供了大量的业务功能,随着功能的升级,整个研发、发布、定位问题,扩展,升级这样一个“怪物”系统会变得越来越困难。单体架构的初期效率很高,应用会随着时间推移逐渐变大。在每次的迭代中,开发团队都会面对新功能,然后开发许多新代码,随着时间推移,这个简单的应用会变成了一个巨大的怪物。 图1:单体架构 大部分企业通过SOA来解决上述问题,SOA的思路是把应用中相近的功能聚合到一起,以服务的形式提供出去。因此基于SOA架构的应用可以理解为一批服务的组合。SOA带来的问题是,引入了大量的服务、消息格式定义和规范。 多数情况下,SOA的服务直接相互独立,但是部署在同一个运行环境中(类似于一个Tomcat实例下,运行了很多web应用)。和单体架构类似,随着业务功能的增多SOA的服务会变得越来越复杂,本质上看没有因为使用SOA而变的更好。图1,是一个包含多种服务的在线零售网站,所有的服务部署在一个运行环境中,是一个典型的单体架构。

单体架构的应用一般有以下特点: ?设计、开发、部署为一个单独的单元。 ?会变得越来越复杂,最后导致维护、升级、新增功能变得异常困难 ?很难以敏捷研发模式进行开发和发布 ?部分更新,都需要重新部署整个应用 ?水平扩展:必须以应用为单位进行扩展,在资源需求有冲突时扩展变得比较困难(部分服务需要更多的计算资源,部分需要更多内存资源) ?可用性:一个服务的不稳定会导致整个应用出问题 ?创新困难:很难引入新的技术和框架,所有的功能都构建在同质的框架之上 2.微服务架构(Microservices Architecture) 微服务架构的核心思想是,一个应用是由多个小的、相互独立的、微服务组成,这些服务运行在自己的进程中,开发和发布都没有依赖。 多数人对于微服务的定义是, 把本来运行在单体架构中的服务拆分成相互独立的服务,并运行在各自的进程中。在我看来,不仅如此。最关键的地方在于,不同的服务能依据不同的业务需求,构建的不同的技术架构之上,并且聚焦在有限的业务功能之上。 因此,在线零售网站可以用图2的微服务架构来简单概括。基于业务需求,需要增加一个账户服务微服务,因此构建微服务绝不是在单体架构中把服务拆分开这么简单。

微服务架构

什么是微服务?就目前而言,对于微服务业界并没有一个统一的、标准的定义。但通常在其而言,微服务架构是一种架构模式或者说是一种架构风格,它提倡将单一应用程序划分成一组小的服务,每个服务运行独立的自己的进程中,服务之间互相协调、互相配合,为用户提供最终价值。服务之间采用轻量级的通信机制互相沟通(通常是基于 HTTP 的 RESTful API ) 。每个服务都围绕着具体业务进行构建,并且能够被独立地部署到生产环境、类生产环境等。另外,应尽量避免统一的、集中式的服务管理机制,对具体的一个服务而言,应根据业务上下文,选择合适的语言、工具对其进行构建,可以有一个非常轻量级的集中式管理来协调这些服务。可以使用不同的语言来编写服务,也可以使用不同的数据存储。 总结了以下几点: ①小服务 小服务,没有特定的标准或者规范,但他在总体规范上一定是小的。 ②进程独立 每一组服务都是独立运行的,可能我这个服务运行在 Tomcat 容器,而 另一个服务运行在 Jetty 上。可以通过进程方式,不断的横向扩展整 个服务。 ③通信 过去的协议都是很重的,就像 ESB,就像 SOAP,轻通信,这意味着相 比过去更智能更轻量的服务相互调用,就所谓 smart endpoints and dumb pipes。

这些 Endpoint 都是解耦的,完成一个业务通信调用串起这些 Micro Service 就像是 Linux 系统中通过管道串起一系列命令业务。 过去的业务,我们通常会考虑各种各样的依赖关系,考虑系统耦合带来 的问题。微服务,可以让开发者更专注于业务的逻辑开发。 ④部署 不止业务要独立,部署也要独立。不过这也意味着,传统的开发流程会 出现一定程度的改变,开发的适合也要有一定的运维职责。 ⑤管理 传统的企业级 SOA 服务往往很大,不易于管理,耦合性高,团队开发 成本比较大。 微服务,可以让团队各思其政的选择技术实现,不同的 Service 可以 根据各自的需要选择不同的技术栈来实现其业务逻辑。 微服务的利与弊 ?优点是每个服务足够内聚,足够小,代码容易理解这样能聚焦一个指定的业务功能或业务需求。 ?开发简单、开发效率提高,一个服务可能就是专一的只干一件事。 ?微服务能够被小团队单独开发,这个小团队是 2 到 5 人的开发人员组成。?微服务是松耦合的,是有功能意义的服务,无论是在开发阶段或部署阶段都是独立的。 ?微服务能使用不同的语言开发。 ?易于和第三方集成,微服务允许容易且灵活的方式集成自动部署,通过持续集成工具,如 Jenkins,Hudson,bamboo。 ?微服务易于被一个开发人员理解,修改和维护,这样小团队能够更关注自己的工作成果。无需通过合作才能体现价值。微服务允许你利用融合最新技术。 ?微服务只是业务逻辑的代码,不会和 HTML,CSS 或其他界面组件混合。?每个微服务都有自己的存储能力,可以有自己的数据库,也可以有统一数据库。 总的来说,微服务的优势,就是在于,面对大的系统,可以有效的减少复杂程度,使服务架构的逻辑更清晰明了。 但是这样也会带来很多问题,就譬如分布式环境下的数据一致性,测试的复杂性,运维的复杂性。 什么组织适合使用微服务? 微服务带了种种优点,种种弊端,那么什么组织适合使用微服务? ①墨菲定律(设计系统)和康威定律(系统划分) 设计系统的组织,其产生的设计等同于组织之内、组织之间的沟通结构。

微服务核心架构梳理

微服务核心架构梳理

目录 1.什么是微服务 (3) 2.微服务的利与弊 (5) 3.什么组织适合使用微服务? (6) 4.微服务技术架构体系 (10)

本文从头到尾梳理一下,有关微服务架构的核心内容。阅读本文你将看到业界主流微服务框架的核心原理,包括服务发现,网关,配置中心,监控等组件,功能和架构原理的简单介绍。 1.什么是微服务 微服务之父Martin Fowler,对微服务大概的概述如下: 就目前而言,对于微服务业界并没有一个统一的、标准的定义(While there is no precise definition of this architectural style ) 。但通常而言,微服务架构是一种架构模式或者说是一种架构风格,它提倡将单一应用程序划分成一组小的服务,每个服务运行独立的自己的进程中,服务之间互相协调、互相配合,为用户提供最终价值。服务之间采用轻量级的通信机制互相沟通(通常是基于HTTP的RESTful API ) 。每个服务都围绕着具体业务进行构建,并且能够被独立地部署到生产环境、类生产环境等。另外,应尽量避免统一的、集中式的服务管理机制,对具体的一个服务而言,应根据业务上下文,选择合适的语言、工具对其进行构建,可以有一个非常轻量级的集中式管理来协调这些服务。可以使用不同的语言来编写服务,也可以使用不同的数据存储。 根据Martin Fowler的描述,我总结了一下几点:

?小服务,没有特定的标准或者规范,但他在总体规范上一定是小的。 ?进程独立,每一组服务都是独立运行的,可能我这个服务运行在Tomcat容器,而另一个服务运行在Jetty上。可以通过进程方式,不断的横向扩展整个服务。 ?通信,过去的协议都是很重的,就像ESB,就像SOAP,轻通信,着意味着相比过去更智能更轻量的服务相互调用,就所谓smart endpoints and dumb pipes,这些Endpoint都是解耦的,完成一个业务通信调用串起这些micro service就像是Linux系统中通过管道串起一系列命令业务。过去的业务,我们通常会考虑各种各

基于SpringCloud微服务系统设计方案

微服务系统设计方案 1. 微服务本质 微服务架构从本质上说其实就是分布式架构,与其说是一种新架构,不如说是一种微服 务架构风格。 简单来说,微服务架构风格是要开发一种由多个小服务组成的应用。每个服务运行于独立的进程,并且采用轻量级交互。多数情况下是一个HTTP的资源APl。这些服务具备独立业务能力并可以通过自动化部署方式独立部署。这种风格使最小化集中管理,从而可以使用多种不同的编程语言和数据存储技术。 对于微服务架构系统,由于其服务粒度小,模块化清晰,因此首先要做的是对系统整体进行功能、服务规划,优先考虑如何在交付过程中,从工程实践出发,组织好代码结构、 配置、测试、部署、运维、监控的整个过程,从而有效体现微服务的独立性与可部署性。 本文将从微服务系统的设计阶段、开发阶段、测试阶段、部署阶段进行综合阐述。 理解微服务架构和理念是核心。 2. 系统环境

3. 微服务架构的挑战 可靠性: 由于采用远程调用的方式,任何一个节点、网络出现问题,都将使得服务调用失败,随着微服务数量 的增多,潜在故障点也将增多。也就是没有充分的保障机制,则单点故障会大量增加。 运维要求高:系统监控、高可用性、自动化技术分布式复杂性: 网络延迟、系统容错、分布式事务 部署依赖性强: 服务依赖、多版本问题 性能(服务间通讯成本高):无状态性、进程间调用、跨网络调用数据一致性: 分布式事务管理需要跨越多个节点来保证数据的瞬时一致性,因此比起传统的单体架构的事务,成本要高得多。另外,在分布式系统中,通常会考虑通过数据的最终一致性来解决数据瞬时一致带来的系统不可用。 重复开发: 微服务理念崇尚每个微服务作为一个产品看待,有自己的团队开发,甚至可以有自己完全不同的技术、框架,那 么与其他微服务团队的技术共享就产生了矛盾,重复开发的工作即产生了。

相关文档
最新文档