数学竞赛辅导系列专题(一)利用轴对称变换求最小值在初中数学竞赛中的应用举例

数学竞赛辅导系列专题(一)利用轴对称变换求最小值在初中数学竞赛中的应用举例
数学竞赛辅导系列专题(一)利用轴对称变换求最小值在初中数学竞赛中的应用举例

数学竞赛辅导系列专题(一)利用轴对称变换求最小值在初中数学竞赛中的应用举例

新课改下的数学教学要求教师“要创造性地使用教材,积极开发、利用各种教育资源为学生提供丰富多彩的学习素材;关注学生的个性差异,有效地实施差异教学,使每个学生都得到发展”。“对于学有余力并对数学有浓厚兴趣的学生,教师要为他们提供足够的材料,指导他们阅读,发展他们的数学才能。”

纵观近几年的全国各级数学竞赛,首先是紧扣教材和竞赛大纲,许多试题虽有一定难度,但难而不怪,灵活性强,高而可攀。其次是精心设计,题目新型。而且注重知识的典型性和迁移性,积极引导学生实现由知识到能力的过渡。因此,教师在教学过程中要努力帮助学生挖掘课本的教育资源,注重知识的延伸和迁移,通过一题多问、一题多解、多题一解等有效手段,培养学生的创新思维能力。让学生在学与练的过程中去体味奇妙的数学、学习和领略奥妙的数学;从而提高学习数学的兴趣、勤奋地去开垦数学。

本文试图从“利用轴对称性质求最小值”问题入手,在挖掘课本教育资源、注重多题一解、培养学生知识迁移能力方面作一些尝试与探索,与数学同行们交流,抛砖引玉。

(一)、课本原型:(七年级下册第196页)如图(1)所示,要在街道旁修

建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A,B到它的距

离之和最短?

解:如图(2)(£,只要画出A点关于直线L的对称点C,连结BC交直线L于P,

则P点就是所求。这时PA+PB=PC+PB为最小,(因为两点之间线段最短)。(证明:如

图(2 )②,在L上任取一点P i ,连结P i A , P i B , P i C ,因为

P i A+P i B=P i C+P i B>BC=PA+PB。这是根据三角形两边之和大于第三边,所以结论成立。)

(二)应用和延伸:例i、(七年级作业本题)如图(3),/ AOB内有一点P,在0A 和0B边上分别找出M、N,使△ PMN的周长最小。

解:如图(4),只要画出P点关于OB 0A的对称点P i, P2 ,连结P i、P2交OB 0A于

M N,此时△ PMN的周长PM+PN+MN i ff2为最小。(证明略)

例2、在图(i )中,若A到直线L的距离AC是3千米,B到直线L的距离BD是i 千米,并且CD的距离4千米,在直线L上找一点P,使PA+PB的值最小。求这个最小值。

解:如图(i)①所示,只要过A i点画直线L的平行线与BD的延长线交于H,在Rt △ ABH中,A i H=4千米,BH=4千米,用勾股定理求得AB的长度为4迈千米。即PA+PB的最

小值为 4 2 千米。

A

A

解:如图(6),因为菱形是轴对称图形,所以 BC 中点E 关于对角线BD 的对称点

E 一定落在AB 的中点 巳,只要连结 CE , CE 即为PC+PE 的最小值。这时三角形 CBE 是含有 300角的直角三角形,PC+PE=CE2 ...3 a 。所以选(D )。

2、( 2001年全国数学竞赛题)如图(

7),在直角坐标系 XOY 中,

解:如图(8),图只要画出点 M 点即为所求。点 M 的横坐标只要先

求出经过

PQ 两点的直线的解析式,( Y=2X-

(三)、迁移和拓展:

例 1、9(温州2003年中考题)如图(5),在菱形

ABCD 中,AB=4a,E 在 BC 上, EC=2a / BAD=120,点P 在BD 上,贝U PE+PC 的最小值是(

(A ) 6a , (B) 5a

(C) 4a ,

(D) 2

X 轴上的动点 M ( X , 值

0) 占 到定点P ( 5, 5)和到Q (2, M 的横坐标X=-

1)的距离分别为 MP 和MQ 那么当 MP+MQX 最小

(5,5)

4 I — 3 1 — 2 I — 1i ■

(2,1)

-1 O

-1

Y 6 | 5 L-

(2,1) Q

P (5,5)

-1 O

-1

1 :

i

Q1

P1

B

图(5) 图

(6)

Q 关于X 轴的对称点Q (2,

PQ 交X 于点

5),令Y=0,求得X=5/2。(也可以用勾股定理和相似三角形求出答案)。

例 3、求函数 Y= X 2 6X 10 + X 2 6X

解:方法(I )、把原函数转化为

Y=...(X 3)2 1 + . (X 3)2 52 ,因此可以理

解为在X 轴上找一个点,使它到点(3, 1 )和(-3 , 5)的距离之和最小。(解法同上一 题)。

方法(n ),如图(9),分别以 PM=( 3-X )、AM=1 为边和以 PN=( X+3)、BN=5

为边构建使(3-X ) 和(X+3)在同一直线上的两个直角△

是 PA= (X 3)2

1 和 PB=. (X 3)2

52

,因此,求Y 的最小值就是求 PA+PB 的最

小值,只要利用轴对称性质求出

(四)、思考与练习:

1、( 2002湖北黄岗竞赛题)如图(10),/ AOB=45,角内有一点 P, PO=10在角两 边上有两点 Q R (均不同于点O ),则△ PQR 勺周长最小值是 ----------------- 。(提示:画点 P 关于OA 的对称点P ,点P 关于OB 的对称点P 2,v / AOB=45,.?.A P 1OP 是等腰直角三角 形,RP2=10I 2 )。又问当厶PQR 周长最小时,/ QPR 勺度数= ----------- 。(100°)。

2、已知点 A (-2 , 1),点B (3, 4)。在 X 轴上求一点 P ,使得PA+PB 的值最小。这 个最小值是 --------------- 。(同例2)

3、(北京市竞赛题)如图(11),在矩形 ABCD 中,AB=20 cm, BC=10 cm,若在 AC AB 上各取一点 M N,使BM+MN 勺值最小,求这个最小值。(提示:要使 BM+M 的值最小,

应设法把折线 BM+MN1直,从而想到用轴对称性质来做。画出点

B 关于直线 A

C 的对称点

B,贝U BN 的长就是最小值;又因为 N 也是动点,所以,当 B 1N 丄AB 时这个值最小,利用勾 股定

34的最小值。

PAM △ PNB 两条斜边的长就

BA 的长,就是Y 的最小值。(6运)。

图(11)

B 图(12)

理和三角形面积公式可以求得这个最小值为16。初三的同学也可以用射影定理和面积公式求解。)

4、 (希望杯2001初二数学邀请赛试题),如图(12)在菱形ABCD 中,/ DAB=120, 点E 平分BC,点P 在BD 上,且PE+PC=1那么边长 AB 的最大值是--------------------- 。(因为当

2 -

PE+PC 最小时,AB=CD 达到最大,这个最大值是 3 )。

3

5、 (美国中学生竞赛题)如图(13),一个牧童在小河南 4英里处牧马,河水向正东 方流去,而他正位于他的小屋西 8英里北7英里处,他想把他的马牵到小河边去饮水,然

后回家,他能够完成这件事所走的最短距离是(

)(提示:画点 A 关于小河岸的对称

点A ,连结A i B 即为最短距离。)

(A ) 4+ .. 185 英里(B ) 16 英里

6、(新蕾杯竞赛题)如图(14),正方形 ABCD 勺边长为3,E 在BC 上,且BE=2 P 在BD 上,求PE+PC 的最小值。(与知识拓展例 1类似,因为点 C 和点A 关于直线BD 对 称,所以AE 是PC+PE 的最小值,这个值为.13 )。

7 、如图(15),在河湾处 M 点有一个观察站,观察员要从 M 点出发,先到 AB 岸,再 到CD 岸然后返回 M 点,则该船应该走的最短路线是 -------------- (先画图,再用字母表 示)。(提示:,同知识迁移题)

16), AB 是。0的直径,AB=2 0C 是。0的半径, OCL AB,点D 在AC 上,AD =2CD ,点P 是半径 0C 上一个动点,那么 AP+PD 的最小值是 —— ——。(只要找出点 D 关于半径0C 的对称点Di , AD 的长就是AP+PD 的最小值。因为△ ABD 是含有趣300角的直角三角形,所以这个值是

.3 )。

------------------ 1

.145

9、 求代数式 X 2 4X 13 + X 2 4X 6 的最小值。(一

V 4

2

10、 ( 2000年湖北省选拔赛试题)在直角坐标系中,有四个点

A (-8 , 3)、

B ( -4 ,

(C ) 17英里

(D )18英里

图(14)

8、(温州2001年中考题)如图( 小河

13)

B

E

图(16 )

5)、C (0, n)、D(m,0),当四边形ABCD的周长最短时,的值为------- - ——。(因

n

为A、B是定点且长度不变,只要使其它的三条线段的和最小,所以考虑用轴对称的方法将

BC CD AD这三条折线拉直。画点A关于X轴的对称点A i,点B关于Y轴的对称点B i,只要求出直线A i B i的函数解析式就可以求出点C和点D的坐标。)

(浙江、海盐、西塘中学杨孝华)

2004 、11、15.

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

利用轴对称求最短距离问题

利用轴对称求最短距离问题 基本题引入:如图(1),要在公路道a上修建一个加油站,有A,B两人要去加油站加油。加油站修在公路道的什么地方,可使两人到加油站的总路程最短? 你可以在a上找几个点试一试,能发现什么规律? 思路分析:如图2,我们可以把公路a近似看成一条直线,问题就是要在a上找一点M,使AM与BM的和最小。设A′是A的对称点,本问题也就是要使A′M与BM的和最小。在连接A′B的线中,线段A′B最短。因此,线段A′B与直线a的交点C的位置即为所求。 如图3,为了证明点C的位置即为所求,我们不妨在直线a上另外任取一点N,连接AN、BN、A′N。 因为直线a是A,A′的对称轴,点M,N在a上,所以AM= A′M,AN= A′N。 ∴AM+BM= A′M+BM= A′B 在△A′BN中, ∵A′B

初中数学竞赛专题培训(4):代数式的化简与求值

初中数学竞赛专题培训第四讲分式的化简与求值 分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值. 例1 化简分式: 分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多. =[(2a+1)-(a-3)-(3a+2)+(2a-2)] 说明本题的关键是正确地将假分式写成整式与真分式之和的形式. 例2 求分式 当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b), 可将分式分步通分,每一步只通分左边两项. 例3 若abc=1 ,求 分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法. 解法1 因为abc=1,所以a,b,c都不为零. 解法2 因为abc=1,所以a≠0,b≠0,c≠0. 例4 化简分式:

分析与解 三个分式一齐通分运算量大,可先将每个分式的分 母分解因式,然后再化简. 说明 互消掉的一对相反数,这种化简的方法叫“拆项相消”法, 它是分式化简中常用的技巧. 例5 化简计算(式中a ,b ,c 两两不相等): 似的,对于这个分式,显然分母可以分解因式为(a -b)(a -c),而分子又恰好凑成(a -b)+(a -c),因此有下面的解法. 解 说明 本例也是采取“拆项相消”法,所不同的是利用 例6 已知:x+y+z=3a(a ≠0,且x ,y ,z 不全相等),求 分析 本题字母多,分式复杂.若把条件写成 (x -a)+(y -a)+(z -a)=0,那么题目只与x -a ,y -a ,z -a 有关,为简化计算,可用换元法求解. 解 令x -a=u ,y -a=v ,z -a=w ,则分式变为 u 2+v 2+w 2 +2(uv+vw+wu)=0. 由于x ,y ,z 不全相等,所以u ,v ,w 不全为零,所以u 2 +v 2 +w 2 ≠0,从而有 说明 从本例中可以看出,换元法可以减少字母个数,使运算 过程简化. 例7 化简分式: 适当变形,化简分式后再计算求值. (x -4)2 =3,即x 2 -8x+13=0. 原式分子=(x 4 -8x 3 +13x 2 )+(2x 3 -16x 2 +26x)+(x 2 -8x+13)+10 =x 2 (x 2 -8x+13)+2x(x 2 -8x+13)+(x 2 -8x+13)+10

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛专题培训 -生活中的数学(2)

初中数学竞赛专题培训第三十讲生活中的数学(四)──买鱼的学问 鱼是人们喜欢吃的一种高蛋白食物,所以谁都希望买到物美价廉的鱼.假定现在商店里出售某种鱼以大小论价,大鱼A每斤1.5元,小鱼B每斤1元.如果大鱼的高度为13厘米,小鱼的高度为10厘米(图2-171),那么买哪种鱼更便宜呢? 有人可能觉得大鱼A和小鱼B高度之比为13∶10,差不了许多,而小鱼的价格却比大鱼便宜许多,因此,买小鱼比较合算.这种想法是合理的吗?我们还是用数学来加以分析吧! 在平面几何中,我们已经知道以下定理. 定理1 相似形周长的比等于相似比. 定理2 相似形面积的比等于相似比的平方. 例1 已知:△ABC∽△A′B′C′,并且AB=2c,BC=2a,AC=2b,A′B′=3c, B′C′=3a,A′C′=3b.求证:△ABC和△A′B′C′周长的比是2∶3(图2-172). 证△ABC的周长是 2a+2b+2c=2(a+b+c), △A′B′C′的周长是 3a+3b+3c=3(a+b+c), 所以△ABC和△A′B′C′的周长的比是 2(a+b+c)∶3(a+b+c)=2∶3. 例2 图2-173是两个相似矩形,如果它们的相似比是3∶4,求证:它们面积的比是32∶42. 证矩形ABCD的面积是3a·3b=32ab,矩形A′B′C′D′的面积是4a·4b=42ab,所以矩形ABCD和矩形A′B′C′D′的面积之比是 32ab∶42ab=32∶42. 从定理1和定理2,我们自然会想到:相似的两个立体的体积之比与它们的相似比有什么关系呢?为此,我们看下面的例子. 例3 图2-174是两个相似的长方体,它们的相似比为3∶5,求它们的体积之比. 解长方体(a)的体积是3a·3b·3c=33abc, 长方体(b)的体积是5a·5b·5c=53abc, 所以长方体(a)与长方体(b)的体积的比是 33abc∶53abc=33∶53 例4 图2-175是两个相似圆柱,它们的相似比为2∶3,求它们的体积之比. 解小圆柱的体积是 (2a)2π·2b=23a2bπ,大圆柱的体积是 (3a)2π·3b=33a2bπ,所以小圆柱与大圆柱的体积之比为23∶33. 定理3 相似形的体积之比,等于它的相似比的立方.

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

全国初中数学知识竞赛辅导方案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 全国初中数学知识竞赛辅导方案 王选民 为了在全国数学知识竞赛中取得优异成绩,将对学生辅导方案总结如下: 一、了解掌握优生的特点 一般我们选择参加竞赛的学生都是学优生,当我们与“优生”进行面谈时,应该清醒地认识到,他们能成为“优生”,是学生家长和老师共同教育的结果。尤其要看到这些“优生”的两重性:一方面,他们的行为习惯、学习习惯、学习成绩以及各种能力比一般学生在这个年龄容易出现的毛病外,也存在着他们作为老师的“好学生”、家长的“好孩子”所特有的一些毛病。 具体说来,“优生”一般具有以下特点: 1、思想比较纯正,行为举止较文明,自我控制的能力比较强,一般没有重大的违纪现象。 2、求知欲较旺盛,知识接受能力也较强,学习态度较端正,学习方法较科学,成绩较好。 3、长期担任学生干部,表达能力、组织能力以及其它工作能力都较强,在同学中容易形成威信。 4、课外涉及比较广泛,爱好全面,知识面较广。 5、由于智力状况比较好,课内学习较为轻松,因而容易自满,不求上进。 6、长期处于学生尖子的位置,比较骄傲自负,容易产生虚心。 7、有的“优生”之间容易产生互相嫉妒、勾心斗角的狭隘情绪和学习上的

不正当竞争。 8、从小就处在受表扬、获荣誉、被羡慕的顺境之中,因而他们对挫折的心理承受能力远不及一般普通学生。 以上几点,只是就一般“优生”的共性而,当然不一定每一个“优生”都是如此。 辅导优生的具体措施 1、创设能引导学优生主动参与的教育环境。 2、了解学生在兴趣、学习偏好、学习速度、学习准备以及动机等方面的情况。这些资料为教师制定活动和计划时的依据,也是“促进学生主动地、富有个性地学习的需要”。 3、为尖子设计学习方案。学优生学习新知识时,比其他学生花的时间少,他不需要很多的练习就已经理解新知识,因此,做的练习也少。让他们做那些已经理解的题目就很多难让学生体会到智力活动的乐趣。长此以往,反而可能在一定程度上降低学生对于智力生活的敏感性。教师应该备有不同层次介绍同一主题的资料,采用向学生布置分组作业的方法,从众多的方案和活动中选取与他们的知识、技能水平相当的项目,指定他们完成。 4、解决学优生心理问题:学优生在心理状态上,易产生骄气,居高临下,听不进半点批评,心理脆弱。在价值取向上,易产生唯我独尊,以自我为中心的个性倾向和价值取向,不把其他同学的感觉、好恶、需要放在一定的位置;在行为方式上,由于始终把自己当学优生,与一般同学不一样,束缚了自己,娱乐活动不愿参加,集体劳动怕吃苦。 针对这种状况,教学中应注意: 学优生学习成绩优异,但不能“一俊遮百丑”。在鼓励保持学习上的竞争姿态和上进好胜的同时,要创造条件和环境,磨练他们的意志,培养他们的创造能力,规范他们的行为意识。

(完整版)利用轴对称求最短距离问题

利用轴对称求最短距离问题 基本题引入:如图(1),要在公路道a上修建一个加油站,有A,B两人要去加油站加 油。加油站修在公路道的什么地方,可使两人到加油站的总路程最短? 使AM与BM的和最小。设A'是A的对称点,本问题也就是要使A M与BM的和最小。在连 接A B的线中,线段A B最短。因此,线段 A B与直线a的交点C的位置即为所求。 如图3,为了证明点C的位置即为所求,我们不妨在直线a上另外任取一点N,连接AN BN A No 因为直线a是A A'的对称轴,点M,N在a上,所以AM= A M,AN= A N。 ??? AM+BM= A M+BM= A B 在厶A BN中, ?/ A B< A N+BN ? AM+B< AN+BN 即AM+BMt小。 点评:经过复习学生恍然大悟、面露微笑,不一会不少学生就利用轴对称知识将上一道 中考题解决了。思路如下:②??? BC= 9 (定值),?△ PBC的周长最小,就是PB+ PC最小.由题意可知,点C关于直线DE的对称点是点A,显然当P、A B三点共线时PB+ PA最小?此时DP= DE PB+ PA= AB.由/ ADM/ FAE / DFA=Z ACB= 90°,得厶DAF^A ABC. EF// BC, 1 15 9 得AE= BE= AB= , EF= . ? AF: BC= AD:AB, 即卩 6 : 9 = AD:15. ? AD= 10. Rt△ ADF 2 2 2 9 25 25 中,AD= 10, AF= 6,「. DF= 8. ? DE= DF+ FE= 8+ =一. ???当x = 时,△ PBC的周长 2 2 2

数学竞赛辅导系列专题(一)利用轴对称变换求最小值在初中数学竞赛中的应用举例

数学竞赛辅导系列专题(一)利用轴对称变换求最小值在初中数学竞赛中的应用举例 新课改下的数学教学要求教师“要创造性地使用教材,积极开发、利用各种教育资源为学生提供丰富多彩的学习素材;关注学生的个性差异,有效地实施差异教学,使每个学生都得到发展”。“对于学有余力并对数学有浓厚兴趣的学生,教师要为他们提供足够的材料,指导他们阅读,发展他们的数学才能。” 纵观近几年的全国各级数学竞赛,首先是紧扣教材和竞赛大纲,许多试题虽有一定难度,但难而不怪,灵活性强,高而可攀。其次是精心设计,题目新型。而且注重知识的典型性和迁移性,积极引导学生实现由知识到能力的过渡。因此,教师在教学过程中要努力帮助学生挖掘课本的教育资源,注重知识的延伸和迁移,通过一题多问、一题多解、多题一解等有效手段,培养学生的创新思维能力。让学生在学与练的过程中去体味奇妙的数学、学习和领略奥妙的数学;从而提高学习数学的兴趣、勤奋地去开垦数学。 本文试图从“利用轴对称性质求最小值”问题入手,在挖掘课本教育资源、注重多题一解、培养学生知识迁移能力方面作一些尝试与探索,与数学同行们交流,抛砖引玉。 (一)、课本原型:(七年级下册第196页)如图(1)所示,要在街道旁修 建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A,B到它的距 离之和最短? 解:如图(2)(£,只要画出A点关于直线L的对称点C,连结BC交直线L于P, 则P点就是所求。这时PA+PB=PC+PB为最小,(因为两点之间线段最短)。(证明:如 图(2 )②,在L上任取一点P i ,连结P i A , P i B , P i C ,因为 P i A+P i B=P i C+P i B>BC=PA+PB。这是根据三角形两边之和大于第三边,所以结论成立。) (二)应用和延伸:例i、(七年级作业本题)如图(3),/ AOB内有一点P,在0A 和0B边上分别找出M、N,使△ PMN的周长最小。 解:如图(4),只要画出P点关于OB 0A的对称点P i, P2 ,连结P i、P2交OB 0A于 M N,此时△ PMN的周长PM+PN+MN i ff2为最小。(证明略) 例2、在图(i )中,若A到直线L的距离AC是3千米,B到直线L的距离BD是i 千米,并且CD的距离4千米,在直线L上找一点P,使PA+PB的值最小。求这个最小值。 解:如图(i)①所示,只要过A i点画直线L的平行线与BD的延长线交于H,在Rt △ ABH中,A i H=4千米,BH=4千米,用勾股定理求得AB的长度为4迈千米。即PA+PB的最 小值为 4 2 千米。 A A

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学竞赛专题辅导因式分解(一)

初中数学竞赛专题辅导因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

(完整版)利用轴对称求最短距离[1]

最短路径问题——和最小 【方法说明】 “和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小. l B A 【方法归纳】 ①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求. l A l ②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求. l B A l ③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点 C , D 即为所求. O B O B ④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DE +EF +CF 最小,则点E ,F 即为所求.

B O B O ⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求. l l ⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =1 4x 2)上的一点,点A (0,1)在y 轴正半轴.点P 在什么位置时PA +PB 最小?过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求. 1.(13广东)已知二次函数y =x 2-2mx +m 2-1. (1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.

利用轴对称模型求线段和的最小值

利用轴对称模型求线段和的最小值 近几年来,最小值问题成为中考命题的热点,其中有些问题的解决常用构建轴对称模型的方法。 学习目标:知识目标:掌握轴对称图形的做法和三角形三边的关系,根据问题建构数学模 型,解决实际问题。 能力目标:通过观察、分析、对比等方法,提高学生分析问题,解决问题的能力, 进一步强化分类归纳综合的思想,提高综合能力。 情感目标:通过自己的参与和教师的指导,享受学习数学的快乐,提高应用数学 的能力。 引例:例:如图(1),草原上两居民点A ,B 在笔直河流l 的同旁,一汽车从A 处出发到B 处,途中需要到河边加水,问选在何处加水可使行驶的路程最短?并在途中画出这一点。 分析:将这一问题转化为数学问题,即已知直线l 及l 同侧的点A 和点B ,在l 上确定一点C,使AC+BC 最小。 首先我们思考若点A 和B 点分别在直线l 的两侧,则点C 的位置应如何确定,根据两点之间线段最短,点C 应是与AB 直线l 的交点,如图(2),这就是说,设线段AB 交l 于点C ,点C /是直线上异于点C 的任意一点,总有AC+BC <AC /+BC /。因此,解决上述问题的关键是将点A (或点B )移至l 的另一侧(设点A 移动后的点为A /),且使A 、A /到直线l 上任意点的距离相等,利用轴对称可达到这一目的。 解:如图(3),作点A 关于直线l 的对称点A /,连接A /B 交l 于点C ,则点C 的位置就是汽车加水的位置,即汽车选在点C 处可使行驶的路程最短。 (1)A B A

总结:作点A 关于直线l 的对称点A ′,连结A ′B 交直线l 于点C ,那么点C 就是所求作的点。轴对称在本题中的主要作用是将线段在保证长度不变的情况下改变位置,要注意体会轴对称在这方面的应用。以此作为模型我们可以解决下列求最小值的问题。 例1. 如图4,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是________。 图4 分析:首先分解此图形,构建如图5模型,因为E 、B 在直线AC 的同侧,要在AC 上找一点P ,使PE+PB 最小,关键是找出点B 或E 关于AC 的对称点。如图6,由菱形的对称性可知点B 和D 关于AC 对称,连结DE ,此时DE 即为PE+PB 的最小值, 图5 图6 由∠BAD=60°,AB=AD ,AE=BE 知, 3 22 3DE =?= 故PE+PB 的最小值为 3 。 跟踪练习1: 如图7,已知点A 是半圆上一个三等分点,点B 是弧AN 的中点,点P 是半径

相关文档
最新文档