切线的性质与判定(复习课)
2014届人教版中考数学复习方案(29)切线的性质和判定(25页)

切线的性质和判定
第29课时┃ 切线的性质和判定
考 点 聚 焦
考点1 切线的性质 定理:圆的切线________于经过切点的半径. 垂直 技巧:圆心与切点的连线是常用的辅助线. 考点2 切线的判定
垂直 定理: 经过半径的外端并且________于这条半径的直线是圆 的切线. 证圆的切线技巧: (1)如果直线与圆有交点,连接圆心与交点的半径,证明直 线与该半径垂直,即“有交点,作半径,证垂直”.
探究三 切线长定理的运用
命题角度: 1. 利用切线长定理计算; 2. 利用切线长定理证明. 例3 [2012· 绵阳 ]如图29-3,PA、PB分别切⊙O于A、B两点,
连接PO、AB相交于D,C是⊙O上一点,∠C=60°.
(1)求∠APB的大小; (2)若PO=20 cm,求△AOB的面积.
图29-3
考点聚焦
归类探究
回归教材
第29课时┃ 切线的性质和判定
(2)如果直线与圆没有明确的交点, 则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
考点3 切线长及切线长定理
在经过圆外一点的圆的切线上,这点和切点之间 的线段的长,叫做这点到圆的切线长 从圆外一点引圆的两条切线,它们的切线长 ________,这一点和圆心的连线________两条 相等 平分
考点聚焦 归类探究 回归教材
第29课时┃ 切线的性质和判定
(2)在 Rt △OAP 中,∵∠P=30°, ∴PO=2OA=OD+PD. 又∵OA =OD,∴PD=OA . ∵PD= 3. ∴2OA=2PD=2 3. ∴⊙O 的直径为 2 3.
考点聚焦
归类探究
回归教材
考点聚焦 归类探究 回归教材
圆的切线的性质和判定(教案)

切线的判定与性质(复习)教案一、教学内容:中考数学复习——切线的判定与性质二、教学目标:1、知识技能:(1)掌握切线的判定定理,能判断一条直线是否为圆的切线;(2)掌握切线的性质定理,能利用切线的性质定理解决相关问题。
2、能力技能(1)通过观察、比较切线的判定方法,发展学生的推理与归纳能力;(2)学生通过运用切线的性质解决问题的过程,逐渐形成用数学语言表述问题的能力。
(3)通过学习添加辅助线,提高思维能力。
3.情感、态度与价值观经历复习圆的切线的判定与性质的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累学习经验,获得成功的体验;利用数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.三、重、难点:重点:掌握切线的判定定理和性质定理难点:切线的判定定理和性质定理应用四、教学过程(一)知识简要归纳——温故而知新1.经过半径的 并且 的直线是圆的切线。
如图所示,它的符号语言表示为:2.判断一条直线是否为圆的切线,现已有 种方法:一是看直线与圆公共点的个数:( 与圆有 公共点的直线是圆的切线)二看圆心到直线的距离d与圆的半径之间的关系;(当d r 时,直线是圆的切线) 三是利用 。
3.认真观察下列图形,看看下列说法是否正确(1).与圆有公共点的直线是圆的切线. ( )(2).和圆心距离等于圆的半径的直线是圆的切线; ( )(3).垂直于圆的半径的直线是圆的切线; ( )(4)4.切线的性质定理:圆的切线 的半径。
如图所示,它的符号语言表示为:(二)、合作探究图(1) 图(2) 图(3) 图(4) 图(5)例1直线A B经过⊙O上的点C,并且O A=O B,C A=C B,求证:直线A B是⊙O的切线.归纳小结:象例1 这种证明方法可简记为:有“切点”,连半径,证垂直。
例2:已知:O为∠B A C平分线上一点,O D⊥A B于D,以O为圆心,O D为半径作⊙O。
求证:⊙O与A C相切。
课题:切线的性质与判定及切线长定理专题

切线的性质与判定、切线长定理专题班级:姓名:1、切线的性质例1:(1)AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于 . (2).如图,在矩形ABCD中,AB=6,AD=10,AD,AB,BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,且点为N,则DM的长为()A. B.8 C. D.2(1)(2)练习:1、如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=115°,过D点的切线PD与射线BA交于点P,则∠ADP的度数为;2.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为;3.如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a>0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是()A. B. C. D.(1)(2)(3)4.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当⊙O与边BC所在的直线与相切时,则AB的长是.5.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值() A.5 B.4 C.4.75 D.4.82、切线的判定例2:(1)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D 为圆心,DB长为半径作⊙D,AB=10,EB=6.(1)求证:AC是⊙D的切线;(2)求线段AC的长.(2)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C 作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.练习:1.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.3、切线长定理例3:(P102,第11题)若AB、BC、CD分别与⊙O相切于E、F、G 三点,且AB∥CD,BO=6,CO=8.(1)求∠BOC的度数;(2)求BC的长;(3)求半径OF的长;(4)E、O、G共线吗?说明理由.(5)连接G、F,求证OB∥FG(6)连接EF 、GF 分别交OB 于P ,交OC 于Q,求证:四边形OPFQ 为矩形.(7)若延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于点N ,求MN 的长.变式1.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=12cm ,AD=8cm ,BC=22cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动.P 、Q 分别从点A 、C 同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t (s ).(1)当t 为何值时,四边形PQCD 为平行四边形?(2)当t 为何值时,PQ 与⊙O 相切?变式2.如图,四边形ABCD 中,AD 平行BC ,∠ABC=90°,AD=2,AB=6,以AB 为直径的半⊙O 切CD 于点E ,F 为弧BE 上一动点,过F 点的直线MN 为半⊙O 的切线,MN 交BC 于M ,交CD 于N ,则△MCN 的周长为( )A .9B .10C .3D .2(变式2) (变式3) (变式4) (变式5) 变式3.如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )A .12B .24C .8D .6变式4.如图,PA 、PB 、分别切⊙O 于A 、B 两点,∠P=40°,则∠C 的度数为 ;变式5.如图,PA 、PB 、CD 分别切⊙O 于A 、B 、E ,CD 交PA 、PB 于C 、D 两点,若∠P=40°,则∠PAE+∠PBE 的度数为PQ变式6.如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.3 C.3 D.(变式6) (例4)4、动态问题例4:如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm,如果⊙P以1cm/s的速度沿由A向B的方向移动,那么⊙P与直线CD相切时运动时间是 s.练习:1.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是 cm.(1题) (2题)2.如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是.变式:如2题图,已知∠AOB=60°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.若⊙M在OB边上运动,则当OM= cm时,⊙M与OA相切.3.如图,P为正比例函数y=x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).则⊙P与直线x=2相切时点P的坐标为.4.如图,已知⊙P的半径为2,圆心P在抛物线y=﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.。
初中数学专题:切线的判定和性质【九大题型】(举一反三)(苏科版)

专题2.6 切线的判定和性质【九大题型】【苏科版】【题型1 有关切线的说法辨析】 (1)【题型2 判断或补全使直线为切线的条件】 (2)【题型3 证明某直线是圆的切线(连半径证垂直)】 (3)【题型4 证明某直线是圆的切线(作垂直证半径)】 (4)【题型5 利用切线的性质求线段长度】 (6)【题型6 利用切线的性质求角度大小】 (7)【题型7 利用切线的性质证明】 (8)【题型8 切线的判定与性质的综合运用】 (9)【题型9 过圆外一点作圆的切线】 (11)【知识点切线的判定】(1)切线判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线②和圆只有一个公共点的直线是圆的切线(定义法)③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【题型1 有关切线的说法辨析】【例1】(2023春·山东日照·九年级统考期中)如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC 是⊙A切线的是()A.∠A=50°,∠C=40°B.∠B﹣∠C=∠AC.AB2+BC2=AC2D.⊙A与AC的交点是AC中点【变式1-1】(2023春·九年级课时练习)下列直线中可以判定为圆的切线的是()A.与圆有公共点的直线B.经过半径外端的直线C.垂直于圆的半径的直线D.与圆心的距离等于半径的直线【变式1-2】(2023春·西藏拉萨·九年级校考期末)下列四个选项中的表述,一定正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线【变式1-3】(2011秋·湖北黄冈·九年级统考期末)如图,已知、分别为的直径和弦,为的中点,垂直于的延长线于,连接,若,,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点【题型2 判断或补全使直线为切线的条件】【例2】(2023春·北京·九年级统考期末)在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是.(写一个条件即可)【变式2-1】(2023春·山东德州·九年级统考期中)如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于度时,AC才能成为⊙O的切线.【变式2-2】(2023春·河南信阳·九年级统考期中)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB 于D 点,连接CD .(1)求证:∠A=∠BCD ;(2)若M 为线段BC 上一点,试问当点M 在什么位置时,直线DM 与⊙O 相切?并说明理由.【题型3 证明某直线是圆的切线(连半径证垂直)】【例3】(2023春·江西宜春·九年级江西省丰城中学校考开学考试)如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F .(1)求证:BC 是O 的切线;(2)若8AF =,=1CF ,求O 的半径.【变式3-1】(2023春·全国·九年级专题练习)如图,Rt ABC △中,90A ∠=︒,以AB 为直径的O 交BC 于点D ,点E 在O 上CE CA =,AB ,CE 的延长线交于点F .(1)求证:CE 与O 相切;(2)若O 的半径为3,4EF =,求CE 的长.【变式3-2】(2023春·江西九江·九年级校考期中)如图,AB 为O 的直径,C 为O 上一点,P 为BC 延长线上的一点,使得PAC B ∠=∠.(1)求证:AP 是O 的切线.(2)F 为O 上一点,且OC 经过AF 的中点E .①求证:B CAE ∠=∠;②若2AE CE =,AC =O 的半径长.【变式3-3】(2023春·江苏无锡·九年级统考期中)如图,已知半径为5的M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分OAM ∠,6AO CO +=.(1)判断M 与x 轴的位置关系,并说明理由;(2)求AB 的长.【题型4 证明某直线是圆的切线(作垂直证半径)】【例4】(2023春·山东日照·九年级日照市新营中学校考期中)如图,在四边形ABCD 中,∠ABC =90°,AD ∥BC ,CB =CD ,连接BD ,以点B 为圆心,BA 长为半径作⊙B ,交BD 于点E .(1)试判断CD 与⊙B 的位置关系,并说明理由.(2)若AB =6,∠BDC =60°,求图中阴影部分的面积.【变式4-1】(2023·江西南昌·九年级期末)如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的O与BC相切于点M.(1)求证:CD与O相切.(2)若正方形ABCD的边长为1,求半径OA的长.【变式4-2】(2023•武汉模拟)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB 上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.【变式4-3】(2023•椒江区一模)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【知识点2 切线的性质】(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:①经过圆心且垂直于切线的直线必经过切点②经过切点且垂直于切线的直线必经过圆心【题型5 利用切线的性质求线段长度】【例5】(2023春·河南·九年级校联考期末)如图,为的直径,,是上不同于,的两点,过点的切线垂直于交的延长线于点,连接.(1)求证:;(2)若,,则的长为__________.【变式5-1】(2023春·北京西城·九年级北师大实验中学校考开学考试)如图,是的直径,点C在上,过点C作的切线l,过点B作于点D.(1)求证:平分;(2)连接,若,,求的长.【变式5-2】(2023春·广东韶关·九年级校考期末)如图,已知△内接于⊙O,是⊙O的直径,点F在⊙O上,且点C是弧的中点,过点C作⊙O的切线交的延长线于D点,交的延长线于E点.(1)求证:;(2)若,,求的长.【变式5-3】(2023春·广东汕头·九年级统考期末)如图,是的直径,点C是上一点,与过点C的切线垂直,垂足为点D,直线与的延长线相交于点P,G是△的内心,连接并延长,交于E,交于点F,连接.(1)求证:平分;(2)连接,判断△的形状,并说明理由;(3)若,,求线段的长.【题型6 利用切线的性质求角度大小】【例6】(2023春·重庆南岸·九年级重庆市珊瑚初级中学校校考期中)如图,是的直径,,是的弦,是的切线,为切点,与交于点.若点为的中点,,则的度数为()A.B.C.D.【变式6-1】(2023春·河南信阳·九年级校联考期末)如图,是的直径,点是外一点,交于点,连接,.若,且与相切,则此时等于()A.B.C.D.(2023春·广东梅州·九年级校考开学考试)如图:P是的直径的延长线上一点,是的切【变式6-2】线,A为切点,,则.【变式6-3】(2023春·江西宜春·九年级江西省丰城中学校考期末)如图,点A,B在圆O上,且=,点P 是射线上一动点(不与点O重合),连接,将△沿折叠得到△,当△的边所在的直线与圆O相切时,的度数为.【题型7 利用切线的性质证明】【例7】(2023春·河北邢台·九年级校联考期末)如图,BD是的直径,是的弦,过点A的切线交的延长线于点C,.求证:△ △.【变式7-1】(2023春·河南驻马店·九年级统考期中)如图所示,是的直径,点为线段上一点(不与,重合),作,交于点,垂足为点,作直径,过点的切线交的延长线于点,于点,连接试证明:(1)是的角平分线;(2).【变式7-2】(2023春·广东江门·九年级统考期末)如图,点A、B、C在O上,直线与O相切于点A.(1)试问:与有怎样的大小关系?证明你的结论;(2)如果我们把形如这样的角称为“弦切角”,请你用文字表述你在(1)中得出的结论.(2023·安徽·九年级统考期中)已知:如图,点是外一点,过点分别作的切线、,切点【变式7-3】为点、,连接,过点作交于点,过点作于.(1)求证:四边形是矩形;(2)若,的半径为,试证明四边形的周长等于.【题型8 切线的判定与性质的综合运用】【例8】(2023春·湖北·九年级期末)AB为⊙O的直径,P A为⊙O的切线,BC OP交⊙O于C,PO交⊙O 于D,(1)求证:PC为⊙O的切线;(2)过点D作DE⊥AB于E,交AC于F,PO交AC于H,BD交AC于G,DF=FG,DF=5,CG=6,求⊙O的半径.【变式8-1】(2023春·湖北随州·九年级统考期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是AB 上一点,以CE为直径的⊙O交BC于点F,连接DO,且∠DOC=90°.(1)求证:AB是⊙O的切线;(2)若DF=2,DC=6,求BE的长.【变式8-2】(2023春·河南周口·九年级淮阳第一高级中学校考期末)如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接(1)求证:是的切线;(2)点为上的一动点,连接.①当时,四边形是菱形;②当时,四边形是矩形.【变式8-3】(2023春·湖北·九年级期末)已知AB是⊙O的直径,AC是弦,∠BAC的角平分线交⊙O于点D,DE⊥AC于E.(1)如图(1)求证:DE是⊙O的切线;(2)如图(1)若AB=10,AC=6,求ED的长;(3)如图(2)过点B作⊙O的切线,交AD延长线于F,若ED=DF,求的值.【题型9 过圆外一点作圆的切线】【例9】(2023·北京海淀·九年级期末)已知:点,,在上,且.求作:直线,使其过点,并与相切.作法:①连接;②分别以点,点为圆心,长为半径作弧,两弧交于外一点;③作直线.直线就是所求作直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接,,∵,∴四边形是菱形,∵点,,在上,且,∴______°(_________________)(填推理的依据).∴四边形是正方形,∴,即,∵为半径,∴直线为的切线(_________________)(填推理的依据).【变式9-1】(2023·天津和平·统考三模)如图,在每个小正方形的边长为1的网格中,圆上的点在格点上,点在格点上,圆心在线段上,圆与网格线相交于点,过点作圆的切线与网格线交于点.(1);(2)过点作圆的切线,切点为(点不与点重合).请用无刻度的直尺,在如图所示的网格中,画出点,并简要说明点的位置是如何找到的(不要求证明).【变式9-2】(2023春·江苏宿迁·九年级统考期中)已知:和外一点.(1)如图甲,和是的两条切线,、分别为切点,求证:;(2)尺规作图:在图乙中,过点作的两条切线、、、为切点(要求:保留作图痕迹,不写作法).【变式9-3】(2023·北京海淀·九年级期末)按要求作图:(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A,B,利用无刻度直尺画出这个圆的一条直径;(2)如图2,BA,BD是⊙O中的两条弦,C是BD上一点,∠BAC=50︒,利用无刻度直尺在图中画一个含有50︒角的直角三角形;(3)如图3,利用无刻度直尺和圆规,以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹);(4)如图4,AB与圆相切,且切点为点B,利用无刻度直尺在网格中找出点B的位置.专题2.6 切线的判定和性质【九大题型】【苏科版】【题型1 有关切线的说法辨析】 (1)【题型2 判断或补全使直线为切线的条件】 (2)【题型3 证明某直线是圆的切线(连半径证垂直)】 (3)【题型4 证明某直线是圆的切线(作垂直证半径)】 (4)【题型5 利用切线的性质求线段长度】 (6)【题型6 利用切线的性质求角度大小】 (7)【题型7 利用切线的性质证明】 (8)【题型8 切线的判定与性质的综合运用】 (9)【题型9 过圆外一点作圆的切线】 (11)【知识点切线的判定】(1)切线判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线②和圆只有一个公共点的直线是圆的切线(定义法)③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【题型1 有关切线的说法辨析】【例1】(2023春·山东日照·九年级统考期中)如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC 是⊙A切线的是()A.∠A=50°,∠C=40°B.∠B﹣∠C=∠AC.AB2+BC2=AC2D.⊙A与AC的交点是AC中点【答案】D【分析】根据切线的判定分别对各个选项进行判断,即可得出结论.【详解】解:A、∵∠A=50°,∠C=40°,∴∠B=180°﹣∠A﹣∠C=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;B、∵∠B﹣∠C=∠A,∴∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;C、∵AB2+BC2=AC2,∴△ABC是直角三角形,∠B=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;D、∵⊙A与AC的交点是AC中点,∴AB=AC,但不能证出∠B=90°,∴不能判定BC是⊙A切线;故选:D.【点睛】本题考查了切线的判定、勾股定理的逆定理、三角形内角和定理等知识;熟练掌握切线的判定是解题的关键.【变式1-1】(2023春·九年级课时练习)下列直线中可以判定为圆的切线的是()A.与圆有公共点的直线B.经过半径外端的直线C.垂直于圆的半径的直线D.与圆心的距离等于半径的直线【答案】D【分析】根据切线的判定方法逐项分析即可.【详解】解:A.与圆有且仅有一个公共点的直线是圆的切线,故该选项不正确,不符合题意;B.经过半径外端的直线且垂直于半径的直线是圆的切线,故该选项不正确,不符合题意;C.经过半径外端的直线且与半径垂直的直线是圆的切线,故不正确;D.与圆心的距离等于半径的直线,故该选项正确,符合题意;故选:D.【点睛】本题考查了切线的判定方法,如果直线与圆只有一个公共点,这时直线与圆的位置关系叫做相切,这条直线叫做圆的切线,这个公共点叫做切点;经过半径外端点并且垂直于这条半径的直线是圆的切线.【变式1-2】(2023春·西藏拉萨·九年级校考期末)下列四个选项中的表述,一定正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线【答案】C【分析】根据切线的判定对各个选项进行分析,从而得到答案.【详解】由切线的判定定理可知:经过半径外端点且与这条半径垂直的直线是圆的切线,故A,B,D选项不正确,C故选:C.【点睛】此题主要考查了圆中切线的判定,熟练掌握切线的判定定理是解题的关键.【变式1-3】(2011秋·湖北黄冈·九年级统考期末)如图,已知、分别为的直径和弦,为的中点,垂直于的延长线于,连接,若,,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点【答案】D【分析】AB是圆的直径,则∠ACB=90°,根据DE垂直于AC的延长线于E,可以证得ED∥BC,则DE⊥OD,即可证得DE是圆的切线,根据切割线定理即可求得AC的长,连接OD,交BC与点F,则四边形DECF 是矩形,根据垂径定理即可求得半径.【详解】解:连接OD,OC.∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE?AE即:36=2AE∴AE=18,则AC=AE-CE=18-2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB=.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选D.【题型2 判断或补全使直线为切线的条件】【例2】(2023春·北京·九年级统考期末)在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是.(写一个条件即可)【答案】∠ABT=∠ATB=45°(答案不唯一)【分析】根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.【详解】解:添加条件:∠ABT=∠ATB=45°,∵∠ABT=∠ATB=45°,∴∠BAT=90°,又∵AB是圆O的直径,∴AT是圆O的切线,故答案为:∠ABT=∠ATB=45°(答案不唯一).【点睛】本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.【变式2-1】(2023春·山东德州·九年级统考期中)如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于度时,AC才能成为⊙O的切线.【答案】60【分析】由已知可求得∠OAB的度数,因为OA⊥AC,AC才能成为⊙O的切线,从而可求得∠CAB的度数.【详解】解:∵△AOB中,OA=OB,∠AOB=120°,∴,∵当OA⊥AC即∠OAC=90°时,AC才能成为⊙O的切线,∴当∠CAB的度数等于60°,即OA⊥AC时,AC才能成为⊙O的切线.故答案为:60.【点睛】本题考查了切线的判定,三角形内角和定理,等腰三角形的性质,掌握切线的判定定理是解答此题的关键.【变式2-2】(2023春·河南信阳·九年级统考期中)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O 交AB于D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【答案】(1M为BC的中点.【详解】试题分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.试题解析:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切,故当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切.考点:切线的判定.【变式2-3】(2023春·江西上饶·九年级统考期末)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.【答案】(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.【分析】(1) 添加条件是:①OA⊥EF或∠FAC=∠B根据切线的判定和圆周角定理推出即可.(2) 作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB,所以点O在AB的垂直平分线上,根据∠FAC=∠B,∠BAC=∠FAC,等量代换得到∠BAC=∠B,所以点C在AB的垂直平分线上,得到OC垂直平分AB.【详解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA 是半径,∴EF 是⊙O 的切线.(3)∵OA=OB ,∴点O 在AB 的垂直平分线上,∵∠FAC=∠B ,∠BAC=∠FAC ,∴∠BAC=∠B ,∴点C 在AB 的垂直平分线上,∴OC 垂直平分AB ,∴OC ⊥AB .【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.【题型3 证明某直线是圆的切线(连半径证垂直)】【例3】(2023春·江西宜春·九年级江西省丰城中学校考开学考试)如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F .(1)求证:BC 是O 的切线;(2)若8AF =,=1CF ,求O 的半径.【答案】(1)见解析(2)O 的半径为5.【分析】(1)连接OD ,可得OA OD =,根据等边对等角,以及角平分线的定义,可得ODA CAD ∠=∠,根据“内错角相等,两直线平行”可得OD AC ∥,根据平行线的性质,可得90ODB C ∠=∠=︒,再根据切线的判定方法,即可判定;(2)过点O 作OG AF ⊥,交AF 于点G ,根据垂径定理可得118422AG FG AF ===⨯=,故5CG =,根据矩形的判定和性质,即可求解.【详解】(1)证明:如图,连接OD ,则OA OD =,ODA OAD ∴∠=∠, AD 是BAC ∠的平分线,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,OD AC ∴∥,90ODB C ∴∠=∠=︒, OD 为O 的半径,点D 在O 上,∴BC 是O 的切线;(2)解:过点O 作OG AF ⊥,交AF 于点G ,如图,OG AF ⊥,118422AG FG AF ∴===⨯=, 1CF =,145CG CF FG ∴=+=+=,OG AF ⊥,90OGC ∴∠=︒,90ODB C ∠=∠=︒,∴四边形ODCG 是矩形,5DO CG ∴==,O ∴的半径为5.【点睛】本题考查了圆的切线的判定、圆的垂径定理,矩形的判定和性质、等腰三角形的性质、角平分线的定义、平行线的判定和性质,解题的关键是准确作出辅助线.【变式3-1】(2023春·全国·九年级专题练习)如图,Rt ABC △中,90A ∠=︒,以AB 为直径的O 交BC 于点D ,点E 在O 上CE CA =,AB ,CE 的延长线交于点F .(1)求证:CE 与O 相切;(2)若O 的半径为3,4EF =,求CE 的长.【答案】(1)见解析(2)6【分析】(1)连接OE 、AE ,则OE OA =,所以OEA OAE ∠=∠,由CE CA =,得CEA CAE ∠=∠,所以90CEO CEA OEA CAE OAE ∠=∠+∠=∠+∠=︒,即可证明CE 与O 相切;(2)由切线的性质得90FEO ∠=︒,3OE OA ==,4EF =,得5OF ,则8AF OF OA =+=,即可根据勾股定理列方程2228(4)CE CE +=+,求解即可.【详解】(1)证明:如图,连接OE 、AE ,则OE OA =,OEA OAE ∴∠=∠,CEA CAE ∴∠=∠,90CEO CEA OEA CAE OAE CAO ∴∠=∠+∠=∠+∠=∠=︒, CE 经过O 的半径OE 的外端,且CE OE ⊥,CE ∴与O 相切.(2)解:由(1)知CE 与O 相切,∴90FEO ∠=︒∵3OE OA ==,4EF =,5OF ∴,8AF OF OA ∴=+=,∵90CAF =︒∠∴222CA AF CF +=,∵CA CE =,4CF CE =+,2228(4)CE CE ∴+=+,6CE ∴=,CE ∴的长为6.【点睛】此题重点考查等腰三角形的性质、圆的切线的判定、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.【变式3-2】(2023春·江西九江·九年级校考期中)如图,AB 为O 的直径,C 为O 上一点,P 为BC 延长线上的一点,使得PAC B ∠=∠.(1)求证:AP 是O 的切线.(2)F 为O 上一点,且OC 经过AF 的中点E .①求证:B CAE ∠=∠;②若2AE CE =,AC =O 的半径长.【答案】(1)见解析;(2)①见解析;②O 的半径为5.【分析】(1)根据直径所对的圆周角是直角得出90ACB ∠=︒,进而得出90CAB PAC ∠+∠=︒,即90PAB ∠=︒,即可得出结论;(2)①先根据直径所对的圆周角是直角得出90ACB BCO ACE ∠=∠+∠=︒,进而得出90B ACE ∠+∠=︒,根据题意可得出AE OC ⊥,推出90CAE ACE ∠+∠=︒,即可得出结论;②设CE x =,则2AE x =,由①知AE OC ⊥,得出ACE △和AOE △都是直角三角形,在Rt ACE 中,根据勾股定理得出()(2222x x +=,求出2CE =,4AE =,在Rt AOE △中,根据勾股定理得出()22242OA OA +-=,即可得出答案 【详解】(1)证明:∵AB 为O 的直径,∴90ACB ∠=︒,∴90CAB B ∠+∠=︒,∵PAC B ∠=∠,∴90CAB PAC ∠+∠=︒,即90PAB ∠=︒,∴AP AB ⊥,∴AP 是O 的切线;(2)①证明:∵AB 为O 的直径,∴90ACB BCO ACE ∠=∠+∠=︒,∵OC OB =,∴B BCO ∠=∠,∴90B ACE ∠+∠=︒,∵OC 经过AF 的中点E ,∴AE OC ⊥,∴90CAE ACE ∠+∠=︒,∴B CAE ∠=∠;②解:设CE x =,则2AE x =,由①知AE OC ⊥,∴ACE △和AOE △都是直角三角形,在Rt ACE 中,222AE CE AC +=,∴()(2222x x +=,解得:2x =(负值舍去),即2CE =,4AE =,在Rt AOE △中,222AE OE AO +=,∴()22242OA OA +-=,解得:5OA =,即O 的半径为5.【点睛】本题考查圆周角定理,切线的判定,勾股定理,掌握切线的判定定理是解题的关键.【变式3-3】(2023春·江苏无锡·九年级统考期中)如图,已知半径为5的M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分OAM ∠,6AO CO +=.(1)判断M 与x(2)求AB 的长.【答案】(1)相切,理由见解析(2)6【分析】(1)连接OM ,由AC 平分OAM ∠可得OAC CAM ∠=∠,又MC AM =,所以CAM ACM ∠=∠,进而可得OAC ACM ∠=∠,所以OA ∥MC ,可得MC x ⊥轴,进而可得结论;(2)过点M 作MN y ⊥轴于点N ,则A N B N =,且四边形MNOC 是矩形,设,AO m =可分别表达MN 和ON ,进而根据勾股定理可建立等式,得出结论;【详解】(1)解:M 与x 轴相切,理由如下:如图,连接OM , AC 平分OAM ∠,OAC CAM ∴∠=∠,又MC AM =,CAM ACM ∴∠=∠,OAC ACM ∴∠=∠,OA ∴∥MC ,OA x ⊥轴,MC x ∴⊥轴, CM 是半径,M ∴与x 轴相切(2)如图,过点M 作MN y ⊥轴于点N ,AN BN ∴==12AB ,90MCO AOC MNA ∠=∠=∠=︒,∴四边形MNOC 是矩形,NM OC ∴=,5MC ON ==,设,AO m =则6OC m =-,5AN m ∴=-,在Rt ANM 中,222AM AN MN =+,∴()()222556m m =-+-,解得2m =或9(m =舍去),3AN ∴=,6AB ∴=. 【点睛】本题主要考查切线的定义,勾股定理,矩形的性质与判定,垂径定理,待定系数法求函数表达式,题目比较简单,关键是掌握相关定理.【题型4 证明某直线是圆的切线(作垂直证半径)】(2023春·山东日照·九年级日照市新营中学校考期中)如图,在四边形ABCD中,∠ABC=90°,AD∥BC,【例4】CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由.(2)若AB=6,∠BDC=60°,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)3π【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF= BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合得到∠ABD= 30°,求出AD,再利用阴影部分的面积= S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1) 过点B作BF⊥CD,垂足为F,∴∠BFD=90°,∵AD∥BC,∠ABC=90°,∴∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠BFD,∵AD∥BC,∴∠ADB= ∠CBD,∴CB= CD,∴∠CBD= ∠CDB,∴∠ADB = ∠CDB ,在△ABD 和△FBD 中 ,ADB CDB BAD BFD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△FBD (AAS),∴BF = BA ,则点F 在圆B 上,∴CD 与⊙B 相切;(2) ∵∠BCD = 60°,CB = CD ,∴△BCD 是等边三角形,∴∠CBD = 60°,∵ BF ⊥CD ,∴∠ABD = ∠DBF = ∠CBF = 30 °,∴∠ABF = 60 °,∵ AB = BF = 6,∴AD = DF °∴阴影部分的面积= S △ABD -S 扇形ABE= 2130662360π⨯⨯⨯-=3π .【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,解题的关键是正确作出辅助线.【变式4-1】(2023·江西南昌·九年级期末)如图,O 为正方形ABCD 对角线上一点,以O 为圆心,OA 长为半径的O 与BC 相切于点M .(1)求证:CD 与O 相切.(2)若正方形ABCD 的边长为1,求半径OA 的长.【答案】(1)见解析;(2)2OA =【分析】(1)根据正方形的性质可知,AC 是角平分线,再根据角平分线的性质进行证明即可;(2)根据正方形的边长求出AC 的长,再根据等腰直角三角形的性质得出即可求出.【详解】解:(1)如图,连接OM ,过点O 作ON CD ⊥于点N ,∵O 与BC 相切,∴OM BC ⊥∵四边形ABCD 是正方形,∴AC 平分BCD ∠,∴OM ON =,∴CD 与O 相切.(2)∵四边形ABCD 为正方形,∴1,90,45AB B ACD ︒︒=∠=∠=,∴45AC MOC MCO ︒∠=∠=,∴MC OM OA ==,∴OC .又AC OA OC =+,∴OA 2OA =【点睛】本题主要考查了正方形的性质和圆的切线的性质和判定,还运用了数量关系来证明圆的切线的方法.【变式4-2】(2023•武汉模拟)如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D ,AB =5,EB =3.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.(2)先证明△BDE≌△DCF(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.【解答】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,∴∠B=90°∴AB⊥BC∵AD平分∠BAC,DF⊥AC∴BD=DF∴AC与⊙D相切;(2)在△BDE和△DCF中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△DCF(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.【变式4-3】(2023•椒江区一模)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【知识点2 切线的性质】(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:①经过圆心且垂直于切线的直线必经过切点②经过切点且垂直于切线的直线必经过圆心【题型5 利用切线的性质求线段长度】【例5】(2023春·河南·九年级校联考期末)如图,为的直径,,是上不同于,的两点,过点的切线垂直于交的延长线于点,连接.(1)求证:;(2)若,,则的长为__________.【答案】(1)见解析(2)【分析】(1)连接,可证,从而可证,即可求证.(2)过作交于,可求,,,接可求解.【详解】(1)证明:如图,连接,为的切线,,,,,,,,.。
专题7圆的切线的判定与性质-重难点题型(举一反三)

专题2.2 圆的切线的判定与性质--重难点题型【知识点1 切线的判定】(1)切线判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线②和圆只有一个公共点的直线是圆的切线(定义法)③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【题型1 切线判定(连半径,证垂直)】【例1】(2021•新兴县一模)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,连接BD,∠DAB=∠B=30°,求证:直线BD是⊙O的切线.【变式1-1】(2020秋•思明区校级期末)如图,AB是圆O的一条弦,点E是劣弧AB的中点,直线CD经过点E 且与直线AB平行,证明:直线CD是圆O的切线.【变式1-2】(2020秋•福州期末)如图,AB是⊙O的直径,C为半圆O上一点,直线l经过点C,过点A作AD ⊥l于点D,连接AC,当AC平分∠DAB时,求证:直线l是⊙O的切线.【变式1-3】(2021•芜湖模拟)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB 交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线.【题型2 切线判定(作垂直,证半径)】【例2】(2020秋•原州区期末)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O 的切线.【变式2-1】(2020秋•北京期末)如图,以点O为圆心作圆,所得的圆与直线a相切的是()A.以OA为半径的圆B.以OB为半径的圆C.以OC为半径的圆D.以OD为半径的圆【变式2-2】(2020秋•曲靖期末)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC边于点D、F.过点D作DE⊥CF于点E.求证:DE是⊙O的切线;【变式2-3】(2021•南平模拟)如图,在△ABC中,D为BC边上的一点,过A,C,D三点的圆O交AB于点E,已知,BD=AD,∠BAD=2∠DAC=36°.(1)求证:AD是圆O的直径;(2)过点E作EF⊥BC于点F,求证:EF与圆O相切.【题型3 切线判定(定义法)】【例3】(2020秋•北塘区期中)给出下列说法:(1)与圆只有一个公共点的直线是圆的切线;(2)与圆心的距离等于半径的直线是圆的切线;(3)垂直于圆的半径的直线是圆的切线;(4)过圆的半径的外端的直线是圆的切线.其中正确的说法个数为()A.1B.2C.3D.4【变式3-1】(2020秋•锡山区校级月考)下列直线是圆的切线的是()A.与圆有公共点的直线B.到圆心的距离等于半径的直线C.到圆心的距离大于半径的直线D.到圆心的距离小于半径的直线【变式3-2】给出下列说法:①与圆只有一个公共点的直线是圆的切线;②与圆心的距离等于半径的直线是圆的切线;③垂直于圆的半径的直线是圆的切线;④过圆的半径的外端的直线是圆的切线;⑤经过圆心和切点的直线垂直于这条切线.其中正确的是.(填序号)【变式3-3】(2020•龙川县二模)如图,P A和⊙O相切于A点,PB和⊙O有公共点B,且P A=PB,求证:PB是⊙O的切线.【知识点2 切线的性质】(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:①经过圆心且垂直于切线的直线必经过切点②经过切点且垂直于切线的直线必经过圆心【题型4 切线的性质(求长度问题)】【例4】(2020秋•衢江区期末)如图,直线AB与⊙O相切于点C,OA交⊙O于点D,连结CD.已知OD=CD =5,求AC的长.【变式4-1】(2021•温州三模)在等腰三角形ABC 中,AC =BC =2,D 是AB 边上一点,以AD 为直径的⊙O 恰好与BC 相切于点C ,则BD 的长为( )A .1B .2√33C .2D .2√55【变式4-2】(2021•湖州一模)如图,以△ABC 的边AB 为直径作⊙O ,交BC 于点D ,过点D 的切线DE ⊥AC 于点E .(1)求证:AB =AC ;(2)若AB =10,BD =8,求DE 的长.【变式4-3】(2021•陕西模拟)如图,AB 是⊙O 的直径,C 是⊙O 上的一点,连接BC ,F 为BC 的中点,连接FO 并延长交⊙O 于点D ,过点D 的切线与CA 的延长线交于点E .(1)求证:四边形CEDF 是矩形;(2)若AC =OA =2,求AE 的长.【题型5 切线的性质(求半径问题)】【例5】(2020秋•市中区期末)如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,过点A 作⊙O 的切线交BE 延长线于点C .(1)若∠ADE =28°,求∠C 的度数;(2)若AC =2√3,CE =2,求⊙O 半径的长.【变式5-1】(2020秋•沂水县期末)如图,已知⊙O 上三点A ,B ,C ,∠ABC =15°,切线P A 交OC 延长线于点P ,AP =√3,则⊙O 的半径为( )A .√33B .√32C .√3D .3【变式5-2】(2021•河南模拟)如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,作OF ⊥AD 于点E ,交CD 于点F .(1)在不增加辅助线的情况下,请直接写出图中一对相等的角,并证明;(2)若BD =8,EF =2,求⊙O 的半径.【变式5-3】(2021•贵池区模拟)已知:在⊙O 中,AB 为直径,P 为射线AB 上一点,过点P 作⊙O 的切线,切点为点C ,D 为弧AC 上一点,连接BD 、BC 、DC .(1)如图1,求证:∠D =∠PCB ;(2)如图2,若四边形CDBP 为平行四边形,BC =5,求⊙O 的半径.【题型6 切线的性质(求角度问题)】【例6】(2021•红桥区三模)在△ABC中,以AB为直径的⊙O分别与边AC,BC交于点D,E,且DE=BE.(Ⅰ)如图①,若∠CAB=38°,求∠C的大小;(Ⅱ)如图②,过点E作⊙O的切线,交AB的延长线于点F,交AC于点G,若∠CAB=52°,求∠BEF的大小.【变式6-1】(2021•三明模拟)从⊙O外一点A作⊙O的切线AB,AC,切点分别为B,C,D是⊙O上不同于B,C的点,∠BAC=60°,∠BDC的度数是()A.120°B.60°C.90°或120°D.60°或120°【变式6-2】(2021•北辰区二模)如图,在⊙O中,直径AB与弦CD相交于点E,∠ABC=58°.(Ⅰ)如图①,若∠AEC=85°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线DF,与AB的延长线相交于点F,求∠F的大小.【变式6-3】(2021•天津)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(Ⅱ)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.。
数学复习课件:切线的性质和判定(共18张PPT)

直击中考
A
A
A
A
考点巩固
例1 如图. AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直, 垂足为D. 求证:AC平分∠DAB.
证明:连接OC, ∵CD是⊙O的切线,
思想方法归纳: ∴OC ⊥CD.
又∵AD⊥CD,
D C 1 A 2 O B 3
连半径, ∴OC//AD. ∴ ∠1=得垂直 ∠3. ∵OC=OA. ∴ ∠2=∠3.
∴ ∠1=∠2. ∴ AC平分∠DAB.
切线的判定考点梳理:
3、圆的切线的判定:经过 半径的 外端,并 且垂直于这条 半径 的直线是圆的切线。
切线需满足两条: ①经过半径外端. ②垂直于这条半径.
注意:定理中的两个条件缺 一不可.
考点训练
下列说法中,正确的是( D ) A. 垂直于半径的直线是的切线 B.经过半径外端的直线是圆的切线 C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径,那么这条直线 是圆的切线
证明切线时如何作辅助线?
O
D A O E
B
A
B
C
(1)如果已知直线经过圆上一点,则连结这点 和圆心,得到辅助半径,再证所作半径与这直线垂 直。简记为:连半径,证垂直。 (2)如果已知条件中不知直线与圆是否有公共 点,则过圆心作直线的垂线段为辅助线,再证垂线 段长等于半径长。简记为:作垂直,证半径。
O O O O
考点巩固
例2、(例1变式 )如图,AB为⊙O的直径, C为⊙O
上点,若∠ BAC= ∠CAM, 过C点作直线垂直于射线 AM,垂足为点D.
(1)试判断CD与⊙ O的位置关系,并说明理由; 思想方法归纳:
证明: 连结OC
∵OA=OC, ∴∠2=∠3
初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定
解
(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.
《切线的性质和判定》PPT课件

连接圆心和切点
垂直于
切点
圆心
惟一
半径
垂直于
┃考点聚焦
考点2 切线长及切线长定理
切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长
切线长定理
从圆外一点引圆的两条切线,它们的切线长________,圆心和这一点的连线________两条切线的夹角
基本图形
如图所示,点P是⊙O外一点,PA、PB切⊙O于点A、B,AB交PO于点C,则有如下结论:(1)PA=PB;(2)∠APO=∠BPO=∠OAC=∠OBC,∠AOP=∠BOP=∠CAP=∠CBP
切线的性质和判定
- .
考点1 圆的切线
切线的性质
圆的切线________过切点的半径
推论
(1)经过圆心且垂直于切线的直线必过________;(2)经过切点且垂直于切线的直线必过________
切线的判定
(1)和圆有________公共点的直线是圆的切线;(2)如果圆心到一条直线的距离等于圆的________,那么这条直线是圆的切线;(3)经过半径的外端并且________这条半径的直线是圆的切线
探究一、圆的切线的性质
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用圆心到一条直线的距离等于圆的半径,判定这条直线是圆的切线;2.利用一条直线经过半径的外端,且垂直于这条半径,判定这条直线是圆的切线.
探究二、圆的切线的判定方法
┃归类探究
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用切线长定理计算;2.利用切线长定理证明.
相等
平分
┃考点聚焦
考点3 三角形的内切圆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.O
A
C
B 4题
解:设大圆半径为R,小圆半径为r 则S圆环=∏R2- ∏r2= ∏(R2- r2) = ∏×42 =16 ∏
思考总结:
利用切线的性质解决问题时常用的辅助线:
连接圆心与切点 概括成:有切线,连半径,得垂直
例1:已知AB是⊙O的直径,BC是⊙O的切线, 切点为B,OC平行于弦AD.求证:DC是⊙O 的切线.
A
D
D 2 4 1 3 O
E C O
B
B
规律总结: ①公共点已知:连半径证垂直
②公共点未知:作垂直证等半径
1、如图:
对应练习
AB为⊙O的直径,AC为∠DAB的平分线 CD⊥AD于D,C为⊙ O上一点, 求证:CD是⊙O的切线。
变式一: 若此题改为AB为⊙O的直径, CD是⊙O的切线, 切点为C,CD⊥AD于D点, 则 AC平分∠DAB成立吗?说明理由。 变式二: 若此题改为AB为⊙O的 直径, CD是⊙O的切线, 切点为C, AC平分 ∠DAB,则 CD⊥AD成 立吗?说明理由。
C
B
A
例2 如图,△ABC中,AB=AC, O是BC 的中点,以O为圆心的⊙O切AB于D,求证: D AC是⊙O的切线
B O
E C
例1:已知AB是⊙O的直径,BC是⊙O的 切线,切点为B,OC平行于弦AD.求证: DC是⊙O的切线.
C
例2 如图,△ABC中,AB=AC, O 是BC的中点,以O为圆心的⊙O切 AB于D,求证:AC是⊙O的切线
证明:连结OD. ∵OA=OD,∴∠1=∠2, ∵AD∥OC,∴∠1=∠3,∠2=∠4. ∴∠3=∠4. ∵OD=OB,OC=OC, D ∴△ODC≌△OBC. 2 4 3 ∴∠ODC=∠OBC. A1 O ∵BC是⊙O的切线, ∴∠OBC=90°. ∴∠ODC=90°. ∴DC是⊙O的切线.
(二)知识结构
① 1.切线的性质 ②
惟一交点
d=r
圆 的 切 线
③ 性质定理Biblioteka ①2.切线的判定 ②
定义 d=r
③ 判定定理
3.综合运用
(三)基础练习
1.已知⊙O半径8cm ,如果一条直线和圆心O的距离为8cm,那么这条直线和这个 相切 圆的位置关系________. 2.下列说法正确的是:(B) A.与圆有公共点的直线是圆的切线 B.和圆心距离等于圆的半径的直线是圆的 切线 C.垂直于圆的半径的直线是圆的切线 D.过圆的半径的外端的直线是圆的切线 3.如图,PA是⊙O切线,切点为A,PA=2 3 O ,∠APO=30°则⊙O的半径为______ 2 4.如图:以O为圆心的两个同心圆中大圆的 弦AB与小圆相切于点C,若大圆半径为10cm 30 16cm P 小圆半径为6cm,则弦AB的长为___。 A 3题 5、若上题中,改为:以O为圆心的两个同心圆中大圆的 16∏ 弦AB与小圆相切于点C,若AB=8cm,则圆环的面积为___。
1 2 3
2、如图① △ABC内接于⊙O ,AB是⊙O的直径,∠CAD=∠ABC,判断 直线AD与⊙O的位置关系,并说明理由。
如图②: 若AB是⊙O不是直径的弦,其它条件不变,则上述结论还成立吗?
请说明理由。
E
小结
谈谈本节课的收获!
交换一个苹果,各得一个苹果;交换一种思想,各得两种思想!
满庄二中
史兆玲
(一)知识点重现
相交 __ 3 种,分别为__、 1、直线和圆的位置关系有__ 相离 相切 ___、___。
2、直线和圆有惟一公共点时,直线与圆的位置 相切 ,这条直线是圆的_____, 切线 惟一公共 关系是_____ 点是_______ 切点 等于 半径 3、直线和圆相切,圆心到直线的距离_____ 4、圆的切线的性质:圆的切线垂直于 经过切点的半径 _________________ 半径 的外端,并 5、圆的切线的判定定理:经过____ 半径 的直线是圆的切线 且垂直于这条_____