集成电路封装与测试_毕业设计论文

集成电路封装与测试_毕业设计论文
集成电路封装与测试_毕业设计论文

毕业设计(论文)集成电路封装与测试

摘要

IC封装是一个富于挑战、引人入胜的领域。它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。

媒介传输与检测是CPU封装中一个重要环节,检测CPU物理性能的好坏,直接影响到产品的质量。本文简单介绍了工艺流程,机器的构造及其常见问题。

关键词:封装媒介传输与检测工艺流程机器构造常见问题

Abstract

IC packaging is a challenging and attractive field. It is the integrated circuit chip production after the completion of an indispensable process to work together is a bridge device to the system. Packaging of the production of microelectronic products, quality and competitiveness have a great impact. Under the current popular view of the international community believe that the overall cost of microelectronic devices, the design of a third, accounting for one third of chip production, packaging and testing and also accounted for a third, it is There are one-third of the world. Packaging research at the global level of development is so rapid, and it faces the challenges and opportunities since the advent of electronic products has never been encountered before; package the issues involved as many as broad, but also in many other fields rare, it needs to process from the material, from inorganic to polymers, from the calculation of large-scale production equipment and so many seem to have no mechanical connection of the concerted efforts of the experts is a very strong comprehensive new high-tech subjects .

Media transmission and detection CPU package is an important part of testing the physical properties of the mixed CPU, a direct impact on product quality. This paper describes a simple process, the structure of the machine and its common problems.

Keyword: Packaging Media transmission and detection

Technology process Construction machinery Frequently Asked Questions

目录

第一章引言 (5)

1.1集成电路封装定义和分类 (5)

1.2集成电路的封装技术的发展 (7)

第二章封装测试流程概述 (13)

2.1封装 (13)

2.2测试 (14)

2.3 FINISH (14)

第三章媒介传输与检测设备 (15)

3.1适用范围 (15)

3.2流程要求 (16)

3.2.1流程说明 (19)

3.2.2所需设备 (20)

3.2.3所需物料 (20)

3.2.4设施要求 (20)

3.2.5工艺、设备和产品参数 (21)

3.3设备说明 (23)

3.3.1设备结构 (23)

3.3.2设备控制 (31)

3.3.3设备启动与停机 (35)

3.4常见问题..................................... 错误!未定义书签。

3.4.1常见问题处理 (38)

第四章结论 (39)

谢辞 (40)

第一章引言

1.1集成电路封装定义和分类

IC封装是一个富于挑战、引人入胜的领域。它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。

什么是集成电路封装 (electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在最初的微电子封装中,是用金属罐 (metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。电子封装的类型也很复杂。从使用的包装材料来分,我们可以将封装划分为金属封装、陶瓷封装和塑料封装;从成型工艺来分,我们又可以将封装划分为预成型封装

(pre-mold)和后成型封装(post-mold);至于从封装外型来讲,则有SIP(single in-line package)、DIP(dual in-line package)、PLCC(plastic-leaded chip carrier)、PQFP(plastic quad flat pack)、SOP(small-outline package)、TSOP(thin small-outline package)、PPGA(plastic pin grid array)、PBGA(plastic ball grid array)、CSP (chip scale package)等等;若按第一级连接到第二级连接的方式来分,则可以划分为PTH (pin-through-hole)和SMT (surface-mount-technology)二大类,即通常所称的插孔式(或通孔式)和表面贴装式

1.2集成电路的封装历程

从80年代中后期开始电子产品正朝着、便携式,小型化、网络化和多媒体化方向发展,这种市场需求。对电路组装技术提出了相应的要求:单位体积信息的提(高密度化)单位时间处理速度的提高(高速化)为了满足这些要求:势必要提高电路组装的功能密度,这就成为了促进蕊片封装技术发展的最重要的因素。

一、快过时的PDIP/SOP/QFP封装

数十年来,芯片封装技术一直追随着lC的发展而发展,一代IC就有相应一代的封装技术相配合.而SMT(Surface Mount Tectlfqology,表面组装技术)的发展.更加促进芯片封装技术不断达到新的水平。六、七十年代的中、小型规模IC,曾大量使用T0型封装,后来又开发出DIP、PDIP(如图1).并成为这个时期的主导产品形式;

八十年代出现了SMT。相应的lC封装形式开发出适于表面贴装短引线或无引线的LCCC、PLcC、SOP等结构。在此基础上,经十多年研制开发的QFP(Quad Flat Package,扁平封装)不但解决了LSl的封装问题。而且适于使用SMT在PCB或其他基板上表面贴装。使QFP终于成为SMT主导电子产品并延续至今(图2)。

QFP四面有欧翘状引脚,I/O引线数要比两面有欧翘状引脚SOP多得多。

为了适应电路组装密度的进一步提高。QFP的引脚间距目前已从1.27mm

发展到了O 3ram。由于引脚间距不断缩小。I/0数不断增加。封装体积也不断加大,给电路组装生产带来了许多困难,导致成品率下降和组装成本的提高。

另方面由于受器件引脚框架加工精度等制造技术的限制.0 3mm已是QFP

引脚间距的极限,这都限制了组装密度的提高。0.5mm引脚间距、304条引脚的QFP已经是目前电子封装生产所能制造QFP封装的最大值.若要容纳更多的引脚,只有寻找更新的封装技术手段.种种迹象表明QFP封装的发展已走到了尽头。

二、现在热用的BGA/CSP/QFN封装

技术的发展绝不会因为上述困难就停滞不前,于是一种先进的芯片封装BGA(Ball Grid Array.球栅阵列)出现来应对上述挑战。它的I/O引线以圆形或柱状焊点按阵列形式分布在封装下面.引线间距大,引线长度短,这样BGA消除了精细间距器件中由于引线而引起的共面度和翘曲的问题。BGA技术的优点是可增加I/O数和间距,消除QFP技术的高I/0数带来的生产成本和可靠性问题。如图3所示的NVIDIA公司最新的GeForce图形芯片(GPU)体现了当前工程技术的最高成就,相信看到芯片照片上那1144个焊球的人都会惊叹不已。BGA一出现便成为CPU、图形芯片、主板上南/北桥芯片等高密度、高性能、多引脚封装的最

佳选择。

概括起来,和QFP相比,BGA的优点主要有以下几点:

(1)I/O引线间距大(如1.O,1.27毫米),可容纳的I/O数目大(如1.27毫米间距的BGA在25毫米边长的面积上可容纳350个I/O,而O.5毫米间距的QFP在40毫米边长的面积上只容纳304个I/O)。

(2)封装可靠性高(不会损坏引脚)。焊点缺陷率低(<1ppm/焊点),焊点牢固。

(3)管脚水平面同一性较QFP容易保证,因为焊锡球在溶化以后可以自动补偿芯片与PCB之间的平面误差。

(4)回流焊时,焊点之间的张力产生良好的自对中效果,允许有50%的贴片精度误差。

(5)有较好的电特性,由于引线短,导线的自感和导线间的互感很低,频率特性好。

(6)能与原有的SMT贴装工艺和设备兼容。原有的丝印机、贴片机和回流焊设备都可使用。

BGA的兴起和发展尽管解决了QFP面临的困难。但它仍然不能满足电子产品向更加小型、更多功能、更高可靠性对电路组件的要求,也不能满足硅集成技术发展对进一步提高封装效率和进一步接近芯片本征传输速率的要求,所以更新的

封装CSP(Chip Size Package.芯片尺寸封装)又出现了。它的英文含义是封装尺寸与裸芯片相同或封装尺寸比裸芯片稍大。日本电子工业协会对CSP规定是芯片面积与封装尺寸面积之比大于80%。CSP与BGA结构基本一样,只是锡球直径和球中心距缩小了、更薄了,这样在相同封装尺寸时可有更多的I/0数,使组装密度进一步提高。可以说CSP是缩小了的BGA。图4展示的是行业领先内存厂商K_flgmax生产的基于CSP封装技术的内存芯片。

CSP之所以受到极大关注,是由于它提供了比BGA更高的组装密度。而比采用倒装片的板极组装密度低。但是它的组装工艺却不像倒装片那么复杂,没有倒装片的裸芯片处理问题,基本上与SMT的组装工艺相一致,并且可以像SMT那样进行预测和返工。正是由于这些无法比拟的优点,才使CSP得以迅速发展并进入实用化阶段。目前日本有多家公司生产CSP。而且正越来越多地应用于移动电话、数码录像机、笔记本电脑等产品上。从CSP近几年的发展趋势来看,CSP将取代QFP 成为高I/O引线IC封装的主流。

近几年来,QFN封装(Quad Flat No—lead,方形扁平无引脚封装)由于具有良好的电和热性能、体积小、重量轻,其应用正在快速增长。采用微型引线框架的QFN封装称为MLF封装(Micro Lead Frame一微引线框架),QFN封装和CSP(Chip Size Package,芯片尺寸封装)有些相似,但元件底部没有焊球。封装底部中央位置有一个大面积裸露焊盘用来导热,围绕大焊盘的封装外围四周有实现电气连接的导电焊盘,如图5所示。由于QFN封装不像传统的SOIC与TSOP封装那样具

有鸥翼状引线,内部引脚与焊盘之间的导电路径短,自感系数以及封装体内布线电阻很低,所以它能提供卓越的电性能。此外,它还通过外露的引线框架焊盘提供了出色的散热性能,该焊盘具有直接散热通道,用于释放封装内的热量。通常将散热焊盘直接焊接在电路板上,并且PCB中的散热过孔有助于将多余的功耗扩散到铜接地板中,从而吸收多余的热量。由于体积小、重量轻,加上杰出的电性能和热性能,这种封装特别适合任何一个对尺寸、重量和性能都有要求的应用。我们以32引脚QFN与传统的28引脚PLCC封装相比为例,面积(5mm×5mm)缩小了84%,厚度(0.9mm)降低了80%,重量(0.06g)减轻了95%,电子封装寄生效应也降低了50%。所以非常适合应用在手机、数码相机、PDA以及其它便携小型电子设备的高密度印刷电路板上。图6是一个24引脚QFN与一枚硬币尺寸的比较。

三、以后的封装-MCM封装。

为了适应目前电路组装高密度要求,芯片封装技术的发展正日新月异,各种新技术、新工艺层出不穷。最新出现的CSP更是使裸芯片尺寸与封装尺寸基本相近,这样在相同封装尺寸时可有更多的I/0数。使电路组装密度大幅度提高。

但是人们在应用中也发现。无论采用何种封装技术后的裸芯片,在封装后裸芯片的性能总是比未封装的要差一些。于是人们对传统的混合集成电路(HlC)进行彻底的改变.提出了多芯片组件(Multi Chip ModtJle,即MCM)这种先进的封装模式。它把几块IC芯片或CSP组装在一块电路板上,构成功能电路板,就是多芯片组件(如图7所示的带有八颗核心的IBM Power 5处理器)。

它是电路组件功能实现系统级的基础。随着MCM的兴起,使封装的概念发生了本质的变化,在80年代以前,所有的封装是面向器件的,而MCM可以说是面向部件的或者说是面向系统或整机的。MCM技术集先进印刷电路板技术、先进混合集成电路技术、先进表面安装技术、半导体集成电路技术于一体,是典型的垂直集成技术,对半导体器件来说,它是典型的柔型封装技术,是一种电路的集成。MCM 的出现使电子系统实现小型化、模块化、低功耗、高可靠性提供了更有效的技术保障。

对MCM发展影响最大的莫过于lC芯片。因为MCM高成品率要求各类lC芯片都是良好的芯片(KGD),而裸芯片无论是生产厂家还是使用者都难以全面测试老化筛选,给组装MCM带来了不确定因素。CSP的出现解决了KGD问题。CSP不但具有裸芯片的优点。还可象普通芯片一样进行测试老化筛选,使MCM的成品率才有保证.大大促进了MCM的发展和推广应用。目前MCM已经成功地用于大型通用

计算机和超级巨型机中。今后将用于工作站、个人计算机、医用电子设备和汽车电子设备等领域。1992年至1996年MCM以11.1%的年递增率发展,2005年产值有可能突破110亿美元,21世纪初将进入全面实用化阶段,迎来MCM全面推广应用和电子设备革命的年代。

QFN的主要特点

QFN(Quad Flat No—lead Package,方形扁平无引脚封装)是一种焊盘尺寸小、体积小、以塑料作为密封材料的新兴的表面贴装芯片封装技术。由于底部中央的大暴露焊盘被焊接到PCB的散热焊盘上,这使得QFN具有极佳的电和热性能。

QFN的主要特点有:

·表面贴装封装

·无引脚焊盘设计占有更小的PCB区域

·非常薄的元件厚度(<1mm),可以满足对空间有严格要求的应用

·非常低的阻抗、自感,可满足高速或者微波的应用

·具有优异的热性能,主要是因为底部有大面积散热焊盘

·重量轻。适合便携式应用

·无引脚设计

QFN导电焊盘有两种类型:全引脚封装(Full Connecting Bar 简称FCB)和引脚缩回封装(Half Etch Connecting Bar) 简称-HECB,也称为Lead

PulIback packages)。全引脚封装为整个引脚厚度可从器件的四边观察到。引脚缩回封装具有底部半蚀刻引脚结构,引脚厚度只有一半暴露在封装的四边,而引脚的底部被蚀刻掉,被一种塑料混合物充填。从各个角度显示QFN全引脚和引脚缩回封装的示意图。

第二章封装测试流程概述

2.1 封装

TRDI(tap receive die intergraty)这是一个存放芯片的站点。所有的芯片都要经过这里,从芯片的接受和到芯片的放出,都是在这里进行的,它的主要作用就是管理芯片。还有就是可以把相同产品的小卷芯片合成大卷的芯片,这样做就是为了生产的方便。

SUBMARK,LASERMARK是用于标记的。基片标记,目的是给生产制造提供SLI追踪信息。不同的产品的标记可能是黑色,灰色,铜标记中的一种。

前道标记作用:

1.当前道信息不存在或者被散热盖覆盖时,将产品的信息以二维码和人可识别的文字的方式做生产追踪信息。

2.给商标和版权信息留出空位,这个标记总是打在散热盖上面。。

APL(automatic package loading)CTL(carrier tray loader)它们的作用都是一样的都是物料转换,并且机器也是一样的。不过它们的运用是相反的,APL

是把基片从料盘中转移到carrier上面,而CTL是把carrier上的基片转移到料盘上。

NGCAM(next generation chip attach module)芯片的粘贴。通过模版印刷和喷涂的方式在基片的贴装区域印制或者喷涂足够的助焊剂,然后读取基片表面上的2D matkix信息以跟踪基片。在把芯片和基片精确的粘贴在一起然后通过回流焊接形成电连接。在粘贴的时候会造成芯片贴歪的情况,造成这种情况的原因可能是助焊剂过多或者机器的数据不正确。因此每天测助焊剂的厚度和收集数据时都要仔细,保证数据正常。

DEFLUX(delete flux)去助焊剂。这个站点的作用就是为了去除芯片回流以后残余在芯片和基片之间的助焊剂和为溶助焊剂,因为助焊剂和残余会减弱环氧树脂和芯片或基片之间的粘连,因此要去除助焊剂对芯片的危害。

EPOXY环氧树脂的注塑。它分为EPOXY:Underfill环氧注塑和EPOXY:Cure 烘烤。EPOXY:Underfill就是把经过烘烤后的产品把环氧树脂注入到芯片和基片之间以保护焊接点。而EPOXY:Cure是固化环氧树脂,通过固化炉固化环氧树脂为芯片和基片之间的焊球提供结构化支撑。下面是经过EPOXY过后是CPU如图:

环氧树脂的作用:首先环氧树脂可以保护芯片免受环境影响,耐受机械振动和冲击,在此之前因为只有接触点连接作用,在环境(温度)变化或者收到冲击的时候,接触点很容易发生断裂现象,从而出现可靠性问题;其次环氧树脂可以减小芯片于基片间热膨胀失配的影响,起到缓冲的作用。同时环氧树脂可以使得应力和应变再分配,减小芯片中心用四角部分凸点连接处应力和应变过于集中。这样,环氧树脂作用下,元器件的可靠性可以得到提高。

通过环氧树脂的作用可以推断出来作为合格的环氧树脂填充料应至少具有以下的要求:

(1)填料无挥发性,否则可能导致机械失效。

(2)应尽可能减小以消除应力失配。

(3)为避免基片产生变形,固化温度要低。因为高的固化温度不但可能引起基片的变形,还可能对芯片造成损坏。

(4)填料的粒子尺寸应小于倒装芯片于基片间的间隙。

(5)在填充温度下的填料粘滞性要低,流动性要好。

(6)填料应具有较高的弹性模量用弯曲强度,求确保喊节点不会断裂。

(7)在高温高湿的环境下,填料的绝缘电阻要高,以免产生短路现象。

(8)抗化学腐蚀力强。

LCBI(low cost burn-in operational)及老化测试。它是目的就是让被测设备(DUT)在高压和高温的状态下加速早期失效,进而使边缘DUT在后期老化电子测试过程中不能通过测试。

CMT站点住要是做产品的电性能测试的,了解产品是否能正常的工作。

OLB(off-line binning)主要是产品的分PIN,经过电性能测试过后,根据电性能的情况把产品分等级。

SFGI工厂产品存放仓库,从测试工序接收储存并拆分产品将分批的物料交给完工工序并贴标签。

OLF(Off Line Fusing)即离线锁频,通过机器锁定CPU的频率使产品有一个好的工作频率。

PPV(Processor Platform Validation)即系统测试,用于测试CPU的整个性能看产品能否正常的工作。

2.3 Finish

Laser mark即激光打字,用于基片标记 ,后道标记。基片标记的目的是给生产制造提供 SLI追踪信息.后道标记的目的是向客户提供产品信息。

MTI主要做的是把产品从不同的料盘上转移和检查CPU的针脚是否有问题,如有问题并且矫正针脚。

FVI(final visual inspection)简化版最终目检,主要是看经过这么多站点有没有损伤。

AQV抽检站点,对FVI流下来的产品进行百分比的抽检。

Auto strap 对成品进行包装。

IW 存放成品的仓库。

第三章媒介传输与检测设备

3.1适用范围

适用于 ATD 和 HVM 站点 12XX 平台中所有 LGA(基板栅格阵列)封装(LGA 37.5 毫米除外)、所有 BGA(焊球栅格阵列)以及所有 PGA(引脚栅格阵列)媒介传输与检测模块。

3.2流程要求

3.2.1流程说明

A. 工艺目的

操作的目的是:

?封装基板/BGA/PGA/LGA 的共面性

? BGA 焊球/PGA 单元的 X/Y 位置

? BGA基片的扭曲和WP, WY, WX

? BGA 的焊球高度

?焊球/引脚的辐向真位

?芯片正面die旁边电容是否存在

?捕获并抵制封装底部的视觉缺陷。

不符合产品规范的单元将被划分至单料盘站 X2 中。

注意:T130检测DSC时,reject芯片被划分至单料盘站 X2 ,通过共面、焊球标准和底部 PVI 检测的单元由 YZ2 提取头选出,然后传送到 X3/X4。

注意:T130检测DSC时,好的unit由YZ2 提取头选出,然后传送到X3。

? Y2轴的视觉检测将检查芯片正面的电容,pin1和2D

?任何带有遗失标记或错误引脚方向的单元将被划分至料盘站 X2 中。

?针对工程师收集数据,任何通过2D检测的芯片被划分到X3/X4.

B. 工艺流程

本流程图表示操作前后的顺序:

LGA 流程

BGA/PGA 流程:

LGA 流程(仅适用于 66 毫米,顶端和底部封盖粘贴):

C. T130 流程说明

以下步骤简述了 T130 操作流程:

步骤流程说明

1. 把需要检测的 WIP 放置到 Ergo 推车上,并使产品表面bga/pga/lga 朝下。

2. 选择检测批处理程序,并填写相关的在线检测表。

3. 把 WIP 从推车上卸下来,并在 X1 输入堆栈中装载材料。

4. 把底部的 X1 输入堆栈料盘分离出来,并置于 X1 传输线上。由于料盘非常先进,所以第一个袋应与 LIM 模块的检测区域保持一致。

5. 系统采用视野范围(FOV)内的多喷嘴和多组件检测完整料盘组件的头/焊球/垫不在料盘检测范围内。能够处理的设备量取决于组件尺寸和料盘布局。

6. 完整的料盘检测完毕后,将前行至 X1 轴并由 TTM 拾取。TTM 将料盘传

送到 X2 轴的后端,然后传送到前端作为buffer。

7. X2 料盘的第一排现在正好定位于 YZ2 轴的下方。标记工作台(IS2)移至 X2

并根据recipe检查2D,正面电容或pin1.

8. 现在,标记工作台就可检测完整的料盘。如果所有组件通过检测(检测模块上)且未检测出空袋,则料盘将被卸载.其他料盘将在当前位置上保持不动。这样,下一个料盘将移动到 X3,作为output料盘使用或者芯片从X3转移到X4作为PGA的output。根据设置在 X2或 X3 中完成标记。

9. 对于每一个新料盘,将重复以上流程。批处理结束时(由一个空料盘开始),所有组件均已分类,这样,所有标记出的废弃组件将在 X4 中结束运行,在 X3 中可找到 IS1 废弃组件。

注意:T130检测DSC时,所有缺陷在X2划分出来, IS1 reject放置在料盘后面,

DSC缺陷放在料盘前面部分

10. 根据分类目标对所有组件进行分类。完成“开始批处理(Start Batch)”时,

监控器上显示报告。

3.2.2 所需设备

本操作需要使用以下设备。

集成电路封装考试答案

集成电路封装考试答案 https://www.360docs.net/doc/0c16031152.html,work Information Technology Company.2020YEAR

名词解释: 1.集成电路芯片封装: 利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引用接线端子并通过可塑性绝缘介质灌装固定,构成整体立体结构的工艺。 2.芯片贴装: 3.是将IC芯片固定于封装基板或引脚架芯 片的承载座上的工艺过程。 4.芯片互联: 5.将芯片与电子封装外壳的I/O引线或基 板上的金属布线焊区相连接。 6.可焊接性: 指动态加热过程中,在基体表面得到一个洁净金属表面,从而使熔融焊料在基体表面形成良好润湿能力。 7.可润湿性: 8.指在焊盘的表面形成一个平坦、均匀 和连续的焊料涂敷层。 9.印制电路板: 10.为覆盖有单层或多层布线的高分子复 合材料基板。 11.气密性封装: 12.是指完全能够防止污染物(液体或固 体)的侵入和腐蚀的封装。 13.可靠性封装: 14.是对封装的可靠性相关参数的测试。 15.T/C测试: 16.即温度循环测试。17.T/S 测试: 18.测试封装体抗热冲击的能力。 19.TH测试: 20.是测试封装在高温潮湿环境下的耐久 性的实验。 21.PC测试: 22.是对封装体抵抗抗潮湿环境能力的测 试。 23.HTS测试: 24.是测试封装体长时间暴露在高温环境 下的耐久性实验。封装产品长时间放置在高温氮气炉中,然后测试它的电路通断情况。 25.Precon测试: 26.模拟包装、运输等过程,测试产品的 可靠性。 27.金线偏移: 28.集成电路元器件常常因为金线偏移量 过大造成相邻的金线相互接触从而产生短 路,造成元器件的缺陷。 29.再流焊: 30.先将微量的铅锡焊膏印刷或滴涂到印 制板的焊盘上,再将片式元器件贴放在印制板表面规定的位置上,最后将贴装好元器件分印制板放在再流焊设备的传送带上。

集成电路封装考试答案

名词解释: 1.集成电路芯片封装: 利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引用接线端子并通过可塑性绝缘介质灌装固定,构成整体立体结构的工艺。 2.芯片贴装: 3.是将IC芯片固定于封装基板或引脚架芯片的承载座上的工艺过程。 4.芯片互联: 5.将芯片与电子封装外壳的I/O引线或基板上的金属布线焊区相连接。 6.可焊接性: 指动态加热过程中,在基体表面得到一个洁净金属表面,从而使熔融焊料在基体表面形成良好润湿能力。 7.可润湿性: 8.指在焊盘的表面形成一个平坦、均匀和连续的焊料涂敷层。 9.印制电路板: 10.为覆盖有单层或多层布线的高分子复合材料基板。 11.气密性封装: 12.是指完全能够防止污染物(液体或固体)的侵入和腐蚀的封装。 13.可靠性封装: 14.是对封装的可靠性相关参数的测试。 15.T/C测试: 16.即温度循环测试。 17.T/S 测试: 18.测试封装体抗热冲击的 能力。 19.TH测试: 20.是测试封装在高温潮湿 环境下的耐久性的实验。 21.PC测试: 22.是对封装体抵抗抗潮湿 环境能力的测试。 23.HTS测试: 24.是测试封装体长时间暴 露在高温环境下的耐久性实验。封装产品长 时间放置在高温氮气炉中,然后测试它的电 路通断情况。 25.Precon测试: 26.模拟包装、运输等过 程,测试产品的可靠性。 27.金线偏移: 28.集成电路元器件常常因 为金线偏移量过大造成相邻的金线相互接触 从而产生短路,造成元器件的缺陷。 29.再流焊: 30.先将微量的铅锡焊膏印 刷或滴涂到印制板的焊盘上,再将片式元器 件贴放在印制板表面规定的位置上,最后将 贴装好元器件分印制板放在再流焊设备的传 送带上。 1

集成电路封装与测试_毕业设计论文

毕业设计(论文)集成电路封装与测试

摘要 IC封装是一个富于挑战、引人入胜的领域。它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。 媒介传输与检测是CPU封装中一个重要环节,检测CPU物理性能的好坏,直接影响到产品的质量。本文简单介绍了工艺流程,机器的构造及其常见问题。 关键词:封装媒介传输与检测工艺流程机器构造常见问题

Abstract IC packaging is a challenging and attractive field. It is the integrated circuit chip production after the completion of an indispensable process to work together is a bridge device to the system. Packaging of the production of microelectronic products, quality and competitiveness have a great impact. Under the current popular view of the international community believe that the overall cost of microelectronic devices, the design of a third, accounting for one third of chip production, packaging and testing and also accounted for a third, it is There are one-third of the world. Packaging research at the global level of development is so rapid, and it faces the challenges and opportunities since the advent of electronic products has never been encountered before; package the issues involved as many as broad, but also in many other fields rare, it needs to process from the material, from inorganic to polymers, from the calculation of large-scale production equipment and so many seem to have no mechanical connection of the concerted efforts of the experts is a very strong comprehensive new high-tech subjects . Media transmission and detection CPU package is an important part of testing the physical properties of the mixed CPU, a direct impact on product quality. This paper describes a simple process, the structure of the machine and its common problems. Keyword: Packaging Media transmission and detection Technology process Construction machinery Frequently Asked Questions

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

集成电路测试原理及方法

H a r b i n I n s t i t u t e o f T e c h n o l o g y 集成电路测试原理及方法简介 院系:电气工程及自动化学院 姓名: XXXXXX 学号: XXXXXXXXX 指导教师: XXXXXX 设计时间: XXXXXXXXXX

摘要 随着经济发展和技术的进步,集成电路产业取得了突飞猛进的发展。集成电路测试是集成电路产业链中的一个重要环节,是保证集成电路性能、质量的关键环节之一。集成电路基础设计是集成电路产业的一门支撑技术,而集成电路是实现集成电路测试必不可少的工具。 本文首先介绍了集成电路自动测试系统的国内外研究现状,接着介绍了数字集成电路的测试技术,包括逻辑功能测试技术和直流参数测试技术。逻辑功能测试技术介绍了测试向量的格式化作为输入激励和对输出结果的采样,最后讨论了集成电路测试面临的技术难题。 关键词:集成电路;研究现状;测试原理;测试方法

目录 一、引言 (4) 二、集成电路测试重要性 (4) 三、集成电路测试分类 (5) 四、集成电路测试原理和方法 (6) 4.1.数字器件的逻辑功能测试 (6) 4.1.1测试周期及输入数据 (8) 4.1.2输出数据 (10) 4.2 集成电路生产测试的流程 (12) 五、集成电路自动测试面临的挑战 (13) 参考文献 (14)

一、引言 随着经济的发展,人们生活质量的提高,生活中遍布着各类电子消费产品。电脑﹑手机和mp3播放器等电子产品和人们的生活息息相关,这些都为集成电路产业的发展带来了巨大的市场空间。2007年世界半导体营业额高达2.740亿美元,2008世界半导体产业营业额增至2.850亿美元,专家预测今后的几年随着消费的增长,对集成电路的需求必然强劲。因此,世界集成电路产业正在处于高速发展的阶段。 集成电路产业是衡量一个国家综合实力的重要重要指标。而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。 集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。国内使用的高端大型自动测试系统,几乎是被国外产品垄断。市场上各种型号国产集成电路测试,中小规模占到80%。大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。 二、集成电路测试重要性 随着集成电路应用领域扩大,大量用于各种整机系统中。在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。 如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。 作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。

我国集成电路封装测试行业的研究

中国集体经济 CHINA COLLECTIVEECONOMY 势、消除劣势、抓住机会、规避威胁。 (一)内部环境分析 1.农村信用社的优势。(1)地域优势;(2)政策优势;(3)决策优势;(4)网点优势;(5)人员优势。 2.农村信用社的劣势。(1)历史包袱重,不良资产占比高;(2)规模小,风险管理能力低;(3)经营区域受限;(4)人员素质仍是短板;(5)金融创新能力不足;(6) 市场定位仍不明确。 (二)外部环境分析 1.机会。(1)支农惠农政策为农信社提供了更广阔的发展空间;(2)当地社会影响力大;(3)行业管理水平的提高,有力 推动了农信社的发展。 2.威胁。(1)行业竞争者多,同业竞争压力大;(2)宏观经济下行,客户违约风险增加;(3)利率市场化进程的推进增加了农信社的财务压力和经营风险;(4)人才流失仍是重要威胁;(5)影子银行的威胁。 (三)农信社的SWOT 分析 首先制定出农信社的SWOT 矩阵,如表1所示。 将SWOT 矩阵进行分解,对SO ———优势与机会、WO ———劣势与机会、ST ——— 优势与威胁、WT ———劣势与威胁等条件进行分析,并根据分析找出相应的可选择的目标市场。 1.基于SO 战略应确定的贷款目标市 场:利用地域、网点、人员优势,挖掘、深耕各类个人贷款市场;利用地域、网点、人员、决策优势,做好公司贷款的拓展。 2.基于WO 战略应确定的贷款目标 市场:拓展全部个人贷款市场,增加积累,消化不良;积极介入公司贷款市场中的中小微企业市场,但根据自身风险管理能力以及资本的承受能力,要做好单户额度的控制,大型企业谨慎进入;受风险管理水平、人员素质制约,企业贷款市场以流动资金贷款市场为主,固定资产贷款市场谨慎进入;受风险管理水平、人员素质制约,贸易型公司谨慎进入。 3.基于ST 战略应确定的贷款目标市 场:全部个人贷款市场。一方面提高服务水平,提高客户贷款便利度,另一方面强化风险控制;企业贷款市场中的中小微企 业,但要注意行业风险,做好成本测算;大型企业贷款市场谨慎进入,避免议价能力不足,降低资金运用效率;生产加工型企业贷款市场要提高风险管控意识;铺底性流动资金贷款市场以及固定资产贷款市场谨慎进入。 4.基于WT 战略应确定的贷款目标 市场:出于风险管理、风险承受能力以及资金收益考虑,大型公司贷款市场应谨慎进入;企业贷款市场中的中小微企业,但要注意行业风险,做好成本测算;生产加工型企业贷款市场要提高风险管控意识;铺底性流动资金贷款市场以及固定资产贷款市场谨慎进入。 通过SWOT 分析,得出农信社应确定的目标市场:积极拓展个人贷款市场,但要提高贷款便利度,加强风险控制;将公司类贷款市场中的中小微企业作为重要的市场目标,但要根据自身风险管理能力以及资本的承受能力,做好单户额度的控制。要注意防范行业风险。企业固定资产贷款市场、铺底性流动资金贷款市场等要谨慎进入;出于风险管理、风险承受能力以及资金收益率考虑,大型公司类贷款市场要谨慎进入。总之,农信社应选择个 人及中小微企业贷款市场为目标市场,但要控制中小企业的单户额度限制,求小、求散。 (作者单位:山东省农村信用社联合社) 摘要:近年来,集成电路封装测试行业技术进步较快,行业发展也十分迅速,一些内资和本土品牌企业的质量、技术和产能已经接近国际先进水平。未来国内集成电路封测市场增长前景广阔,但也需要应对各种挑战。国内封测企业必须进一步增强技术创新能力、加大成本管控,才能在日新月异的市场竞争中取得更大进步。 关键词:技术进步;行业发展前景;经营模式;核心竞争力 一、集成电路封装测试的技术进步封装测试是集成电路制造的后续工艺,为了使集成电路芯片的触点能与外界电路如PCB 板连接,也为了给芯片加上一个“保护壳”,防止芯片受到物理或化学损坏,需要对晶圆芯片的进一步加工,这一环节即封装环节。测试环节则是对芯片电子电路功能的检测确认。 集成电路封装技术发展历程大约可以分为三个阶段:第一阶段是1980年之 前的通孔插装(THD)时代,插孔直接安装到PCB 上,主要形式包括TO(三极管)、 DIP(双列直插封装),优点是可靠、散热好、结实、功耗大,缺点是功能较少,封装密度及引脚数难以提高,难以满足高效自动化生产的要求。 第二阶段是1980年代开始的表面贴装(SMT )时代,该阶段技术的主要特点是引线代替针脚,引线采用翼形或丁形,以两边或四边引线封装为主,从两边或四边表1 农信社的SWOT 矩阵 优势(S ) 劣势(W ) 机会(O )SO 战略 发挥优势,把握机会 WO 战略 利用外部机会,弥补内部劣势 威胁(T ) ST 战略 发挥优势,规模外部威胁 WT 战略减少劣势,规避威胁 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 我国集成电路封装测试行业的研究 ■ 尤晟 张燕 53

《集成电路芯片封装技术》考试题

得分评分人 得分评分人 得分 评分人 《集成电路封装与测试技术》考试试卷 班级: 学号 姓名 一 一、填空题(每空格1分 共18分) 1、封装工艺属于集成电路制造工艺的 工序。 2、按照器件与电路板互连方式,封装可分为引脚插入型(PTH )和 两大类。 3、芯片封装所使用的材料有许多,其中金属主要为 材料。 4、 技术的出现解决了芯片小而封装大的矛盾。 5、在芯片贴装工艺中要求:己切割下来的芯片要贴装到引脚架的中间焊盘上,焊盘的尺寸要与芯片大小要 。 6、在倒装焊接后的芯片下填充,由于毛细管虹吸作用,填料被吸入,并向芯片-基板的中心流动。一个12,7mm 见方的芯片, 分钟可完全充满缝隙,用料大约0,031mL 。 7、用溶剂来去飞边毛刺通常只适用于 的毛刺。 8、如果厚膜浆料的有效物质是一种绝缘材料,则烧结后的膜是一种介电体,通常可用于制作 。 9、能级之间电位差越大,噪声越 。 10、薄膜电路的顶层材料一般是 。 11、薄膜混合电路中优选 作为导体材料。 12、薄膜工艺比厚膜工艺成本 。 13、导电胶是 与高分子聚合物(环氧树脂)的混合物。 14、绿色和平组织的使命是: 。 15、当锡铅合金中铅含量达到某一值时,铅含量的增加或锡含量的增加均会使焊料合金熔点 。 16、印制电路板为当今电子封装最普遍使用的组装基板,它通常被归类于 层次的电子封装技术 17、印制电路板通常以 而制成。 18、IC 芯片完成与印制电路板的模块封装后,除了焊接点、指状结合点、开关等位置外,为了使成品表面不会受到外来环境因素,通常要在表面进行 处理。 二、选择题(每题2分 共22分) 1、TAB 技术中使用( )线而不使用线,从而改善器件的热耗散性能。 A 、铝 B 、铜 C 、金 D 、银 2、陶瓷封装基板的主要成分有( ) A 、金属 B 、陶瓷 C 、玻璃 D 、高分子塑料 3、“塑料封装与陶瓷封装技术均可以制成双边排列(DIP )封装,前者适合于高可靠性的元器件制作,后者适合于低成本元器件大量生产”,这句话说法是( )。 A 、 正确 B 、错误 4、在芯片切割工序中,( )方法不仅能去除硅片背面研磨损伤,而且能除去芯片引起的微裂和凹槽,大大增强了芯片的抗碎裂能力。 A 、 DBT 法 B 、DBG 法 5、玻璃胶粘贴法比导电胶的贴贴法的粘贴温度要( )。 A 、低 B 、高 6、打线键合适用引脚数为( ) A 、3-257 B 、12-600 C 、6-16000 7、最为常用的封装方式是( ) A 、塑料封装 B 、金属封装 C 、陶瓷封装 8、插孔式PTH(plated through-hole 镀金属通孔)封装型元器件通常采用( )方法进行装配。 A 、波峰焊 B 、回流焊 9、相同成分和电压应力下,长电阻较之短电阻电位漂移要( ) A 、小 B 、大 10、金属的电阻噪比半导体材料电子噪声( ) 。 A 、高 B 、低 11、( )技术适合于高密度和高频率环境 A 、厚膜技术 B 、薄膜技术

集成电路测试技术四

集成电路测试技术 测试概论 可测性设计技术

DFT) 雷鑑铭RCVLSI&S 扫描前综合:主要在综合中介绍。在这一步中综合工具会

Multiplexed Flip-Flop 使用一个可选择的数据输入端来实现串行移位的能力。在功能模式时,扫描使能信号选择系统数据输入;在扫描模式时,扫描使能信号选择扫描数据输入。扫描输入的数据来自扫描输入端口或者扫描链中前一个单元的扫描输出端口。为测试使能端,控制数据的输入。 时选通测试模式,测试数据从端输入;时为功能模式,这时系统数据从端输入。 Multiplexed Flip-Flop 扫描形式为工艺库普遍支持的一种模式。 Multiplexed Flip-Flop 结构 扫描 扫描形式使用一个特定的边沿触发测试时钟来提供串行移位的能力。在功能模式时,系统时钟翻转,系统数据在系统时钟控制下输入到单元中;扫描移位时,测试时钟翻转,扫描数据在测试时钟控制下进入到单元中。 为系统时钟,翻转时系统数据从D 钟,翻转时扫描数据从端输入。 Clocked-Scan 雷鑑铭 编译器支持三种变化的扫描形式:单边锁存,双边锁存和时钟控制单边锁存和双边锁存变化都要用到典型的LSSD 扫描单元,如上图所示。该单元含有一对主从锁存器。 主锁存器有两个输入端,能够锁存功能数据或者扫描数据。在功能模式下,系统主时钟控制系统数据的输入;在扫描模式下,测试主时钟控制从数据输入端到主锁存器的数据传输。从时钟控制数据从主锁存器到从锁存器的传输。 典型的LSSD 、扫描测试的步骤 1 各步骤的功能如下: 扫描输入阶段:在这一阶段中,数据串行加入到扫描输入端;当时钟沿到来时,该扫描数据被移入到扫描链。同时,并行输出被屏蔽。 并行测试:这一周期的初始阶段并行输入测试数据,此周期的末段检测并行输出数据。在此周期中时钟信号保持无效,CUT 并行捕获:这一阶段时钟有一次脉冲,在该脉冲阶段从扫描链中捕获关键并行输出数据。CUT 态。捕获到的数据用于扫描输出。 第一次扫描输出:此阶段无时钟信号,出端对扫描链输出值采样,检测第一位扫描输出数据。扫描输出阶段:扫描寄存器捕获到的数据串行移出,在每一周期在扫描输出端检测扫描链输出值。扫描测试是基于阶段的测试过程,典型的测试时序分SI 交叠,待测芯片的测试状态控制信号于有效状态。第一次扫描输出阶段时钟信号保持无效,出端之后每一扫描移位阶段都有一时钟信号,测试机也会采样一次SO 的状态;在最后一个扫描移位阶段用于产生并行输出的有效数

集成电路封装的发展现状及趋势

集成电路封装的发展现 状及趋势 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

序号:39 集成电路封装的发展现状及趋势 姓名:张荣辰 学号: 班级:电科本1303 科目:微电子学概论 二〇一五年 12 月13 日

集成电路封装的发展现状及趋势 摘要: 随着全球集成电路行业的不断发展,集成度越来越高,芯片的尺寸不断缩小,集成电路封装技术也在不断地向前发展,封装产业也在不断更新换代。 我国集成电路行业起步较晚,国家大力促进科学技术和人才培养,重点扶持科学技术改革和创新,集成电路行业发展迅猛。而集成电路芯片的封装作为集成电路制造的重要环节,集成电路芯片封装业同样发展迅猛。得益于我国的地缘和成本优势,依靠广大市场潜力和人才发展,集成电路封装在我国拥有得天独厚的发展条件,已成为我国集成电路行业重要的组成部分,我国优先发展的就是集成电路封装。近年来国外半导体公司也向中国转移封装测试产能,我国的集成电路封装发展具有巨大的潜力。下面就集成电路封装的发展现状及未来的发展趋势进行论述。 关键词:集成电路封装、封装产业发展现状、集成电路封装发展趋势。 一、引言 晶体管的问世和集成电路芯片的出现,改写了电子工程的历史。这些半导体元器件的性能高,并且多功能、多规格。但是这些元器件也有细小易碎的缺点。为了充分发挥半导体元器件的功能,需要对其进行密封、扩大,以实现与外电路可靠的电气连接并得到有效的机械、绝缘等

方面的保护,防止外力或环境因素导致的破坏。“封装”的概念正事在此基础上出现的。 二、集成电路封装的概述 集成电路芯片封装(Packaging,PKG)是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连线,引出接线端并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。此概念称为狭义的封装。 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。封装为芯片提供了一种保护,人们平时所看到的电子设备如计算机、家用电器、通信设备等中的集成电路芯片都是封装好的,没有封装的集成电路芯片一般是不能直接使用的。 集成电路封装的种类按照外形、尺寸、结构分类可分为引脚插入型、贴片型和高级封装。 引脚插入型有DIP、SIP、S-DIP、SK-DIP、PGA DIP:双列直插式封装;引脚在芯片两侧排列,引脚节距,有利于散热,电气性好。 SIP:单列直插式封装;引脚在芯片单侧排列,引脚节距等特征与DIP基本相同。

3D封装集成电路测试挑战的ATE解决方案

ATE solutions to 3D-IC test challenges The rea diness of Advantest’s V93000 Scott Chesnut scott.chesnut@https://www.360docs.net/doc/0c16031152.html, Robert Smith robert.j.smith@https://www.360docs.net/doc/0c16031152.html, Florent Cros florent.cros@https://www.360docs.net/doc/0c16031152.html, Lakshmikanth Namburi lakshmikanth.namburi@https://www.360docs.net/doc/0c16031152.html, Advantest America San Jose, California USA Abstract—Three dimensional integrated circuits (3D-IC) require that automatic test equipment develop capability to address the challenges brought on by these structures. Such capability is found in test solutions which provide multiple clock domains, granular hardware porting per 3DIC layer, powerful test languages to control this hardware and collaborative software development environments. Advantest’s introduction of clock domain per pin, multi-port, concurrent test, and protocol aware software, MEMS probes, and SmarTest program manager address the test challenges of 3DIC in an effective effectively. They allow production solutions to be architected to the degree of granularity required by the development teams. Keywords—Protocol aware, Clock domain per pin, multi-port hardware, concurrent test framework, Protocol aware, SmarTest program manager, PLL Keep Alive, 3DIC TSV, 25uM pitch, MEMS Probes, ATE, BIST, JTAG, Pico Ampere Meter, interposer, spatial translation, MEMS, planarity, probes, cantilever, beam. I.I NTRODUCTION 3D chips are multi-system entities whose test challenges dwarf those presented by yesterday’s System in a Package (SiP) and/or System On a Chip (SOC). Substantial infrastructure must be readied in order to position any Automatic Test Equipment (ATE) to succeed in a production test environment. A good approach to understanding what the real challenges are would be to eliminate those with already known solutions. Past efforts to reduce test time, increase test coverage, and coordinate the software efforts of large groups of test engineers have solved 2D related production test problems. While these solutions had been developed for reasons other than 3DIC/TSV production test, we find they may lend themselves well to the task. Many of the perceived 3DIC/TSV test problems actually already have solutions. What follows is a description of how the existing features of Advantest’s V93000 might address many of these challenges. A.Test Program Software Maintenance – SmarTest Program Manager. Historically, a chip had one function. As more functions where added they became systems on a chip and then the migration to system in a package occurred. 3DIC systems in a stack add even greater complexity. Whether 3D stacks are assembled from Known Good Die (KGD) or Pretty Good Die (PGD) it can be assumed that “some” level of test will occur at both the chip level and then the stack level. Without assurance that chip layers are somewhat functional, a single layer’s defect can result with failing of the entire stack. Test costs become prohibitive as many good die are lost due to a single bad layer. Testing die before and after stack assembly requires use of variations of the same test program. One program version is used for the single die, another for the assembled stack. This is because test at the chip level will target its subcomponents while test at the stack level will exercise mission mode system level performance. It is likely that the same program be used for both activities with the difference being in how it perceives its current purpose. That is, a well architected test program can receive instructions from an operator or prober/handler and branch into chip or stack level test. Whether testing PGD, KGD, on the chip or stack level, use of the same program to test both reduces the correlation burden between chip test and assembled stack test. Proper maintenance of these program variations will require tighter book keeping than in the past. 3D structures, being built from multiple separate chip layers have associated with them legions of test, product and design engineers responsible for performance of each layer. Large groups of people who, while in the past never had reason to collaborate, in the future will find it absolutely necessary. Since each layer represents man years of test development effort, the test programs of each engineering group will have

集成电路封测技术及产业的发展趋势

集成电路封测技术及产业的发展趋势 摘要:介绍了全球集成电路封装测试业的发展历程、发展现状、行业竞争格局和技术发展趋势,并重点分析我国封装测试业的发展现状以及面临的机遇和挑战。研究结果表明,我国封装测试业整体呈稳步增长态势,本土集成电路市场内生增长前景广阔,内资企业与外资、合资企业的技术、规模差距不断缩小,我国封测业面临前所未有的发展机遇。 关键字:集成电路封装测试业;发展现状;竞争格局;技术趋势 1、前言 封装测试是集成电路产业链必不可少的环节。封装是指对通过测试的晶圆进行划片、装片、键合、塑封、电镀、切筋成型等一系列加工工序而得到的具有一定功能的集成电路产品的过程。随着技术进步,由于圆片级(WLP)、倒装焊(FC)以及3维(3D)封装技术的出现,颠覆了通常意义上封装工艺流程。 封装是保护芯片免受物理、化学等环境因素造成的损伤,增强芯片的散热性能,以及便于将芯片的I/O端口联接到部件级(系统级)的印制电路板(PCB)、玻璃基板等,以实现电气连接,确保电路正常工作。测试主要是对芯片、电路以及老化后的电路产品的功能、性能测试等,外观检测也归属于其中。其目的是将有结构缺陷以及功能、性能不符合要求的产品筛选出来。目前,国内测试业务主要集中在封装企业中,通常统称为封装测试业(以下简称“封测业”)。 图1 集成电路产业链

2、集成电路封装产业技术现状 (1)集成电路封装技术的发展 在集成电路产业市场和技术的推动下,集成电路封装技术不断发展,大体经历以下三个技术阶段的发展过程: 第一阶段是1980年之前的通孔插装(THD)时代。这个阶段技术特点是插孔安装到PCB上,主要技术代表包括TO(晶体管外形)和DIP(双列直插封装),其优点是结实、可靠、散热好、布线和操作较为方便,缺点是电路功能较少,封装密度及引脚数难以提高,难以满足高效自动化生产的要求。 第二阶段是1980年代开始的表面贴装(SMT)时代,该阶段技术的主要特点是引线代替针脚,由于引线为翼形或J形,从两边或四边引出,较THD插装形式可大大提高引脚数和组装密度。最早出现的表面安装类型以两边或四边引线封装为主,主要技术代表包括SOT(小外形晶体管封装)、SOP(小外形封装)、QFP(四边翼型引线扁平封装)等。采用该类技术封装后的电路产品轻、薄、小,提升了电路性能。性价比高,是当前市场的主流封装类型。 在电子产品趋小型化、多功能化需求驱动下,20世纪末期开始出现以焊球代替引线、按面积阵列形式分布的表面贴装技术。这种封装的I/O是以置球技术以及其它工艺把金属焊球(凸点)阵列式的分布在基板底部,以实现芯片与PCB 板等的外部连接。该阶段主要的封装形式包括球状栅格阵列封装(BGA)、芯片尺寸封装(CSP)、晶圆级芯片封装(WLP)、多芯片封装(MCP)等。BGA 等技术的成功开发,解决了多功能、高集成度、高速低功耗、多引线集成电路电路芯片的封装问题。 第三阶段是21世纪初开始的高密度封装时代。随着电子产品进一步向小型化和多功能化发展,依靠减小特征尺寸来不断提高集成度的方式因为特征尺寸越来越小而逐渐接近极限,以3D堆叠、TSV(硅通孔)为代表的三维封装技术成为继续延续摩尔定律的最佳选择。其中3D堆叠技术是把不同功能的芯片或结构,通过堆叠技术,使其在Z轴方向上形成立体集成和信号连通以及圆片级、芯片级、硅帽封装等封装和可靠性技术为目标的三维立体堆叠加工技术,用于微系统集成。TSV是通过在芯片和芯片之间、晶圆和晶圆之间制作垂直导通孔,实现芯片之间互连的最新技术。与以往IC封装键合和使用凸点的叠加技术不同,三维封装技术能够使芯片在三维方向堆叠的密度最大,外形尺寸最小,大大改善芯

集成电路封装与测试复习题 - 答案

一、填空题 1、将芯片及其他要素在框架或基板上布置,粘贴固定以及连接,引出接线端子并且通过可塑性绝缘介质灌封固定的过程为狭义封装 ;在次基础之上,将封装体与装配成完整的系统或者设备,这个过程称之为广义封装。 2、芯片封装所实现的功能有传递电能;传递电路信号;提供散热途径;结构保护与支持。 3、芯片封装工艺的流程为硅片减薄与切割、芯片贴装、芯片互连、成型技术、去飞边毛刺、切筋成形、上焊锡、打码。 4、芯片贴装的主要方法有共晶粘贴法、焊接粘贴法、导电胶粘贴发、玻璃胶粘贴法。 5、金属凸点制作工艺中,多金属分层为黏着层、扩散阻挡层、表层金保护层。 6、成型技术有多种,包括了转移成型技术、喷射成型技术、预成型技术、其中最主要的是转移成型技术。 7、在焊接材料中,形成焊点完成电路电气连接的物质叫做焊料;用于去除焊盘表面氧化物,提高可焊性的物质叫做助焊剂;在SMT中常用的可印刷焊接材料叫做锡膏。 8、气密性封装主要包括了金属气密性封装、陶瓷气密性封装、玻璃气密性封装。 9、薄膜工艺主要有溅射工艺、蒸发工艺、电镀工艺、

光刻工艺。 10、集成电路封装的层次分为四级分别为模块元件(Module)、电路卡工艺(Card)、主电路板(Board)、完整电子产品。 11、在芯片的减薄过程中,主要方法有磨削、研磨、干式抛光、化学机械平坦工艺、电化学腐蚀、湿法腐蚀、等离子增强化学腐蚀等。 12、芯片的互连技术可以分为打线键合技术、载带自动键合技术、倒装芯片键合技术。 13、DBG切割方法进行芯片处理时,首先进行在硅片正面切割一定深度切口再进行背面磨削。 14、膜技术包括了薄膜技术和厚膜技术,制作较厚薄膜时常采用丝网印刷和浆料干燥烧结的方法。 15、芯片的表面组装过程中,焊料的涂覆方法有点涂、 丝网印刷、钢模板印刷三种。 16、涂封技术一般包括了顺形涂封和封胶涂封。 二、名词解释 1、芯片的引线键合技术(3种) 是将细金属线或金属带按顺序打在芯片与引脚架或封装基板的焊垫上

集成电路封装和可靠性Chapter2-1-芯片互连技术【半导体封装测试】

UESTC-Ning Ning 1 Chapter 2 Chip Level Interconnection 宁宁 芯片互连技术 集成电路封装测试与可靠性

UESTC-Ning Ning 2 Wafer In Wafer Grinding (WG 研磨)Wafer Saw (WS 切割)Die Attach (DA 黏晶)Epoxy Curing (EC 银胶烘烤)Wire Bond (WB 引线键合)Die Coating (DC 晶粒封胶/涂覆) Molding (MD 塑封)Post Mold Cure (PMC 模塑后烘烤)Dejunk/Trim (DT 去胶去纬) Solder Plating (SP 锡铅电镀)Top Mark (TM 正面印码)Forming/Singular (FS 去框/成型) Lead Scan (LS 检测)Packing (PK 包装) 典型的IC 封装工艺流程 集成电路封装测试与可靠性

UESTC-Ning Ning 3 ? 电子级硅所含的硅的纯度很高,可达99.9999 99999 % ? 中德电子材料公司制作的晶棒( 长度达一公尺,重量超过一百公斤 )

UESTC-Ning Ning 4 Wafer Back Grinding ?Purpose The wafer backgrind process reduces the thickness of the wafer produced by silicon fabrication (FAB) plant. The wash station integrated into the same machine is used to wash away debris left over from the grinding process. ?Process Methods: 1) Coarse grinding by mechanical.(粗磨)2) Fine polishing by mechanical or plasma etching. (细磨抛光 )

相关文档
最新文档