2007-2008第二学期工程数学

合集下载

2007级高等数学下册A卷试题答案

2007级高等数学下册A卷试题答案
东华理工大学2007—2008学年第2学期
高等数学下册试题(A1)卷
6.L为 ,直线y=x围成区域的边界, 为连续函数,则 =答( D )
(A) ;(B) ;
(C) ;(D) 。
7.流速场 ,则流过球面的流 量值
(A)0(B) (C) (D)1答( A )
8.断 的收敛性,下列说法正确的是
(A) 此级数收敛。(B) 此级数收敛。
(C) 级数发散。(D)以上说法均不对。答( D )
二、填空题(本大题分8小题,每小题3分,共24分)
1、函数项级数 在 内的和函数是。
2、设 ,则 =。56
3、设 ,则
4、已知幂级数 的收敛区间为[-4,4],
幂级数 的收敛区间为为。 。
5、由二重积分的几何意义得到 =。
大题










十一
六、(本题6分)设
, =
七、(本题6分)、求由方程 所确定的隐函数 的极值点。
解:
, 解得: ,代入原方程得 求得驻点 和
由于, 故 为极小点,
由于, 故 为极大点,
6、设 由z= 与平面z=2围成闭区域,把I= 化为直角坐标系下的三次积分为。
7、设F(x,y)可微,如果曲线积分 与路径无关,
则 应满足条件。
(D) +
说明:1.试题须用碳素墨水钢笔集中填在方格内,答题纸另附并装订于后,字迹须工整清晰;2.试题须经教研室或系(部)领导认真审核并签署本人代号;3.学生只须在第一页试题纸上填写姓名等
东华理工大学2007—2008学年第2学期
高等数学下册试题(A2)卷
五、(本题6分)证明极限 不存在。

2007-2008学年第二学期

2007-2008学年第二学期

2007-2008学年第二学期《人文社科信息检索》考试题考试说明:1、每个学生在一、二、三、四大题中各选作一小题。

2、要求认真审题,独立完成,抄袭者和被抄袭者均不得分。

3、注意答案与所下载考题必须一致。

答非所问者不得分。

4、注意答卷上一定写明学院、班级、学号、姓名以及任课老师姓名。

5、按任课老师要求的时间、地点上交答卷。

一、基础知识题(10分)1、简述与信息检索相关的研究领域。

2、简述信息检索的原理。

3、简述搜索引擎的原理。

4、简述科技文献的类型5、网络信息的主要传播渠道有哪些。

6、简述科技文献检索流程与方法。

7、简述特种文献信息的种类与特点。

8、请说明专利文献的特点和作用。

9、标准文献的含义及其作用。

10、举例说明国外会议文献的检索途径。

11、简述如何优化检索策略。

二、实践操作题要求关键词必须是中英文(20分)1、利用“ScienceDirect数据库”的高级检索(至少包含两项检索技术)查找与“安全管理”或者“材料科学”课题的相关文献。

要求写出检索途径、检索步骤、检索结果数量,并选择一篇相关文献,抄录其文摘信息(文摘正文可只摘录其头尾,中间用省略号代替)的著录项目。

2、利用“ProQuest博士论文”高级检索功能(至少包含两项检索技术)查找1篇与专业相关(至少包含三个关键词)的论文,并写出其外部特征信息。

(按检索格式写出,并写出检索式和检索关键词)3、利用相关专利数据库检索出与“矿井提升中的换绳设备”相关的专利文献。

要求写出检索途径、检索步骤、检索出的专利数量,并选择一篇相关专利,抄录其相关信息(正文可只摘录其头尾,中间用省略号代替)。

4、利用“Engineering Village 2数据库”查找与“管理工程”或者“生物工程”课题的相关文献。

要求写出检索途径、检索步骤、检索结果数量,并选择一篇相关文献,抄录其文摘信息(文摘正文可只摘录其头尾,中间用省略号代替)的著录项目。

5、利用“EBSCOhost数据库”查找与“网络经济”或者“商管财经”课题的相关文献。

2007-2008第二学期线代试卷A及答案)

2007-2008第二学期线代试卷A及答案)

武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共12分)1、 2;2、 1;3、 21t ≠;4、k >二、选择题(每小题3分,共12分)1、 A ;2、 C ;3、 B ;4、 D 三、解答题(每小题9分,共36分)1、11(2,,)(2,,)1100011111100100020012000200011i in i n i n r r r r n nn n n D n nn n nn n==+++---=-------…..…(4分)()(1)(2)(1)1122000001(1)1(1)(1)()(1)1222000n n n n n n n n n n n n n n nn n n n -------+++=⋅=⋅⋅-⋅-=⋅⋅---...….(9分)2、记 121624,1713A A ---⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,则121,1A A =-=;…..…………………………………..…..……...(4分)又1112767637,111112A A -----⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以1760011000037012A --⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭-。

………………………...(9分)3、由题意有010100001A B ⎛⎫⎪= ⎪ ⎪⎝⎭,100011001B C ⎛⎫⎪= ⎪ ⎪⎝⎭,……………..…………………………………………...(4分) 于是 010100100011001001A C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以011100001X ⎛⎫⎪= ⎪ ⎪⎝⎭。

……….……………………………………...(9分)4、()123403481011,,,21043211αααα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭~1011034801220244-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭~10110122002200-⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭~10000104001100⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭………...(4分) 则()1234,,,3R αααα=,且123,,ααα线性无关,所以123,,ααα即为1234,,,αααα的一个极大无关组,(7分) 且412304αααα=+-;…………………………………………………………………………………..………...(9分) 或者取124,,ααα,312404αααα=+-;还可以取134,,ααα,2341144ααα=+四、解()2111,1111tA b t t tt -⎛⎫⎪=-- ⎪ ⎪-⎝⎭~2223110110111t tt t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪+-++⎝⎭~ 22321101100(1)(2)1t tt t t t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪-+---+⎝⎭…………………………….…………..………...(4分) 所以当12t t ≠-≠且时,方程组有唯一解;…………………………………..…………………………….……...(6分) 当2t =时,(),A b ~112403360001-⎛⎫⎪-- ⎪ ⎪⎝⎭()(),32R A b R A =≠=,所以方程组无解。

工程数学复习题及答案

工程数学复习题及答案

试卷代号:1008中央广播电视大学2005~2006学年度第一学期“开放本科”期末考试水利水电、土木工程专业 工程数学(本) 试题2006年1月一、单项选择题(每小题3分,共21分)1. 设B A ,均为3阶可逆矩阵,且k>0,则下式( )成立. A. B A B A +=+ B. AB A B '= C. 1AB A B -=D. kA k A =2. 下列命题正确的是( ).A .n 个n 维向量组成的向量组一定线性相关;B .向量组s ααα,,,21 是线性相关的充分必要条件是以s ααα,,,21 为系数的齐次线性方程组02211=+++s s k k k ααα 有解C .向量组 ,,21αα,s α,0的秩至多是sD .设A 是n m ⨯矩阵,且n m <,则A 的行向量线性相关 3.设1551A ⎡⎤=⎢⎥⎣⎦,则A 的特征值为( )。

A .1,1B .5,5C .1,5D .-4,64.掷两颗均匀的股子,事件“点数之和为3”的概率是( )。

A .136B .118C .112D .1115.若事件A 与B 互斥,则下列等式中正确的是( )。

A . P A B P A P B ()()()+=+ B . ()1()P B P A =- C . ()(|)P A P A B =D . P AB P A P B ()()()=6.设1234,,,x x x x 是来自正态总体2(,)N μσ的样本,其中μ已知,2σ未知,则下列( )不是统计量.A .4114i i x =∑B .142x x μ+-C .42211()ii x x σ=-∑;D .4211()4i i x x =-∑7. 对正态总体),(2σμN 的假设检验问题中,τ检验解决的问题是( ). A. 已知方差,检验均值 B. 未知方差,检验均值 C. 已知均值,检验方差 D. 未知均值,检验方差二、填空题(每小题3分,共15分)1.已知矩阵A ,B ,C=()ij m n c ⨯满足AC = CB ,则A 与B 分别是__________________矩阵。

2007-2008第二学期线性代数及答案工科36学时

2007-2008第二学期线性代数及答案工科36学时

武汉大学数学与统计学院2007-2008第二学期《线性代数D 》 (A 卷,工科36学时)学院 专业 学号 姓名注:所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。

一、(10分)设123,,ααα均为三维向量 ,记三阶矩阵123123123123(,,),(,24,39).A B αααααααααααα==++++++ 已知1A =,求B .二、(10分) 设211120212-⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,023214014-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭B ,-=+AC E B C ,求矩阵C .三、(15分)已知向量组123418210:2,4,1,53826A -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭ξξξξ求向量组A 的秩及一个最大无关组,并把其它的向量用最大无关组表示出来.四、(15分)设线性方程组为123123123(2)2212(5)4224(5)31x x x x x x x x x λλλλ++-=⎧⎪++-=⎨⎪--++=+⎩问λ为何值时,该方程组有唯一解、无解或有无穷多解?并在有无穷多解时求其解.五、(15分)已知1,1,-1是三阶实对称矩阵A 的三个特征值,向量T 1(1, 1, 1)α=,T2(2, 2, 1)α=是A 的对应于121λλ==的特征向量,1) 能否求得A 的属于31λ=-的特征向量?若能,试求出该特征向量,若不能,则说明理由。

2)能否由此求得实对称阵A ?若能,试求之,若不能则说明理由。

六、(15分) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,E 是n 阶单位矩阵().n n ⨯已知,BA E = 试判断A的列向量组是否线性相关?为什么?七、(20分)设二次型的矩阵为5212233a b a b cc c --⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,,,a b c 为常数,则 (1).写出二次型),,321x x x f (的具体形式;(2).求A 的全部特征值与特征向量;(3).求一个正交变换X PY =,把二次型f 化为标准形;(4).在1x =的条件下,求二次型f 的最大值和最小值。

工科数分(上) 2007-2008 第一学期期末考试参考答案(08-01-24)

工科数分(上) 2007-2008 第一学期期末考试参考答案(08-01-24)

1
=
1
1
dx = 2 1+ x = 2( 2 −1).
0 1+ x
0
………………5 分
3
2. lim x 2 ( x + 1 + x −1 − 2 x ) x→+
1
解:
当 x 充分大时,
利用 1+
1 2 的带有佩亚诺型余项
x

1 x2
的麦克劳林公式
1
x +1 =
x1+ 1 2 = x
x f (t)dt − a |=| 1
x
( f (t) − a)dt | 2 ,
x0
x0
所以
lim 1
x
f (t)dt = a .
x x→+ 0
………8 分
八、 (本题满分 10 分)
用 Dirichlet 判别法判别级数 (1+ 1 + + 1 ) sin nx , x (0, ) 的敛散性?
(如是收敛的一般项级数,需明确是绝对收敛还是条件收敛)
1. ( 1 − ln n + 1)
n=1 n
n
(比较判别法)
解:
因为 ln
n +1 n
=
ln(1 +
1) n
=
1 n

1 2n 2
+
o(
1 n2
) ,且 ln
n +1 n

1 n

………2 分
Page 3 of 8
A
所以
0

an
=
1 n

2007年数学二试题分析、详解和评注

2007年数学二试题分析、详解和评注

黄先开辅导地位:历届考生公认的“线性代数第一人”,北京理工大学应用数学系硕士,中国科学院数学与系统科学研究院获博士,美国哈佛大学访问学者,现任北京工商大学数学系主任、教授。

授课特点:理论扎实,表达独到,基础为纲,技巧为器,言简意赅,重点突出,伐毛洗髓,效果极佳名师风采:曾被评为北京市优秀青年骨干教师;1997年被授予“有突出贡献的部级青年专家”称号;曾在国内外一级刊物上发表论文30余篇,单独完成以及合作完成数学专著10多部。

曹显兵辅导地位:考研数学辅导的“概率第一人”;数学系教授,中国科学院数学与系统科学类)》稿.(1) 】【【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】当0x +→时,有1(1)~-=--1~;2111~.22x -= 利用排除法知应选(B). 【评注】 本题直接找出ln的等价无穷小有些困难,但由于另三个的等价无穷小很容易得到,因此通过排除法可得到答案。

事实上,2000ln(1)ln(1) lim lim limtx x tt tt+++→→→+--==22200212(1)111lim lim 1.1(1)(1)t ttt t tt tt t++→→+-+++-==+-完全类似例题见《经典讲义》P.28例1.63, 例1.64, 例1.65及辅导班讲义例1.6.1x【型。

【又【(3)如图,连续函数y=f(x)在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的下、上半圆周,设()().xF x f t dt=⎰则下列结论正确的是(A)3(3)(2)4F F=--. (B)5(3)(2)4F F=.(C) )2(43)3(FF=-. (D) )2(45)3(--=-FF.【】【答案】应选(C).【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。

电大《工程数学(本)》试题和答案

电大《工程数学(本)》试题和答案

108()电大《工程数学(本)》试题和答案200707试卷代号:1080 中央广播电视大学学年度第二学期”开放本科”期末考试水利水电等专业工程数学(本)试题2007年7月一、单项选择题【每小题3分。

本题共15分)1.设A, B为咒阶矩阵则下列等式成立的是().的秩是().A・2 B・3 C・4 D・53・线性方程组解的情况是()・A.只有零解B.有惟一非零解C.无解D.有无穷多解4.下列事件运算关系正确的是().5.设是来自正态总体的样本,其中是未知参数,则()是统计二、填空题(每小题3分。

共15分)1.设A, B是3阶矩阵:其中则2?设A为“阶方阵,若存在数A和非零咒维向量z,使得则称2为A相应于特征值.入的3.若则4.设随机变量X,若则5.设是来自正态总体的一个样本,则三、计算题【每小题16分,共64分)1.已知其中求X.2.当A取何值时,线性方程组有解,在有解的情况下求方程组的一般解.3.设随机变量X具有概率密度求E(X), D(X).4.已知某种零件重量采用新技术后,取了9个样品,测得重量(单位:kg)的平均值为14. 9,已知方差不变,问平均重量是否仍为四、证明题(本题6分)设A, B是两个随机事件,试证:P(B) = P(A)P(B1A)+P(万)P(B1页)?试卷代号1080中央广播电视大学学年度第二学期''开放本科''期末考试水利水电等专业工程数学(本)试题答案及评分标准(供参考)2007年7月一、单项选择题(每小题3分.本题共15分)1・D 2・B 3・D 4・A 5・B二、填空题(每小题3分。

本题共15分)1・122.特征向量3・0・34・ 2三.计算题(每小题16分,本题共64分)1・解:利用初等行变换得由矩阵乘法和转置运算得2.解:将方程组的增广矩阵化为阶梯形由此可知当AM3时,方程组无解.当A - 3时,方程组有解.方程组的一般解为3.解:由期望的泄义得由方差的计算公式有4.解:零假设H。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档