指数对数幂函数总结归纳

指数对数幂函数总结归纳
指数对数幂函数总结归纳

指数与指数幂的运算 【学习目标】

1.理解有理指数幂的含义,掌握幂的运算.? 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点.

3.理解对数的概念及其运算性质.? 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理。

5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质。

6.知道指数函数

与对数函数互为反函数(a>0,a≠1)。

【要点梳理】 要点一、幂的概念及运算性质

1.整数指数幂的概念及运算性质

2。分数指数幂的概念及运算性质

为避免讨论,我们约定a>0,n,m∈N *,且m n

为既约分数,分数指数幂可如下定义: 1n n

a a =()m

n m m n n a a a == -1

m

n m

n a a =

3.运算法则

当a >0,b>0时有:

(1)n m n m a

a a +=?; (2)()mn n m a a =;

(3)()0≠>=-a n m a a

a n m n m ,; (4)()m m m

b a ab =。

要点诠释:

(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;

(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换。如2442)4()4(-≠-;

(3)幂指数不能随便约分。如2

142)4()4(-≠-。 要点二、根式的概念和运算法则

1.n 次方根的定义:

若xn =y (n ∈N *

,n〉1,y ∈R ),则x 称为y的n次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ;

n 为偶数时,正数y 的偶次方根有两个,记为n y ±;负数没有偶次方根;零的偶次方根为零,00n =。 2.两个等式

(1)当1n >且*n N ∈时,n n a a =;

(2)???=)(||)(,为偶数为奇数n a n a a n n

要点诠释:

①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误.

②指数幂的一般运算步骤

有括号先算括号里的;无括号先做指数运算.

负指数幂化为正指数幂的倒数.

底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如

),先要化成假分数(如15/4),然后要尽可能用幂的形式表示,便于用指数运算性质.

在化简运算中,也要注意公式:

a 2-

b 2=(a -b )(a +b ),a 3-b3=(a -b )(a 2+ab +b2),a 3+b 3=(a+b )(a 2-ab +b 2),

(a ±b )2=a2±2a b+b 2,(a ±b )3=a 3±3a2b +3ab 2±b 3,的运用,能够简化运算.

指数函数及其性质

【要点梳理】

要点一、指数函数的概念:

函数y=a x (a〉0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R.

要点诠释:

(1)形式上的严格性:只有形如y =a x(a 〉0且a ≠1)的函数才是指数函数.像23x y =?,12x y =,31x y =+等函数都不是指数函数.

(2)为什么规定底数a 大于零且不等于1:

①如果0a <,则对于一些函数,比如(4)x y =-,当11,,24x x =

=???时,在实数范围内函数值不存在. ②如果1a =,则11x y ==是个常量,就没研究的必要了。而a=0时y=0没意义.

要点二、指数函数的图象:

y=a x

0

a>1时图象 -—-—

图象

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论. (2)指数函数x y a =与1x

y a ??= ???

的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律

① x y a = ②x y b = ③x y c = ④x y d =

则:0<b <a <1

观察可知,底数越接近1,图象曲线越平缓,底数越远离1,图象曲线越陡,

而且指数函数都过点(0,1)

又即:x∈(0,+∞)时,x x x x b a d c <<< (底大幂大)

x ∈(-∞,0)时,x x x x b a d c >>>(底小幂小)

要点四、指数式大小比较方法

(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较。

(2)中间量法:

(3)分类讨论法

(4)比较法

比较法有作差比较与作商比较两种,其原理分别为:

①若0A B A B ->?>;0A B A B -

②当两个式子均为正值的情况下,可用作商法,判断

1A B >,或1A B <即可. 对数及对数运算

【要点梳理】 要点一、对数概念

1.对数的概念

如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b 。其中a 叫做对数的底数,N 叫做真数。

要点诠释:

对数式log a N=b 中各字母的取值范围是:a>0?且a ≠1, N 〉0, b ∈R.

2。对数()log 0a N a >≠,且a 1具有下列性质:

(1)0和负数没有对数,即0N >;

(2)1的对数为0,即log 10a =;

(3)底的对数等于1,即log 1a a =。

3.两种特殊的对数

通常将以10为底的对数叫做常用对数,N N lg log 10简记作。

以e (e 是一个无理数, 2.7182e =???)为底的对数叫做自然对数, log ln e N N 简记作.

要点二、对数的运算法则

已知()log log 010a a M N a a M N >≠>,且,、

(1) 正因数的积的对数等于同一底数各个因数的对数的和;

()log log log a a a MN M N =+

(2) 两个正数的商的对数等于被乘数的对数减去除数的对数;

log log log a a a M M N N

=- (3) 正数的幂的对数等于幂的底数的对数乘以幂指数;

log log a a M M αα=

要点诠释:

(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(—5)=l og 2(-3)+lo g2(—5)是不成立的,因为虽然lo g2(—3)(-5)是存在的,但lo g2(—3)与log 2(-5)是不存在的.

(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的: 错误1:l og a (M ±N)=log a M ±l oga N,

错误2: (M·N)=log a M·log a N ,

要点三、对数公式

1.对数恒等式:

log log a b N a a N a N N b ?=?=?=?

2.换底公式

最新指数对数幂函数知识点总结

高考数学(指数、对数、幂函数)知识点总结2 整理人:沈兴灿 审核人:沈兴灿 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1) (0,,)r s r s a a a a r s R +?=>∈. (2)()(0,,)r s rs a a a r s R =>∈.(3)()(0,0,)r r r ab a b a b r R =>>∈. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ;规律:底数a 保持不变 3注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化。规律:底数a 保持不变 幂值 真数 (二)对数的运算性质 (1)负数和零没有对数; (2)1的对数是0,即01log =a (a >0,且a ≠1);特殊地:ln10= (3)底的对数是1,即1log =a a (a >0,且a ≠1);特别地:ln 1e = (三)对数运算法则。若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1log = (5)对数的换底公式 log log log m a m N N a = (0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). a b b a log 1 log = (a >0,且 b >0). (6)指数恒等式:a N a N l o g = (由②N log b ①N a a b ==,,将②代入①得a N a N l o g =)

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

高考数学专题复习 指数对数幂函数

2015高考数学专题复习:指数函数 一,定义: 函数 叫做指数函数, R x ∈ 指出下列哪些是指数函数 (1)x y 4= (2)4 x y = (3)x y 4-= (4)x y )4(-= (5)x y π= (6)24x y = (7)x x y = (8) )121 ()12(≠> -=a a a y x 且. 填空:1.=?n m a a 2.=n a a 3. ()=m ab 4.=-m a = 5.=m n a 6.=- m n a 7.() =n m a = 8.= ? ? ? ??-m b a ()x a x f =,则有()()=?n f m f ()()=n f m f ()()=n m f 指出下列函数所经过象限及值域: (1)131 -=+x y (2)21 - =-x e y (3)23.0-=x y ()14+=x y π 练习: 1.下列命题中,正确的是 ( ) A .函数x y 2=,当0y B.函数x y 2=,当0>x 时,10<x 时,1>y D.函数x y )21(=,当0>x 时,10<

(4)91 32 2≥-x (5)124 32<--x x (6)3 3135≤?? ? ??-x 4.计算: (1)=3 28 (2)=- 2 1 25 (3)=??? ??-5 21 (4)=??? ??3 5 278 (5) 3 264- (6) =??32 3a a a (7) = ??2 3 3 2 a a a a (8) 2 133 2 3 121 )()1.0()4()4 1(---- ?b a ab = ( ) ()2 14 06 3 4 3383213212015238116--??? ??--+-+?+ ?? ? ??--= ==-+x x 10,25102则 (11) ==-x x 10,25102则 5.已知10<a ,且1≠a )的图像必经过点 9.(1)函数()x f 对任意实数满足()()()y x f y f x f +=?,且()643=f ,求)0(f ,)1(f ,)3(-f 的值. (2)函数)(x f 满足:对任意的实数b a ,,都有,2)1(),()()(=?=+f b f a f b a f 且则)3()0(f f += 10.作出函数 x y 3=的图像并求值域 若函数 ()11x m f x a =+ -是奇函数,则m =__________ 12.若函数 )10(1)(≠>-+=a a b a x f x 且的图像经过第二、三、四象限,则一定有 ( ) A .010><>b a 且 C .010<<b a 且 13.函数b x a x f -=)(的图像如图,其中b a ,为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

指数对数幂函数总结归纳

指数与指数幂的运算 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数 与对数函数互为反函数(a >0,a ≠1). 【要点梳理】 要点一、幂的概念及运算性质 1.整数指数幂的概念及运算性质 2.分数指数幂的概念及运算性质 为避免讨论,我们约定a>0,n ,m ∈N *,且 m n 为既约分数,分数指数幂可如下定义: 3.运算法则 当a >0,b >0时有: (1)n m n m a a a +=?; (2)()mn n m a a =; (3)()0≠>=-a n m a a a n m n m ,; (4)()m m m b a ab =. 要点诠释: (1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算; (2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-; (3)幂指数不能随便约分.如2 142 )4()4(-≠-. 要点二、根式的概念和运算法则 1.n 次方根的定义: 若x n =y(n ∈N * ,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ; n 为偶数时,正数y 的偶次方根有两个,记为n y ±;负数没有偶次方根;零的偶次方根为零,记为00n =. 2.两个等式 (1)当1n >且*n N ∈时, ()n n a a =; (2)???=)(||) (,为偶数为奇数n a n a a n n 要点诠释: ①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误. ②指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如 ),先要化成假分数(如15/4),

指数、对数及幂函数

指数函数、对数函数及幂函数 Ⅰ.指数与指数函数 1.指数运算法则:(1)r s r s a a a +=; (2)()s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)1 m n n m a a - = (6),||,n n a n a a n ?=? ?奇偶 2. 指数函数: 【基础过关】 类型一:指数运算的计算题 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

此类习题应牢记指数函数的基本运算法则,注意分数指数幂与根式的互化,在根式运算或根式与指数式混合运算时,将根式化为指数运算较为方便 1、526+的平方根是______________________ 2、 已知2=n a ,16=mn a ,则m 的值为………………………………………………( ) A .3 B .4 C .3 a D .6 a 3、化简 22 1 () 2b a b a ab b b a +---+-的结果是………………………………( ) A 、a a b -- B 、a b a -- C 、b a a -- D 、2b b a a +-- 4、已知0.001a =,求:413 3 3 223 33 8(12)24a a b b a a a b b -÷-++=_________________ 5、已知1 3x x -+=,求(1)1 12 2 x x - +=________________(2)332 2 x x -+=_________________ 6、若22y y x x -+=,其中1,0x y ><,则 y y x x --=______________ 类型二:指数函数的定义域、表达式 指数函数的定义域主要涉及根式的定义域,注意到负数没有偶次方根;此外应牢记指数函数 的图像及性质 函数) (x f a y =的定义域与)(x f 的定义域相同 1、若集合A={ 113x x y -= },B={ 21},x s x A B =-?= 则____________________ 2、如果函数()y f x =的定义域是[1,2],那么函数 1(2)x y f -=的定义域是________ 3、下列函数式中,满足f(x+1)=1 2f(x)的是……………………………………………( )

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

指数函数对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

指数对数幂函数知识点汇总

指数函数、对数函数、幂函数单元复习与巩固 撰稿:刘杨审稿:严春梅责编:丁会敏 一、知识框图 二、目标认知 学习目标 1.指数函数 (1)通过具体实例,了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算. (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函 数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 2.对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅 读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函 数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数 的单调性与特殊点; 3.反函数 知道指数函数与对数函数互为反函数(a>0,a≠1). 4.幂函数 (1)了解幂函数的概念;

(2)结合函数的图象,了解它们的变化情况. 重点 指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 难点 指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质. 三、知识要点梳理 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0. 式子叫做根式,叫做根指数,叫做被开方数. 2.n次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:

指数、对数函数公式及练习

高加索教育指数函数和对数函数总结练习典藏版 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,log 在a >1及 01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的 反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的认识。 图象特征与函数性质: 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10 22 2--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,

如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ?13也由关于y 轴的对 称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以 a 为底N 的对数,记作 b N a =log (a 是底数,N 是真 数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零或负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算:() 3 13 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+, ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1 3、对数函数: 定义:指数函数y a a a x =>≠()01且的反函数 y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,, y x =lg 的图象的认识。 图象特征与函数性质: (1)所有对数函数的图象都过点(1,0),但是y x =log 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时, y x =log 2的图象在y x =lg 的图象上方;而01<;log .lg .20101<。 (2)y x =log 2的图象与y x =log 12 的图象关于x 轴对称。

对数及指数、对数、幂函数

函数(2)学案 主备人:_________ 编号:___005______ 【本课概论】 1、对数的定义:在方程N =x a 中,已知底数和幂,定义指数N log a x = 2、指数函数x a x f =) (,对数函数x x f a log )(=,幂函数a x x f =)( 【概念应用】 1、利用对数的降次特征化简大数据运算。 2、利用指数函数、对数函数和幂函数刻画数学模型。 【知识点及习题剖析】 对数 1、对数的定义与转化。 在N log a x =中,a 叫做底数,N 叫做真数,该式读作“x 等于N 以a 为底的对数” 其中a>0且a ≠1,真数N>0(若N=0或N<0则无意义) 指数式N =x a 与对数式N log a x =可相互转化。 例:将指数式64 1 26 = -,对数式416log 2 1-=分别转为对数式和指数式。 解:①6641 log 2-= ②16214 =??? ? ??- 剖析:指数式和对数式底数相等,真数与幂相等,指数与对数相等,不要搞混。 2、对数的运算法则(请自行用对数的定义推导)。 推导过程: 公式:①MN N M a a a log log log =+ ②N M N M a a a log log -log = ③M n M a n a log log = n M M a a log log n = ④x a a x a x a ==log log

例1:求 125log 3 log 30log 3 1022+-的值。 解:由公式②④③⑤得 原式=310log 3)5log 2(log 35log 310 log 1 3101010102==+=+? 剖析:合理运用公式。记住从对数里提为降次,放到对数里为升次。 *例2(应用):已知5.145.23170log ,2416777216log 22== 求 5.2317016777216 的近似值。 解:5.95.14245 .2317016777216 log 2 =-=, 3.7144.110002 225.2317016777216105.9=≈==(实际724左右,误差2%以内) 剖析:合理运用对数及编制好的对数表可以极大地简化问题。 3、常用对数与自然对数。 定义:M M 10log lg =,称为常用对数。 M M e log ln =,称为自然对数,其中自然对数的底数e=2.718281828459…… 例1:求5100lg 解:5 2 5 100lg 100lg 5== 剖析:lg 和ln 只是一种简写的记法,对数公式完全可以套用。 例2:计算50lg 2lg )5(lg 2 ?+ 解: 1 2lg 5lg 2lg )5lg 2(lg 5lg 2lg 5lg 2lg )5(lg )15(lg 2lg )5(lg 原式22=+=++?=+?+=+?+= 剖析:遇到与lg 有关的问题,想尽一切办法将真数靠近10的幂(尤其是看到2和5)。 注意辨别:!15lg 2lg ,15lg 2lg ≠?=+

指数函数、对数函数、幂函数教案

一、指数函数 1.形如(0,0)x y a a a =>≠的函数叫做指数函数,其中自变量是x ,函数定义域是R ,值域是(0,)+∞. 2.指数函数(0,0)x y a a a =>≠恒经过点(0,1). 3.当1a >时,函数x y a =单调性为在R 上时增函数; 当01a <<时,函数x y a =单调性是在R 上是减函数. 二、对数函数 1. 对数定义: 一般地,如果a (10≠>a a 且)的b 次幂等于N , 即N a b =,那么就称b 是以a 为底N 的对数,记作 b N a =log ,其中,a 叫做对数的底数,N 叫做真数。 着重理解对数式与指数式之间的相互转化关系,理解,b a N =与log a b N =所表示的是,,a b N 三个量之间的同一个关系。 2. 对数的性质: (1)零和负数没有对数;(2)log 10a =;(3)log 1a a = 这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。 3. 两种特殊的对数是:①常用对数:以10作底 10log N 简记为lg N ②自然对数:以e 作底(为无理数),e = 28…… , log e N 简记为ln N . 4.对数恒等式(1)log b a a b =;(2)log a N a N = 要明确,,a b N 在对数式与指数式中各自的含义,在指数式b a N =中,a 是底数,b 是指数,N 是幂;在对数式log a b N =中,a 是对数的底数,N 是真数,b 是以a 为底N 的对数,虽然,,a b N 在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求 对数log a N 就是求b a N =中的指数,也就是确定a 的多少次幂等于N 。 三、幂函数 1.幂函数的概念:一般地,我们把形如y x α =的函数称为幂函数,其中x 是自变量,α是

指数对数幂函数知识点总结

指数对数幂函数知识点总 结

篇一:指数、对数、幂函数知识点 指数、对数、幂函数知识归纳 知识要点梳理 知识点一:指数及指数幂的运算1.根式的概念 的次方根的定义:一般地,如果 ; 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0.式子 叫做根式,叫做根指数,叫做被开方数. ; ,那么叫做的次方根,其中 2.n次方根的性质:(1)当为奇数时, ; (2)当为偶数时, 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:(1)(2)(3) 知点二:指数函数及其性质1.指数函数概念:一般地,函数变量,函数的定义域为 . 叫做指数函数,其中是自 1.(2013·北京高考理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)= ( ) A.ex+1 B.ex-1 C.e-x+1 D.e-x-1 2.(2013·上海高考文科·T8)方程 3.(2013·湖南高考理科·T16)设函数 f(x)?ax?bx?cx,其中c?a?0,c?b?0. 9x

的实数解为. ?1?3x 3?1 且a=b?,(1)记集合M??(a,b,c)a,b,c不能构成一个三角形的三条边长, 则(a,b,c)?M所对应的f(x)的零点的取值集合为____. (2)若a,b,c是?ABC的三条边长,则下列结论正确的是. (写出所有正确结论的序号) ①?x????,1?,f?x??0; ②?x?R,使得ax,bx,cx不能构成一个三角形的三边长;③若?ABC为钝角三角形,则?x??1,2?,使f?x??0. 知识点三:对数与对数运算1.对数的定义(1)若叫做底数, 叫做真数. ,则叫做以为底 的对数,记作 , (2)负数和零没有对数. (3)对数式与指数式的互化:2.几个重要的对数恒等式: , , . . 3.常用对数与自然对数: 常用对数: ,即 ;自然对数: ,即 (其中 …). 4.对数的运算性质如果 ①加法:

对数函数公式.pdf

指数函数和对数函数 y a a a x =>≠01且定义域为R ,底数是常数,指数是自变量。a 必须a a >≠01且。 如果 a N a a =>≠()01且,那么数 b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对 数式。)由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在 求35x =中的x ,化为对数式x =log 35即成。 对数恒等式:由a N b N b a ==()log ()12a N a N log =对数的性质:①负数和零没有对数; ②1的对数是 零; ③底数的对数等于1。对数的运算法则: ()() log log log a a a MN M N M N R =+∈+ , ()log log log a a a M N M N M N R =?∈+,()() log log a n a N n N N R =∈+ () log log a n a N n N N R =∈+1 3、对数函数:定义:指数函数y a a a x =>≠()01且的反函数y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,,y x =lg 的图象的认识。:

4、对数换底公式: log log log log (.)log b a a n e g N N b L N N e N L N N = ===其中…称为的自然对数称为常数对数 27182810 由换底公式可得: L N N e N N n = ==lg lg lg ..lg 04343 2303 由换底公式推出一些常用的结论: (1) log log log log a b a b b a b a = =11或· (2)log log a m a n b m n b = (3)log log a n a n b b = (4)

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

相关文档
最新文档