中央空调水循环系统简介

合集下载

中央空调系统组成各部分介绍

中央空调系统组成各部分介绍

中央空调系统组成各部分介绍中央空调分为冷媒系统、水系统和风系统,其中风系统中央空调使用很少,冷媒系统和水系统较多,下面将重点介绍冷媒系统和水系统中央空调系统的组成,并对中央空调系统组成的各部分进行简单的说明。

冷媒系统中央空调系统的组成:主机+冷媒管道+分歧管+冷凝排水管道+内机;水系统中央空调系统的组成:主机+膨胀水箱(闭式膨胀罐)+循环水泵+冷冻水管(阀门)+水过滤器+内机+冷凝水排水管道。

这两种中央空调系统组成部分设备一样。

中央空调系统的组成:主机主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,主机也是中央空调系统组成最重要的部分,主机集成了中央空调的核心技术。

中央空调系统的组成:冷媒管道冷媒管道主要是指内机和外机的连接管、用来走冷媒的、所以叫冷媒管也叫连接管,冷媒管道是中央空调系统组成的流体,如:水\氟利昂\氨\等。

中央空调系统的组成:分歧管分歧管是小型中央空调组机与组机、组机与室内各风口单元的连接部分,把整个空调系统连接成树型结构。

中央空调系统的组成:内机内机也是中央空调系统组成重要部分,属于中央空调系统的尾部设备,一般一套中央空调系统由多台内机组成,内机分为风管机、天井机、壁挂机、落地机。

中央空调系统的组成:膨胀水箱膨胀水箱是中央空调水路系统中的重要部件,它的作用是收容和补偿系统中水的胀缩量。

,一般都将膨胀水箱设在系统的最高点,通常都接在循环水泵(中央空调冷冻水循环水泵)吸水口附近的回水干管上。

中央空调系统的组成:循环水泵循环水主要是向汽轮机凝汽器供给冷却水,用以冷却凝气轮机排汽,循环水泵还要向冷油器,冷风器,锅炉冲灰水等提供水源。

每台泵对应有两台旋转滤网和一个外围水闸对泵吸入口处的水源进行垃圾清理。

中央空调系统的组成:水过滤器水过滤器由简体、不锈钢滤网、排污部分、传动装置及电气控制部分组成。

过滤机工作时,待过滤的水由水口时入,流经滤网,通过出口进入用户所须的管道进行工艺循环,水中的颗粒杂技被截留在滤网内部。

VRV与中央空调比较

VRV与中央空调比较
制冷:-5~43 ℃ 制热:-20~15.5℃
VRV末端设备紧凑,占用 空间小
一致,风冷热泵空调系统 冬季零度以下时要注意 防止管路冻裂
1、节能环保
二、产品性能
• 中央空调系统
耗能设备: 水泵、室外主机、室内末端
1、节能环保风冷热泵系统
VRV空调系统 耗能设备: 室外主机、室内末端
二、产品性能
1、节能环保
二、产品性能
比较项目
所用能源
中央空调系统
电力
VRV系统
电力
系统优势
同样消耗电能

主机


系统
容量范围
部分负荷
COP2.8-3.2
COP5.5-6.05
VRV主机较节能
有水泵等辅助设备额外耗能
没有辅助设备
VRV系统较节能。
25~100%
14~100%(8HP) VRV单机容量小,个别加班时更节能
通过多机头和单机头调节实 现能量阶梯调节
可实施电脑远程监测无 VRV无需专人监管,节省
需专人监控数据
开支
空调系统市场占有率
2010年中央空调市场
末端设备 28%
离心式.螺杆冷 水机 27%
2012年中央空调市场
水/地源热 泵
4.6%
末端 10.9%
模块机 5.4% 离心机
6.4%
溴化锂
5.3%
水·地源热泵 2%
多联机 26%
溴化锂冷冻机 6%
输入功 率 560 504 448 392 336 280 224 168 112 120
运行时 间 25 23 32 187 213 80 80 80 40 40 800
总耗电 (Kwh) 14000 11592 14336 73304 71568 22400 17920 13440 4480 4800 247840

中央空调水循环原理

中央空调水循环原理

中央空调水循环原理
中央空调的水循环原理是通过一系列的管道、泵和阀门来实现热量的传递和控制。

具体的水循环过程如下:
1. 冷却水循环:冷却水从中央空调机组中流出,经过冷冻水泵进入冷却塔。

2. 冷却塔:冷却塔是一个用于散热的设备,冷却水在塔内与空气进行热交换,使冷却水的温度降低。

3. 冷却水回流:冷却水从冷却塔排出后,经过冷却水回流泵,再次回到中央空调机组,继续循环使用。

4. 蒸发器:在中央空调机组内,冷却水经过蒸发器与蒸发器内的冷媒进行热交换,将空气中的热量吸收。

5. 冷媒回流:冷媒经过蒸发后变为气态,通过冷凝水泵进入冷凝器。

6. 冷凝器:冷凝器是一个热交换设备,冷媒在冷凝器内与冷却水进行热交换,将热量传递给冷却水。

7. 冷凝水回流:冷凝水从冷凝器排出后,通过冷凝水回流泵回流到中央空调机组,继续循环使用。

通过这样的水循环过程,中央空调系统能够循环利用冷却水,不断地吸收和释放热量,从而实现空调效果。

同时,通过控制冷却水的流量和温度,可以调节室内空气的温度和湿度,以满足不同的舒适需求。

中央空调系统的工作原理

中央空调系统的工作原理

中央空调系统的工作原理
中央空调系统是一种集中供冷、供热和通风于一体的空调系统,它包括室内机组和室外机组。

室内机组通过管道系统连接室外机组,实现空气的循环和温度的调节。

工作原理如下:
1. 制冷循环:室内机组中的压缩机将低温低压制冷剂吸入,通过压缩将制冷剂压缩为高温高压气体。

然后,高温高压气体通过冷凝器散热,变成高压高温液体。

接下来,高压高温液体通过膨胀阀经过膨胀,变成低温低压液体。

最后,低温低压液体通过蒸发器吸收空气中的热量,将空气冷却并循环送至各个房间。

2. 供热循环:室内机组可通过改变工作状态实现供热。

当需要供热时,室内机组中的换热器吸收室外机组产生的热量,将热量通过管道输送到各个房间。

3. 通风循环:除了制冷和供热,中央空调系统还能实现通风功能。

室内机组通过通风机将外界空气吸入,将室内空气与外界空气进行交换,保持室内空气的新鲜。

整个中央空调系统通过不同的工作模式和控制手段来调节室内温度,保持室内空气的舒适性和优质。

中央空调系统制冷原理介绍

中央空调系统制冷原理介绍

制冷原理图中央空调制冷原理图空调系统通过三个循环把室内的热量传到室外:冷冻水循环,制冷剂循环,冷却水循环。

制冷主机:制冷主机通过压缩机让制冷剂迅速冷冻循环水,冷冻循环水的温度快速降低(一般经过制冷主机制冷后的水温在7℃左右),这是中央空调冷源提供的地方,通过制冷主机冷冻的冷冻水由冷冻水泵送入空调房间。

冷冻水泵:冷冻水带走制冷剂的冷量后,再到空调系统末端(如风机盘管,空调机组)与空气换热,温度升高后再回到冷水机组内带走制冷剂冷量,这样构成冷冻水循环系统,在这个系统上的泵称为冷冻水泵。

冷却水泵:制冷剂在冷水机组里循环,经过压缩机使温度升高,这时用水将温度降下来,这部分水称为冷却水,冷却水通过冷冷却水泵把制冷主机所产生的热量带走,再经过冷却塔把热量释放到空气中,然后回到冷水机组,这样构成一个冷却水循环系统,在这个系统上的泵是冷却水泵。

冷却塔:通过冷却水泵将温度较高的水送上冷却塔,通过冷却塔喷头,让水自上而下流动,一方面,通过自然空气带走水中热量;另一方面,通过冷却风机带动空气加速运动,通过空气带走热量的同时加快蒸发,让水温降低。

温度降低后的冷却水再次循环进入制冷主机,带走制冷主机产生的废热,如此循环。

风机盘管:风机盘管空调系统是将由风机和盘管组成的机组直接放在房间内,工作时盘管内根据需要流动热水或冷水,风机把室内空气吸进机组,经过过滤后再经盘管冷却或加热后送回室内,如此循环以达到调节室内温度和湿度的目的。

中央空调水系统的工作原理与一般空调一样,有四大部件,压缩机,冷凝器,节流装置,蒸发器,制冷剂依次在上述四大部件循环,压缩机出来的冷媒(制冷剂)高温高压的气体,流经冷凝器,降温降压,冷凝器通过冷却水系统将热量带到冷却塔排出,冷媒继续流动经过节流装置,成低温低压液体,流经蒸发器,吸热,再经压缩。

在蒸发器的两端接有冷冻水循环系统,制冷剂在此次吸的热量将冷冻水温度降低,使低温的水流到用户端,再经过见机盘管进行热交换,将冷风吹出。

中央空调系统原理图

中央空调系统原理图

中央空调系统原理图中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。

各部分的作用及工作原理如下:制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。

经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。

中央空调系统部分组成:冷冻水循环系统该部分由冷冻泵、室内风机及冷冻水管道等组成。

从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。

室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。

冷却水循环部分该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。

冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。

该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。

冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。

主机主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下:首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。

在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。

随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。

冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。

最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。

广州大金空调大金空调广州正邦贸易有限公司。

中央空调水系统设计(经典版)

中央空调水系统设计(经典版)

中央空调水系统设计(经典版)水系统分类按水压特性划分,可分为开式系统和闭式系统。

按冷、热水管道方式划分,可分为二管制系统、三管制系统和四管制系统。

按各末端设备的水流程划分,可分为同程式和异程式系统。

按水量特性划分,可分为定水量系统和变水量系统。

按水的性质划分,可分为冷冻水系统、冷却水系统和热水系统。

开式系统特点水系统与大气体直接相通。

常见于冷却水系统,系统比较简单。

水池容量较大时,夏季它具有一定的蓄冷能力。

水中含氧量高,管路与设备的腐蚀机会多。

需要增加克服静水压力的额外能量,水泵功率会增加。

水力平衡相对困难。

闭式系统特点水管路系统不直接与大气相通水泵选型相对于开式比较小(静压)水泵扬程、功率均相对比较小;管路与设备腐蚀机会少;系统相对设计简单;要设有膨胀水箱(定压作用),高度应高于水系统最高点1.5m以上;要有放气阀等阀件。

同程式水系统供回水经过每一环路的管路长度相等;主要是保证各管路系统的阻力大致相同,水流量分配均匀;需设回程管,管道长度长,初投资稍高。

异程式水系统供回水经过每一环路的管路长度不相等;不需回程管,管路短,管路简单、投资低;可能会导致水液量分配不均现象;可在支管上安装流量调节装置;建议安装平衡阀。

二管制水系统热、供冷合用同一管路系统;适用于冬、夏季冷、热负荷分明,过渡季很短或过渡季可不需空气调节的建筑较;夏季供冷、冬季供热、过渡季可采用天然冷源(如新风)冷却的建筑;管路系统简单、初投资省;无法同时满足供冷、供热的要求。

三管制水系统冷、热水供水管同时接至了末端设备(盘管仍为冷、热合用),每个末端设备可独立供冷或供热,供冷,供热回水的管路共用;能同时满足供冷、供热的要求,管路相对简单;在既有供冷又有供热的末端设备同时运行时,回水总管的水温是冷冻水与热水回水的混合温度,这一水温将高于冷水机组正常要求的回水温度而低于热交换器正常运行的回水温度;存在冷热损失,设备能耗将比两者各自独立运行时大得多。

中央空调_第5章水系统设计说明

中央空调_第5章水系统设计说明

水系统的组成
水流开关:当水流开关感应到通过热交换器的水流量 过低时,该装置会使机器停止运行。安装时尽量安装 在水泵的出口管段。
水系统的组成
冷冻水系统原理图:
膨胀水箱
接自来水管 接排水管
膨胀管
F
冷冻水泵
一用一备
△P
L1 L2
冷水机组
冷凝器 蒸发器
图例
F
名称 碟阀 水流开关 过滤器 浮球阀 压力表 温度表
(2) 空调水系统竖向分区的可能方案
1)将冷水机组 设在塔楼以外的群房顶 层 设两个系统分别向塔 楼和群房供水,另一台 向低区供水。冷却塔设 在群房的屋顶上。
图例
L1 L2
名称 避震接头 水泵 止回阀 排气阀 冷冻水供水管 冷冻水回水管
空调末端 空调末端
水系统阀门:
水系统的组成
闸阀
截止阀
蝶阀
蝶阀
水系统中设置的阀一般有两个作用:一是起调节用,调节 管网中的水量,另外是起关断作用,如变换季节时的冷、 热源转换,或设备检修时,用阀门关断。
水系统的组成
接自来水管 接排水管
空调末端 空调末端
压差控制阀
当系统阻力增大,水泵扬 程增高,a,b两点的压差增 大,水流量减少。为保持 系统内压力稳定,在供、 回水总管之间设置带压差 控制阀的旁通管,当a,b两 点间压差超过压差控制阀 的整定值时,阀门开启, 部分水量返回至冷水机组 循环流动,冷水机组定流 量运行。另外,对于间断 使用的空调系统,循环水 量也可通过压差旁通阀回 流。
第五章 中央空调水系统设计
张海涛
中央空调水系统的作用就是将冷热媒水,按空 调房间冷热负荷的要求,准确送至空气处理设 备,处理房间内的空气.水系统投资比较多,水 泵能耗较大,而且水系统对整個空调系统的使 用效果影响大,是空调设计中的一个重要组成 部分。

水系统中央空调原理

水系统中央空调原理

水系统中央空调原理
水系统中央空调的工作原理是通过水的循环来实现室内空气的冷却和供暖。

具体而言,水系统中央空调主要包括冷却水系统和供暖水系统两部分。

冷却水系统主要包括冷却机组、冷却水泵、冷却水管路和冷却塔。

冷却机组通过循环泵将冷水送入空调末端,通过冷却机组内的蒸发器冷却空气,使空气温度下降,再通过风机将冷却后的空气输送至室内。

然后,冷水通过冷却塔冷却后返还给机组,形成循环。

供暖水系统主要由供暖机组、供暖水泵、供暖水管路和散热器等组成。

供暖机组通过供暖水泵将热水送入散热器,然后通过散热器与室内空气进行热交换,将热量传递给室内空气,实现供暖效果。

而热水通过供暖水管路回流至供暖机组,形成闭环。

整个水系统中央空调的工作过程是实现冷热水的循环供应,通过循环泵将冷水和热水送到相应的末端设备,如冷却机组和供暖机组,再通过相应的设备完成冷却和供暖功能,最后再将循环回来的水返还给机组进行再次循环使用。

这种水系统中央空调的原理能够实现室内空气温度的调节,不仅能够提供舒适的室内温度,还具有节能、环保等优点。

中央空调系统介绍及节能分析

中央空调系统介绍及节能分析

中央空调系统介绍及节能分析1、中央空调系统的构成1.1 冷冻机组属于中央空调的制冷源,能够保证建筑内部各个房间中的循环水进入到冷冻机组当中,循环水在冷冻机组中进行热交换,保证循环水的温度得到更好降低。

1.2 冷冻水循环系统冷冻水循环系统主要由两部分组成,分别是冷冻泵与冷冻水管道等,冷冻机内部流出的水经过冷冻泵加压处理之后,被送入到冷冻水管道当中,冷冻水管道分布于各个房间,在各个房间可以进行热量交换,将房间热量全部带走,保证房间内部温度不断下降。

一般情况下,从冷冻机组中流出的水被人们称为“出水”,流经房间并最终回到冷冻机组中的冷冻水泽被称为“回水”。

1.3 冷却水循环系统冷却水循环系统主要由冷冻泵、冷却塔与冷却水管道组成,冷冻机在热交换的过程当中,水的温度不断下降,释放一定的热量,这部分热量会直接被冷却水吸收,在一定程度上增加了冷却水的温度。

冷却泵能够将温度升高的冷却水直接压入到冷却塔当中,冷却水能够与大气进行合理的热交换,降温的冷却水送回冷却机组当中,经过以上的循环后,冷冻机组的温度不断下降。

进入到冷冻机组当中的冷却水经常被大家称为“进水”,经过冷冻机组流入到冷却搭的水则常被人们称为“回水”。

1.4 冷却风机能够将冷却塔中的水温不断降低,保证冷却塔中的“回水”热量全部散发到大气当中。

总的来讲,中央空调系统内部是热量交换的场所,冷冻水与冷却循环水能够传递能量。

但是,中央空调系统在运行的过程中,一旦冷却水的温度超过相关规定,会降低冷冻机组的整体运行速率,缩短冷却机组的使用时间。

如果冷却水温度比较低,则增大冷却机组的摩擦损耗。

因此,相关工作人员要合理控制冷却水温度,保持冷却水温度在28摄氏度到30摄氏度之间,有效延长冷却机组的使用时间。

2 中央空调系统的节能设计方案比较结合我国建筑结构特点,中央空调设计方案主要分为三种,分别是风冷模块机组设计方案、水冷螺杆机组设计方案与水源热泵机设计方案等,下面就对这三种方案进行全面分析:2.1 方案一:风冷模块机组风冷冷(热)水机组主要以气为冷(热)源,以水为供冷(热)介质,利用电驱动进行制冷与制热,属于一种先进的一体化设备,具有较好的智能性。

中央空调水循环系统简介

中央空调水循环系统简介

中央空调系统简介随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。

中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。

冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。

冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37C 左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。

冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。

冷冻水在冷冻机中被制冷剂冷却至7C左右后送往风机盘管,与空气进行热交换升温至 12C左右后,再返回到冷冻机中被冷却。

热媒水在热水锅炉中被加热至60C左右后送往风机盘管,与空气进行热交换降至55C左右后,再返回到锅炉中加热。

热水和冷冻水共用一套管道系统。

1.中央空调系统特点中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。

大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。

2.冷冻水系统特点冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。

因此,对于冷冻水系统水处理的重点是控制设备的腐蚀及粘泥的产生。

3.冷却水系统特点冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。

水系统中央空调工作原理

水系统中央空调工作原理

水系统中央空调工作原理
中央空调系统是一种通过冷却和循环水来调节室温的空调系统。

其工作原理包括以下几个步骤:
1. 循环水供应:中央空调系统通过水泵将冷水和热水循环供应到各个室内设备,如冷却器、加热器等。

2. 冷却水循环:在夏季,中央空调系统使用冷却水来降低室温。

冷却水从冷却塔或冷却器中流过,吸收室内热量后变热,然后通过水泵重新输送到冷却塔或冷却器,以便进一步冷却。

3. 加热水循环:在冬季,中央空调系统使用加热水来提供室内暖气。

加热水从热水锅炉中流过,吸收热量后变热,然后通过水泵输送到换热器或暖气设备,将热能传递给室内空气。

4. 控制系统:中央空调系统通过控制系统监测室内温度,并根据设定的温度范围自动调节冷却水和加热水的供应量,以保持室内温度在合适的范围内。

总的来说,中央空调系统利用冷却水和加热水循环输送热量,通过控制供水量和供应温度来调节室内温度,从而实现空调降温和加热的功能。

中央空调水循环系统简介

中央空调水循环系统简介

中央空调系统简介随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。

中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。

冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。

冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。

冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。

冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。

热媒水在热水锅炉中被加热至60℃左右后送往风机盘管,与空气进行热交换降至55℃左右后,再返回到锅炉中加热。

热水和冷冻水共用一套管道系统。

1.中央空调系统特点中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。

大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。

2.冷冻水系统特点冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。

因此,对于冷冻水系统水处理的重点是控制设备的腐蚀及粘泥的产生。

3.冷却水系统特点冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。

中央空调水系统的工作原理

中央空调水系统的工作原理

1.中央空调水系统的工作原理:与一般空调一样,有四大部件,压缩机,冷凝器,节流装置,蒸发器,制冷剂依次在上述四大部件循环,压缩机出来的冷媒(制冷剂)高温高压的气体,流经冷凝器,降温降压,冷凝器通过冷却水系统将热量带到冷却塔排出,冷媒继续流动经过节流装置,成低温低压液体,流经蒸发器,吸热,再经压缩。

在蒸发器的两端接有冷冻水循环系统,制冷剂在此次吸的热量将冷冻水温度降低,使低温的水流到用户端,再经过风机盘管进行热交换,将冷风吹出。

这里有三个系统,你弄明白,基本就明白的了。

一个是制冷剂的循环系统,一个是冷却水系统的,一个是冷冻水系统的。

冷却水系统就是接冷却塔的,将热量带到外界的,冷冻水系统就是连接用户与蒸发器的,将末端的热量带到蒸发器。

冷水机的水在这里相当于一种载冷剂,担当中间角色运送热量,本身的制冷在于制冷剂循环系统2. 地源热泵工作原理:地源热泵则是利用水源热泵的一种形式,它是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。

地源热泵供暖空调系统主要分三部分:室外地能换热系统、水源热泵机组和室内采暖空调末端系统。

其中水源热泵机主要有两种形式:水—水式或水—空气式。

三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。

或者这样说:以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。

根据地热能交换系统形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。

3. 地源热泵系统方案设计前:应进行工程场地状况调查,并应对浅层地热能资源进行勘察。

勘察范围包括:(1)场地规划面积、形状及坡度;(2 )场地内已有建筑物和规划建筑物的占地面积及其分布;(3)场地内树木植被、池塘、排水沟及架空输电线、电信电缆的分布;(4 )场地内已有的、计划修建的地下管线和地下构筑物的分布及其埋深;(5 )场井的价晋地内已有水传热介质通过竖直或水平地埋管换热器与岩土体进行热交换的地热能交换系统,又称土壤热交换系统。

冷冻水循环系统工作原理

冷冻水循环系统工作原理

冷冻水循环系统:让空调更高效冷冻水循环系统是一种通过冷却循环的水来控制空气温度的系统,被广泛应用于中央空调系统中,其中最重要的组件是冷却机组、水泵、管道和冷却塔。

具体工作原理如下:
1. 对外部空气进行预冷处理,让其温度降低至低温状态
2. 预冷后的空气流经换热器,和冷冻水进行热交换,使得冷却水
温度下降
3. 冷却水通过水泵被吸入冷却机组,和空气进行再次热交换
4. 冷却水将吸收的空气热量再通过冷却塔散发出去,维持循环往

通过这样的工作流程,冷冻水循环系统成功实现了对空气温度的
精准控制,将内部的温度调整至指定的范围内。

相比其他的空调系统,其具有以下显著优势:
1. 能够提供大面积的冷暖空气输出,适用于较大的办公场所和商
业中心
2. 针对高温高湿的气候,冷冻水循环系统提供更为舒适的空调效果,降低了空气的湿度,减少了卫生间出现霉斑现象
3. 可以根据具体场地的面积和需求,进行多台机组的组合设计,
提高空调的工作效率,降低耗能
总之,冷冻水循环系统在现代建筑空调系统中的应用已经非常广泛,其高效、节能、稳定的优势为我们创造了更为舒适的办公环境和生活空间。

中央空调水系统与制冷系统运行参数

中央空调水系统与制冷系统运行参数

一、机组工作电源机组工作电源一般要求是 380V/50Hz/3N,其波动范围在 360V~420V 之间。

但是机组运行对电源有严格要求:电源三相电压不平衡应不大于 2﹪;电源三相电流不平衡应不大于 10﹪。

电压过高或过低,都会造成机组电机运行电流偏大,严重时会烧坏机组电机。

三相电压不平衡的计算方法:举个例子,机组额定使用电压为380V,所测三相电压分别为:A-B=386V;A-C=385;B-C=382V;即386-380=6、385-380=5,382-380=2。

三相电压不平衡=6÷380×100﹪= 1.6﹪,即为正常(三相电流不平衡计算方法相同)。

二、循环水系统的运行参数开机前应检查冷冻水、冷却水的进、出水的压差,应在 0.08Mpa~0.15Mpa 之间。

如进水压力是 0.4Mpa,其出水压力就应为 0.32Mpa~0.25Mpa 之间。

压差过小,说明机组水流量不够,这时,我们应检查水泵运行是否正常、各阀门开启是否正常、水系统是否有空气、水系统上过滤器(Y 格)是否堵塞等。

确认供水正常后,才能开机。

如供水不正常,开机后时间不长机组就会因“低蒸发温度”报警而保护性停机。

机组正常运行的过程中:·我们应注意观察冷冻水、冷却水的进、出水的温差,应在3℃~5℃之间。

如冷冻进水温度是 15℃,其出水温度就应为 12℃~10℃之间。

温差过小,说明机组热交换器热交换效果较差,这时,我们应检查水质是否正常、热交换管是否有脏堵和结垢现象等;温差过大,说明机组水流量不够,这时,我们应检查水泵运行是否正常、各阀门开启是否正常、水系统是否有空气、水系统上过滤器(Y 格)是否堵塞等。

时间不长机组就会因“低蒸发温度”报警而保护性停机。

·我们应注意观察冷冻水、冷却水的出水温度与蒸发器冷媒温度、冷凝器冷媒温度的温差,应不大于 2.5℃。

如冷冻水的出水温度是 10℃,蒸发器冷媒温度就应为 8℃~10℃之间;冷却水的出水温度是 30℃,冷凝器冷媒温度就应为 28℃~30℃之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中央空调系统简介随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。

中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。

冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。

冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。

冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。

冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。

热媒水在热水锅炉中被加热至60℃左右后送往风机盘管,与空气进行热交换降至55℃左右后,再返回到锅炉中加热。

热水和冷冻水共用一套管道系统。

1.中央空调系统特点中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。

大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。

2.冷冻水系统特点冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。

因此,对于冷冻水系统水处理的重点是控制设备的腐蚀及粘泥的产生。

3.冷却水系统特点冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。

含盐量上升后极易在热交换器的水侧形成水垢,垢的形成不仅使传热效率下降、制冷负荷增大,还会形成垢下腐蚀,造成水电浪费和缩短机组使用寿命。

冷却水系统的另一特点是保有水量小,极易浓缩,如掌握不好排污量和补水量,浓缩倍数波动较大,难以保证水处理效果。

因此,对于冷却水系统水处理的重点是控制结垢兼顾缓蚀。

中央空调系统为什么会有上面所讲的问题呢,主要是由于其媒介——水所造成的。

自然界中的水是怎样的?水在自然界中大量的存在,比较容易取得,价格便宜。

水的物理化学性质稳定,水的潜热大,这是水成为工业首选作为冷却介质或热载体的重要原因。

但自然界中的水并非纯净的物质,因为水是很好的溶剂,当它流过岩石、矿床和土壤时,就会有很多的盐类溶入其中。

空气中带入尘埃、有机物及其它们的分解产物,水中生长的物质,都将成为各种各样的杂质,溶入水中。

那么,溶入水中的盐类和杂质以离子形态存在的有阳离子:Ca2+、Mg2+、Na+、Fe2+、Zn2+、Cu2+、Mn2+、H+、NH4+等;以阴离子形态存在的有:CO32-、HCO3-、Cl-、SO42-、NO3-、HSiO3-、F-、H2PO4-、OH-、H2BO3-、HPO42-、HCO3-、NO2-、HS-等;以气态存在于水中的有:CO2、O2、N2、HN3、SO2、H2S、CH4、H2等;以悬浮物形式存在于水中的有粘土、无机的土壤污物、有机污物、有机废水、各种微生物;还有以胶体形式存在于水中的SiO2、Fe2O3、Al2O3、MnO2、植物色素、生长在水中的各种细菌和藻类。

人类可利用的淡水资源主要来自地表水(江河水、湖水)和地下水(井水),不同水源、不同地区、周围的不同环境和不同季节,自然界水中的各类杂质的品种和量有很大的差别。

中央空调系统中的垢是怎样产生的?自然水(地表水)经城市自来水厂处理后,绝大部分的悬浮物、胶体性杂质基本被清出水体,而溶于水中的阳离子和气体,仍存在于水中。

这样的水作为补充水加入中央空调外循环冷却水系统中,经热交换器进行热交换后,水温提高,经凉水塔曝气纯水被蒸发出去循环水逐渐被浓缩,水中二氧化碳的含量与碳酸盐硬度之间的平衡关系被破坏:Ca2++2HCO3-=CaCO3+CO2十H2OMg2++2HCO3-=Mg(OH)2+2CO2而碳酸盐在水中的溶解度随着水温的升高而降低,当水中碳酸盐由水中析出沉积在换热器水侧表面时,这就形成了垢。

垢的生成将影响热交换的正常进行,造成中央空调制冷能力下降,电耗量增加。

水垢的危害---降低制冷效果、增加电能消耗,严重时造成主机高压事故停机由于水中溶有大量碱土金属离子和碳酸氢根等,这些离子遇热后结合将生成不溶解的盐类,我们称之为水垢。

水垢的导热系数小于0.8,而冷凝器和蒸发器的紫铜管的导热系数为320,两者相差悬殊。

水垢将影响热传递,这会带来两个方面的问题,首先降低制冷效果,1毫米水垢将使制冷量降低20-40%;其次将使冷凝器压力升高,增大压缩机正背面压力差,导致电机负荷增加,多消耗电能。

1毫米水垢将多消耗电20-30%,水垢严重时将造成中央空调主机高压事故停机。

中央空调系统中设备腐蚀的原因?前面在介绍自然界中的水中含有的阴离子属于腐蚀性介质。

另外,水中的溶解氧的存在,它在水侧金属表面形成氧的浓差,产生电化学腐蚀。

如果水中还含有其它阴离子如氯离子、硫酸根离子都会造成金属的腐蚀,如果水系统中有不锈钢材料,水中存有高浓度的氯离子时将造成了不锈钢的局部腐蚀,严重的点蚀可造成设备穿孔。

腐蚀过程可表示为:Fe= Fe 2++2e1/2O2+H2O+2e =2OH-Fe2++2OH-=Fe(OH)2氢氧化亚铁极易氧化成红棕色的铁锈,这就是冷冻水出现红水的主要原因。

在循环水系统中,菌藻的滋生和死亡,与水中机械杂质混合成为粘泥如附着在管道和换热器表面将同垢一样影响热传导,同时给厌氧菌造成了生存的空间,将以铁为营养源加速设备的腐蚀进程。

反应如下:SO42-+ 8H++ 8e =S2-+ 4H2O + 能量(供细菌生存用)Fe2-+ S2-=FeS 黑色带臭味的腐蚀产物Fe2-+细菌→Fe3++能量(供细菌生存用)在中央空调的冷冻水系统,人们为了防止垢的产生,多采用软化水,但软化水中仍含有溶解氧,而且系统中还会不断溶解入空气这是造成冷冻水系统遭到腐蚀的原因。

腐蚀的危害---腐蚀设备和管道,严重时造成穿孔泄漏等重大停机事故。

空调系统的冷却,冷冻水未经处理有极强的腐蚀性,如将普通钢片或铁钉放入水中,几天后就会出现铁锈,放置时间越长则锈蚀越严重。

系统管道及设备内壁常因腐蚀造成锈渣脱落,甚至穿孔,脱落的锈渣会堵塞盘管,使空调效果下降;同时腐蚀的存在使设备的使用寿命大为缩短。

一旦腐蚀穿孔,水将进入氟利昂(使用氟利昂作为制冷剂的机组)时间长将生成盐酸和氢氟酸,造成严重的设备损害事故。

溴化锂机组由于是真空设备,并且溴化锂有强腐蚀性,因而更不允许泄漏。

据统计,未做水处理的系统,设备使用寿命缩短30-50%。

微生物藻类的危害---堵塞管道、阻碍水流动、降低热交换效率。

冷却塔的水温在32-37℃之间,比较适合微生物繁殖。

藻类、细菌和真菌快速繁殖,这些微生物分泌出大量粘液,将水中不溶性杂质粘结一起,附着于设备和管道的内表面,阻碍水的流动和热交换,多耗电能,造成高压运行为了解决中央空调系统诸多的问题,近几年来,在中央空调水系统包括外循环冷却水、冷冻水、采暖水推广应用物理法水处理技术已取得了很好的进展,中央空调机组、管线的结垢、腐蚀得到了很好的控制,对于确保中央空调使用寿命、降低能耗和长周期稳定运行发挥了很好的作用。

中央空调常用术语、计算公式及单位换算冷、热负荷:为了维持房间温度恒定,单位时间内需要供给房间的冷热量,夏季为冷负荷,冬季为热负荷,常用单位W或KW;制冷量:空调器进行制冷运行时,单位时间内,低压侧制冷剂在蒸发器中吸收的热量。

常用单位为W或KW;设备制冷量应大于设计负荷。

公称压力(PN):是在某温度下能长期稳定工作的耐压强度,bar试验压力(Ps):对制品进行强度试验的压力,指管道试压时的压力,一般为公称压力的1.5倍公称直径(DN):这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。

无缝钢管:Φ45x2.5, Φ76x3.5, Φ89x3.5, Φ108x4, Φ133x4, Φ159x4.5,外径x壁厚风冷:与冷凝器换热的介质为空气,用风冷代替水冷的冷却水,无冷却水系统。

水冷:与冷凝器换热的介质为水(冷却水系统)VRV:全称为Variable Refrigerant Volume系统,即制冷剂流量可变系统,它是在分体式空调机的基础上发展起来的。

冷媒与空气直接换热,没有冷却水系统。

扬程:单位重量液体通过泵所获得的能量叫扬程,近似为泵出口和入口压力差比热:不同物质升高同样温度时,其需的热量是不一样的,单位质量物体温度升高一度,所需要的热量。

水的热量为4.19kJ/ l kg . ℃ ,空气比热0.24kcal/ l kg . ℃ 。

性能系数:制冷(热)循环中产生的制冷(热)量与制冷(热)所耗功率之比为性能系数,制冷时称为能效比,用EER表示;制热时称为性能系数,用COP表示;冷却塔:借助空气使水得到冷却的专用设备,一般安装在楼房的顶部,在制冷、电力、化工等许多行业中,从冷凝器等设备中排出的冷却水,都是经过冷却塔冷却后循环使用的。

制冷剂:制冷剂即制冷工质,是制冷系统中完成制冷循环的工作介质,制冷剂在蒸发器内吸取被冷却的对象的热量而蒸发,在冷凝器内将热量传递给周围空气或水而被冷凝成液体。

制冷机借助制冷剂的状态变化,达到制冷的目的。

载冷剂:载冷剂是指在间接制冷系统中用以传送冷量的中间介质。

载冷剂在蒸发器中被制冷剂冷却后,送到冷却设备冷却,吸收被冷却物体或环境的热量,再返回蒸发器被制冷剂重新冷却,如此不断循环,以达到连续制冷的目的。

热泵:用人工的方法将低温区的热量移送到高温区,若转移热量是为了获得低于环境的温度需要,此种方法称为“制冷”;若为将低温区无用的热量移送到高温区成为用用的或用途更大的热量,此种方法称为“热泵”。

制冷和热泵原理是相同的,机械设备也基本相同,但由于使用目的不一样,热力参数、结构强度要求不同。

水环热泵:由分散布置的水源热泵机组、水环路系统、散热装置、辅助热源和控制系统组成的冷暖两用空调系统。

水环热泵系统具有调节控制灵,同时供冷供热,运行节能,施工简便等特点。

没有冷冻水系统,没有集分水器,没有机房。

水源热泵:水源热泵是一种利用地球表面或浅层水源(如地下水、河流和湖泊),或者是人工再生水源(工业废水、地热尾水等)的既可供热又可制冷的高效节能空调系统。

地源/水源/水环热泵空调都是是利用地球表面或浅层水源作为冷热源,将低品位热能转化为用于供热的高品位热能以及用作制冷时的冷却水的空调系统。

相关文档
最新文档